
Functional Dependency Driven Auxiliary Relations
Selection for Materialized Views Maintenance

Mukesh Mohania
IBM India Research Lab

IIT Delhi Campus
New Delhi

+91-11-51292222

mkmukesh@in.ibm.com

Kamalakar Karlapalem
International Institute of Information
Technology, Gachibowli, Hyderabad

 +91-40-230101967
 kamal@iiit.net

P. Radha Krishna, K.V.N.N Pavan Kumar
Institute for Development and Research in Banking Technology

Masab Tank
Hyderabad

+91-40-23534981

prkrishna@idrbt.ac.in, pavankkvnn@mtech.idrbt.ac.in

Millist Vincent
School of Computer and Information Science

University of South Australia, Australia
+61- 8- 302 3166

Millist.Vincent@unisa.edu.au

ABSTRACT
In a data warehouse system, maintaining materialized views can
speed up query processing. These views need to be maintained in
response to updates in the base relations. This is often done for
reasons of data currency, using incremental techniques rather than
re-computing the view from scratch. However, when the data
source changes, the views in the warehouse can become
inconsistent with the base data. Thus, maintenance of materialized
views in the warehouse consistent with the base relations is a
challenging task. In this paper, we propose an approach to
maintain a materialized view without accessing the base relations
by materializing and maintaining additional relations, known as
auxiliary relations. In our approach, these auxiliary relations are
derived based on the functional dependencies that hold on base
relations, materialized view, and the key participation of the base
relations in the materialized view. This approach helps in
reducing the storage space and improves the efficiency of view
maintenance. We present an algorithm to derive those auxiliary
relations and determine which auxiliary relations need to be
materialized in order to maintain a materialized view
incrementally. We also present the cost model that enables the
evaluation of the total cost and benefit involved in materializing
auxiliary relations.

1. INTRODUCTION
A data warehouse is an information base that stores a large
volume of extracted and summarized data for On-Line Analytical
Processing and Decision Support Systems. To reduce the cost of
executing aggregate queries in a data-warehousing environment,
frequently used aggregates are often pre-computed and
materialized into summary views so that future queries can utilize
them directly [10]. Materialized views are important in data
warehouses for fast retrieval of derived data regardless of the
access paths and complexity of view definitions. These
materialized views avoid scanning the large data sets for the
queries that occurs frequently. However, when the underlying
database relations are updated by insertion and deletion of tuples,
a materialized view must also be updated to ensure the
correctness of answers to queries against it. Updating the
materialized view by full re-computation is often expensive.
There are several approaches [4][17][5][14] for maintaining
materialized views incrementally, whereby only the portions of
the view that are affected by the changes in the relevant sources
are updated. That is, a new view is computed from the existing
view as and when there are changes to the base relations. On the
other hand, additional views (often called auxiliary relations) are
stored at the data warehouse in order to ensure enough
information to maintain the views without accessing the base
relations.

A materialized view can be maintained efficiently by maintaining
and materializing the auxiliary relations. The approach of
materializing auxiliary relations saves on base data sources
access, but it may require a large amount of data to be stored and
maintained at the warehouse. Furthermore, for a system with
limited storage space and/or with thousands of summary views,
we may be able to materialize only a small fraction of the views.
In addition to reducing the cost of maintaining a view, storing
auxiliary relations has additional benefits. Firstly, these auxiliary
relations can be used in maintaining multiple views having
common sub-expressions, where the auxiliary relations will

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

37

correspond to these sub-expressions. Lastly, the relations may be
used to maintain a view when the view definition itself is slightly
modified. Since auxiliary relations also change in response to
updates to the base relations, these relations need to be maintained
along with the materialized view. Thus, it is necessary to select
the auxiliary views with less storage space, which facilitate less
maintenance cost of materialized views.

In this work, we present an algorithm for deriving auxiliary
relations as well as determining the best possible set of auxiliary
relations to be materialized in order to maintain a view. We
considered the functional dependencies of both base relations and
materialized views and key participation of the base relations in
the materialized view. The derived auxiliary relations make it
possible to maintain a materialized view by significantly reducing
the total computing and maintenance cost. In [11], auxiliary
relations are derived from the intermediate results of the views.
This work differs from the earlier work mainly in the way it
derives the auxiliary relations. We used functional dependencies
(FDs) of base relations for deriving the best possible set of
auxiliary relation. The FD based decomposed relations by our
method are easy to maintain than query process based shared sub-
expressions. Our technique is independent of number of queries
that get executed.

The rest of the paper is organized as follows. In section 2, we
present an overview of the related work. Section 3 presents our
algorithm for deriving auxiliary relations by determining the best
possible set of auxiliary relations that are needed to maintain the
view. Section 4 contains the cost model and experimented on
some sample data and we conclude with section 5.

2. RELATED WORK
The related work that was done for maintaining the materialized
views falls into three categories: selecting views to materialize in
order to minimize query costs, e.g., [6][7], selecting auxiliary
views to materialize in order to minimize the cost of maintaining
given primary views, e.g., [12][15], and finally the work in
lineage tracing and view maintenance [3][2]]. In [7], a greedy
algorithm is proposed for selecting auxiliary views to materialize,
with the goal of minimizing the cost of queries over aggregate
views given certain constraints such as the maximum number of
views that can be materialized. The work considers data-cube
views only, and can make certain simplifying assumptions based
on this restriction. [6] extends the work in [7] to general relational
views, and proves that the auxiliary view selection problem under
maintenance cost constraints is NP-hard. [15] proposes an
exhaustive algorithm for selecting auxiliary views to optimize
view maintenance and suggests simple search space pruning
strategies when the view is too complex for exhaustive search. [9]
presents an A* algorithm for selecting auxiliary views and
indexes on different join combinations for SPJ view maintenance.
Both [15] and [9] consider a single algorithm for selecting
auxiliary views (and indexes in the case of [9]), designed
specifically for optimizing view maintenance. They consider as
potential auxiliary views all nodes in all possible relevant query
plans, making the search space doubly exponential in the view
definition size.

The lineage tracing for relational data warehouses in [3] presents
a formal framework and basic algorithms. In [2], the authors

introduced the problem of selecting auxiliary views to
simultaneously reduce view maintenance and lineage tracing
costs, considered the restricted case of SPJ views and suggested
several alternative auxiliary view schemes and compared their
performance.

Lee and Hammer [10] presented a genetic algorithm based
solution to the maintenance cost view selection problem for
computing a near optimal set of views. A View Relevance Driven
Selections (VRDS) algorithm is presented in [16] to select
materialized views, which minimizes the query processing cost
and view maintenance cost. In [8], an efficient plan for
incremental, transient and permanent materialization for the
maintenance of a set of materialized views, by exploiting sub-
expressions between different view maintenance expressions is
presented. Several algorithms for view selection and maintenance
problems while designing data warehousing systems are described
in [1]. In [13], a view maintenance algorithm is presented by
materializing and maintaining auxiliary relations, which are
derived from the intermediate results of the view computation. In
this paper, we handle the problem of maintaining the materialized
views more efficiently by deriving the auxiliary relations based
on the functional dependencies present in the base relations and
materialized view as well as the participation of keys.

3. DERIVING NORMALIZED AUXILIARY
RELATIONS

In this section, we formalize the notions of functional
dependencies and some useful definitions of participation of keys.
Consider a database <R, >, where R is a finite set R= {R1,
R2...Rn} such that each Ri R is a relation schema and is a set
of functional and inclusion dependencies. Let a materialized view,
<V, Fv > be defined over R by an SPJ relational algebra
operations such that FV is the set of functional dependencies that
can be inferred from that hold in V. Let the primary key of each
relation Ri be defined by a set of attributes Ki.

Functional dependency A functional dependency (FD) over a
relation schema Ri is a statement of the form Ri: X Y where
Ri R and X, Y Ri are sets of attributes.

Full key participation: If the key of Rj is fully contained in the
view V, then Rj has a full key participation in V.

Partial key participation: If the key of Ri is not fully contained in
the view V, then Ri has a partial key participation in V.

Non-key participation: If the key of Ri is not contained in the view
V, then Ri has a non-key participation in V. It is a special case of
partial key participation.

No participation: If none of the attributes of Ri is contained in the
view V, then Ri has no participation in V

Total view: If the view contains the key attributes of all its
participating relations, then this view is called a total view. That is,
if all the relations have full key participation in V then this view is
called a total view.

Partial view: If all the relations do not have full key participation in
V, then this view is called a partial view.

38

Input: E
Output: B (E)

Start
1. B (E) = {{A1}...{Aj}} where {A1...Aj) is the set of attributes appearing in E
2. For every pair of selection conditions in c such that Ai=ci, Aj=cj, and ci=cj

Then merge the sets in B (E) corresponding to Ai and Aj
3. For every selection condition Ai = Bi in =

 Then merge the sets in B (E) corresponding to Ai and Bi
End

Figure 1. Equality set finding algorithm

Self-maintainable view: The view V is n-access-maintainable if
the base relations are accessed at most n times in order to
maintain the view V for a given update . If n = 0, then the view
V is self-maintainable.

3.1 Finding the Functional Dependencies that
Hold in the View

The notations used in this section are shown in Table 1. In the
proposed procedure if the same attribute name is present in more
than one relation, then the name of that attribute is changed so
that each attribute name will be present in only one relation
schema. In this paper, we considered only SPJ views, which can
be written as V = Z (E), where E is c = (r1 X r2 X … X rn). We
denote the set of all attributes appearing on the left hand side of a
selection condition c by ATT (c).

To derive functional dependencies that exist in the view V, we
first compute the equality sets of E, denoted by B (E), where each
equality set is a set of attributes. The meaning of these sets is that
if any pair of attributes A and B are in the same equality set, then
t [A] = t[B] for every tuple t in E. This can result from either A
and B being equated to the same constant in c, or by A being
equated to B in =. The algorithm [12] for finding the equality set
is shown in Figure 1.

The functional dependencies in the view are computed using the
equality sets as well as the functional dependencies present in the
base relations. For every A B(E), we denote the set in B(E) to
which A belongs by LA. The FDs that hold in E, denoted by FE,
are computed as given below:

 FE = F1 U F2 U F3

where F1 = F1 U…U Fn;
 F2 = { ATT (c)} and
 F3={A LA |A ATT (E)}.

Here, F2 indicates nothing determines the conditional attributes
present in c and F3 indicates that an attribute determines itself
after renaming, which form canonical trivial functional
dependencies as discussed in [12]. All other functional
dependencies will present in F1. We note that the FDs
corresponding to any singleton set in B (E) is trivial and so can be
removed from F3. We know that an FD X Y holds in x (ri) iff

X Y Fi
+ (closure of Fi) and X Y Ri. Finally, we compute the

FDs that hold in the view V, denoted by Fv as
 Fv = {X Y | X Y FE

+ and X Y V}.

Table 1. Notations
D = Database containing the base relations
R1, ... Rn denote the relations schemes in the database D
A, B, C and their subscripts denote single attribute names
X, Y and their subscripts denote sets of attribute names.
The Set of FDs which holds in relation scheme Ri is denoted
by Fi

ATT (E) denotes the set of attributes in E
r1, ... rn are the relations correspond to relational schemas
R1, ... Rn

c denotes a selection statement with the set of selection
conditions{A1 = c1, …, Ap= cp}

= denotes a selection statement with the set of selection
conditions {A1 = B1, ..., Ak = Bk}

Q = Query on the database D that defines a view

T = Newly modified tuple in D

F = The set of functional dependencies that hold on the data
base
Fv = The set of functional dependencies derived from
materialized views
SAT (database, Functional dependencies) = Satisfaction
function representing functional dependencies associated
with the database

AR = Set of Auxiliary relations derived

V = Materialized view under consideration

Cm(AR) = Cost of maintaining auxiliary relations

Cmb(V) = Cost of maintaining view from base relations

CmA(V) = Cost of maintaining view from auxiliary relations

39

n
1Input: Keys of all base relations KRall = i {KRi},

 Set of all attributes in the view Av.
 Rj is the jth relation in database D
Output: Key of the materialized view Kv

Start
If KRall-{KRall Av} = { }
 Kv = KRi - {A | A Ki X A Rj, i j}
Else

Kv = {KRall {Av- KRall}-{KRall-Av}- {A | A Ki X A Rj, i j}}
End

Figure 2. Algorithm for deriving the key

3.2 Deriving the Key of the Materialized View3.2 Deriving the Key of the Materialized View
The select-project-join operation on auxiliary relations is
performed using the key of the materialized view. The key is
derived based on whether the materialized view is partial view or
total view. Figure 2 shows the algorithm for deriving the key in a
materialized view.

The select-project-join operation on auxiliary relations is
performed using the key of the materialized view. The key is
derived based on whether the materialized view is partial view or
total view. Figure 2 shows the algorithm for deriving the key in a
materialized view.

Example 3.1.Example 3.1.
Let the data base schema be {R1 (A, BLet the data base schema be {R1 (A, B, C, K), R2(C , F, G) and
R3 (C , D, E)}.

Case 1: - Total view
Let V = ABCDF (E=e(R1 R2 R3)). Here R1, R2, and R3 have
full key participation in V. Using the procedure shown in section
3.1 and algorithm in Figure 2, we can derive Fv = (AB C, C D)
and the primary key Kv = ABF.

Case 2: Partial view
Let V = ECDG (E=e(R1 R2 R3)). Here R3 has full key
participation, R1 has no key participation and R2 has partial key
participation in V. Using the procedure shown in section 3.1 and
algorithm in Figure 2, we can derive Fv = (C D) and the primary
key Kv = ECG

In this work, we derived a set of self-maintainable auxiliary views
that can be maintained without accessing the data sources or
replicating the base data. We assume that any changes to the
database do not violate F. For simplicity, we considered the
insertion operation at base relations.

Theorem 3.1. Auxiliary relations derived using functional
dependencies are self-maintainable.

Proof. A relation is self-maintainable if it does not access base
relations and satisfy the functional dependencies after update. As
the auxiliary relations that are derived from view are nothing but
the functional dependencies that hold on the view, the functional
dependencies of materialized view are derived from the functional
dependencies that are present in base relations. So the updates to
base relations can be reflected in auxiliary relations only with the
tuple that updated without accessing base relations. Thus, after
update, the auxiliary relations will satisfy functional
dependencies.

T SAT(AR {T}, Fv)
T SAT (D {T}, F) and Q (D {T}) = V

So, the view is consistent after modifications to the base relations
and hence, auxiliary relations are self-maintainable.

Theorem 3.2. Benefit of incorporating auxiliary relations is
always greater than zero.

Proof: According to Theorem 3.1, the set of auxiliary relations
AR is self-maintainable. So the cost of maintaining the Auxiliary
relations is zero.

C = 0)(ARm

The cost of maintaining view is more due to access to base
relations. As we are not accessing the base relations and also the
cost of maintaining auxiliary relations is zero, we can say the cost
of maintaining the views by using auxiliary relations is less than
the cost of maintaining views from base relations.

Since, C >> and Q (D {T}) = V ,)(Vmb)(VCmA

we get benefit > 0.

Thus, the benefit of materializing auxiliary relations is greater
than zero. The benefit of adding auxiliary relations is mainly
based on the presence of “total views” and “partial views”. If all
views are not “total views”, then the benefit of auxiliary relations
is always positive.

We initially considered all functional dependencies derived from
views and the key of the views as auxiliary relations. The
presented algorithm (see Figure 3) computes the auxiliary
relations, which gives more benefit. But, in the case of partial
view, the auxiliary relation derived based on the key of the partial
view cannot be self-maintainable, because that auxiliary relation
requires base relations for its maintenance and hence it will not
exist in the best possible set of auxiliary relations which are going
to be materialized. So we can say that the benefit of adding the
auxiliary relations cannot be negative. However, in the case of
total view, the materialized view itself can be self-maintainable.

4. COST MODEL AND DISCUSSION
Figure 3 shows the algorithm to derive a set of auxiliary relations
that are self-maintainable by considering all the functional
dependencies present in the base relations and the key
participation.

40

 Input
 Base relations B={b1, b2…bn}

Materialized views M={mv1, mv2 … mvm}
Set of functional dependencies in views FM={Fmv1, Fmv2 … Fmvm}
Set of functional dependencies in Base relations FB={Fb1, Fb2 … Fbm}
Fall ={ }, Ffinal = { }

Output
Set of auxiliary relations ARfinal = {AR1, AR2 … ARl}

Start

1. mvi M
Compute equality set using procedure shown in Figure 1
Compute Functional dependencies by using the procedure explained in section 3.1
Compute the key of the view using the procedure presented in Figure 2
Fall = Fall {Fi | Fi Fv Fi Fall}

2. Initially consider all the functional dependencies and keys derived in step 1 as auxiliary
relations.

3. Calculate the benefit we get by materializing each auxiliary relation by using the cost model
presented in the section 4 and arrange them in descending order of benefit in AR as AR1, AR2,
…ARk where AR is the set of Auxiliary relations.

4. ARi AR if S (ARi) < Savailable where Savailable=available space
 and S(ARi)=space required for ARi

ARfinal = ARfinal ARi
Savailable = Savailable – S (ARi)

End
Figure 3. Algorithm for deriving Auxiliary relations

The algorithm first computes the functional dependencies that
hold on the view and then derives best possible set of auxiliary
relations with maximum benefit. For n number of base relations
and m number of functional dependencies in all relations, the
complexity of deriving the best possible set of auxiliary relations
is O(nm). Our approach is independent of the number of
materialized views. Here, the benefit of materializing auxiliary
relations is computed using the cost model and the available
storage space.

Let B = {bl, b2 ... bn} set of n base relations, Q = {q1, q2 ... qq} be
the set of q queries accessing the materialized views, M= {mv1,
mv2...mvm} be the set of m materialized views and AR = {AR1,
AR2... ARl} be the set of l auxiliary relations generated by the

auxiliary design process. Let fu 1 , fu , fu b
3 , … fu be

frequency of updates to the base relations, and fu 1 , fu 2 , fu ,

… fu l be the frequency of update to the auxiliary relations, and
fq

b b
2

b
k

A A A
3

A

1, fq2, … fqn be the frequency of queries accessing the
materialized views. S(x) determines the space occupied by the
relation x where x can be an auxiliary relation, base relation or a
materialized view. The analysis assumes that there is no index or
hash key in any of the summary views, therefore linear search and
nested loop approach are used for the selection and join
operations respectively. In the worst case, the analysis estimates
that all the records in a summary view will be scanned once in

order to process one user’s query. The cost notations are
presented in Table 2

Table 2. Cost Notations
Cbqr = Total Cost of answering the r queries using base

relations
Cb (qi) = Cost of answering the ith query using base relations
CAqr = Total Cost of answering the r queries using Auxiliary

relations
CA (qi) = Cost of answering the ith query using Auxiliary

relations
Cmvb = Total cost of maintaining the views using base

relations
Cmb (mvi) = Cost of maintaining the ith view using base

relations
CmvA = Total cost of maintaining the views using Auxiliary

relations
CmA (mvi) = Cost of maintaining the ith view using Auxiliary

relations

The total cost of answering the r queries using n base relations is

bqrC = * C)
r

i
ifq

1
b iq(

where C) = S (bb iq(1) X S (b2) X … X S (bn).

41

The total cost of answering the r queries using l auxiliary relations
is

AqrC = * C)
r

i
ifq

1
A iq(

where) = S(ARAC iq(1) X S(AR2) X … X S(ARx) X S (b1) X
S (b2) X … X S (by). Here x<<l and y<<n.

The total cost involved in maintaining (re-computing) the
materialized views only from base relations is

mvbC = *
n

i

b
ifu

1

)(
1

j

m

j
mb mvC

where fu b
i is the frequency of update to the base relations and

 is the cost of maintaining the jmbC)(jmv th materialized view

using base relations. That is,

mbC (mvj) = S (b1) X S (b2) X … X S (bx) where x <= n.

The (re-) computation of a materialized view will require the
joining of the auxiliary relations as well some base relations,
based on whether the view is the total view or the partial view.
So, the total cost involved in maintaining the materialized views
from auxiliary relations is

mvAC = *
l

i

A
ifu

1

)(
1

j

m

j
mA mvC

where fu l is the frequency of update to the auxiliary relations

and is the cost of maintaining the j

A

mA (C)jmv th materialized

view using auxiliary relations. That is,

mAC (mvj) = S (AR1) X S (AR2) X … X S (ARx) S (b1) X
S (b2) X … X S (by)

 where x<<l and y<<n

Benefit = (-) + (-)bqrC AqrC mvbC mvAC

Consider an example to calculate the benefit we get by
materializing the auxiliary relations with the following base
relations each having 1GB of data and each auxiliary relation will
have 0.5 GB of data.

Product (pid#, p_name, s_id#)
Store (s_id#, s_name, s_city)

Order (pid# , cid# , quantity, date)
Customer (cid#, c_name, c_city)

On average consider each record will be of 5 bytes so there will
be 200000000 records in base relation and 100000000 in auxiliary

relations. Prime is used after #, just to show the attribute with
different name if the same attribute is presented in other relation.

The calculation to derive auxiliary relations using the two
approaches namely (i) considering functional dependencies
(proposed approach) and (ii) Materializing intermediate results
(auxiliary relations) of the view computation using greedy
approach is given below.

Let the materialized view V be

V = cid, c_city, s_id, s_city c = (product store order customer)
where

c = { pid = ‘p001’, date = ‘May’ }

= = { pid# = pid# , sid# = sid# , cid# = cid# }

(i) Considering Functional Dependencies

F1 = { pid# p_name; s_id# s_name, s_city;

 pid#, cid#, date quantity; cid# c_name, c_city }

F2 = { date, pid#}

F3 = { pid# pid# , sid# sid# , cid# cid# }

Fv = {sid# s_city; cid# c_city}
Key = {sid#, cid#}

The three auxiliary relations are { sid#, s_city }, { cid#, c_city }
and {sid#, cid# }.

bC iq() = (2*108)* (2*108)* (2*108)* (2*108) units

bqrC = (2*108)* (2*108)* (2*108)* (2*108) units where r=1

(i.e. one query)

mbC (V) = (2*108)* (2*108)* (2*108)* (2*108) units

mvbC = (2*108)* (2*108)* (2*108)* (2*108) units

AC iq() = (108)* (108)* (108) units

AqrC = (108)* (108)* (108) units where r=1 (i.e. one query)

mAC (V) = (108)* (108)* (108) units

mvAC = (108)* (108)* (108) units

Benefit = 32*1032 – 2*1024

(ii) Intermediary results as auxiliary relations

The auxiliary relations obtained by greedy algorithm are

1. { sid#, cid# ,pid#}

2. { cid#, c_city }

3. { sid#, s_city }

42

bC iq() = (2*108)* (2*108)* (2*108)* (2*108) units

bqrC = (2*108)* (2*108)* (2*108)* (2*108) units where r=1

(for one query)

mbC (V) = (2*108)* (2*108)* (2*108)* (2*108) units

mvbC = (2*108)* (2*108)* (2*108)* (2*108) units

AC iq() = (108)* (108)* (108) units

AqrC = (108)* (108)* (108) units where r=1 (for one query)

0
100
200
300
400
500
600
700
800
900

0 1 2 3 4 5 6 7 8 9 10 11
Number of materialized views

B
e
n
e
f
i
t

mAC (V) = (108)* (108)+ (108)* (108)+ (108)* (108)+ (2*108)*
(2*108)* (2*108) units

mvAC = (108)* (108)+ (108)* (108)+ (108)* (108)+ (2*108)*
(2*108)* (2*108) units

Benefit = 32*1032 – 9*1024

The benefit we got with respect to the other method is 7*1024

units. If we consider that each unit is one join, then we are saving
7*1024 joins. If each join will take one unit of time, then our
approach saves 7*1024 units of time.

From the above example, we can find that the benefit is greater
than zero for one materialized view, but as the number of base
relations, records in base relations and the number of materialized
views increases, the benefit will increase exponentially and also
the space occupied by the auxiliary relations will also be less due
to the common auxiliary relations derived for different
materialized views. For a set of base relations with the increasing
number of materialized views, we calculated the benefit of
deriving the auxiliary relations based on the functional
dependencies.

Figure 5: Plot between benefit and number of
materialized views

To show our approach, we considered 10 queries, which needs to
be materialized. The FDs satisfying the materialized views are
derived by considering the FDs present in base relations. Each

functional dependency present in the materialized view will form
one auxiliary relation, which is also satisfied in base relation.
Here, same auxiliary relation may be derived for various
materialized views. The set of auxiliary relations are derived
using the approach described in the Figure 3, which provides a
highest benefit. Figure 4 shows the number of common auxiliary
relations for the queries under consideration. Here, the derivation
of auxiliary relations will depend on the relationship among
queries. If larger number of queries is having some common sub-
expression, then the common auxiliary relations will be more. As
the number of common auxiliary relations increases, the benefit
will also increase.

The benefit of materializing auxiliary relations is calculated using
the cost model and the results are shown in the Figure 5. Initially
the benefit increased highly as the number of queries to be
materialized increases and later the benefit will decrease by some
amount due the increase in maintenance cost of the materialized
views.

4.1. Discussion

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11

Number of Materialized views

n
u

m
b

e
r

o
f

co
m

m
o

n

a
u

x
il

ia
ry

 r
e
la

ti
o

n
s

Materialized views provide fast access to pre-computed data that
results significant performance gain to answer a query. However,
if the base relations change frequently, keeping these materialized
views updated will incur a high maintenance cost. The two main
problems that are addressed in the literature are (i) the view
selection problem and (ii) the view maintenance problem. In the
present work, we considered the problem of maintaining the
materialized views by considering some auxiliary relations. Now,
the maintenance problem was shifted to deriving the auxiliary
relations that results in effective maintenance of materialized
views.

Most of the earlier approaches that deal with auxiliary relations
for maintaining the materialized views are based on the
intermediary results obtained during the generation of
materialized views. These intermediate results consist of several
joins and aggregations on base relations to meet the execution of a
query. These approaches will not work efficiently if there are no
or minimal common sub-expressions present in the different
queries. Here, a lot of importance is given for the query
processing rather than maintenance of materialized intermediate

Figure 4: Plot showing common auxiliary relations

43

relations. But, these approaches are not utilizing the knowledge
present in the base relations such as functional dependencies. In
this work, we have given more importance to semantic of the
schema as expressed by functional dependencies on base relations
to design auxiliary views. Our approach also considers the
functional dependencies present in the materialized views and key
participation of base relations in the materialized views.

As the materialized views are derived from the base relations,
there are more chances of having the common functional
dependencies among the materialized views that holds on the base
relations. We derived functional dependencies of the view based
on the FDs present in the base relations, and the derived FDs form
auxiliary relations. Since, the FDs present in the base relations are
known, the derivation of auxiliary relations is easy due to the less
complexity is involved in the selection. Further, we generated a
set of best possible auxiliary relations based on the benefit
calculated using the cost model. The proposed method is
beneficial even if there are no common sub-expressions present in
the different queries since the functional dependencies on the
views are derived from the same set of FDs present in the base
relations.

Our approach derives the auxiliary relations by considering the
functional dependencies, which are same for the any query
because they are using the same base relations. So the auxiliary
views derived are best as the number of materialized views
increases. The storage space will also be saved as there are
common auxiliary relations derived as number of views increases.

5. CONCLUSION
Materialized views are used to increase the query performance.
However, these views need to be maintained in response to
updates in the base relations. This is often done, for reasons of
accuracy, using incremental techniques rather than recomputing
the view from scratch at specified periodic intervals. We have
examined the problem of deriving the auxiliary relations to
materialize in a data warehousing in order to reduce the cost of
view maintenance. The auxiliary relations are derived, by
considering the functional dependencies in base relations,
materialized views and the key participation of base relations in
the materialized views. An algorithm is presented for deriving
self-maintainable auxiliary relations. A cost model is also
presented with an example. As the number of materialized views
increases as shown in Figure 5, initially we found that the cost of
maintenance decreases and the benefit will increase highly up to
certain level. After that, as auxiliary relations increases, the
benefit decreases by some amount due to the maintenance cost of
the materialized views.

6. REFERENCES
[1] Bellatreche, L., Kamalakar Karlapalem and Mukesh

Mohania, “Some Issues in Design of Data Warehousing
systems”, Data Warehousing and Web Engineering, IRM
Press, Hershey, PA (2002).

[2] Cui, Y., and J. Widom. “Practical Lineage Tracing in Data
Warehouses”, In Proc. of the Sixteenth International
Conference on Data Engineering, San Diego, California
(February, 2000).

[3] Cui, Y., J. Widom, and J.L. Wiener. “Tracing the Lineage of
View Data in a Warehousing Environment”, Technical
report, Stanford University Database Group (1997).

[4] Gupta, A., and I. S. Mumick, “Maintenance of Materialized
Views: Problems, Techniques, and Applications”, Data Eng.
Bull., Special Issue on Materialized Views and Data
Warehousing 18 (2) 3 – 18 (1995).

[5] Gupta, A., I. S. Mumick, and V. Subrahmanian.
“Maintaining views incrementally”, In Proc. of the ACM
SIGMOD International Conference on Management of Data,
pp. 157–166, Washington, DC (May, 1993).

[6] Gupta, H., “Selection of Views to Materialize in a Data
Warehouse”, In Proc. of the Sixth International Conference
on Database Theory, pp. 98–112, Delphi, Greece (January,
1997).

[7] Harinarayan, V., A. Rajaraman, and J. D. Ullman.
“Implementing Data Cubes Efficiently”, In Proc. of the ACM
SIGMOD International Conference on Management of Data,
pp. 205–216, Montreal, Canada (June, 1996).

[8] Hoshi Mistry, Prasan Roy, S. Sudarshan and Krithi
Ramamritham, “Materialized View Selection and
Maintenance using Multi-query Optimization”, ACM
SIGMOD Record, 30(2), 307-318 (June, 2001).

[9] Labio, W.J., D. Quass, and B. Adelberg. “Physical Database
Design for Data Warehousing". In Proc. of the Thirteenth
International Conference on Data Engineering, pp. 277–288,
Birmingham, UK (April, 1997).

[10] Lee, M., and J. Hammer, “Speeding up Materialized view
selection in Data Warehouses Using A Randomized
Algorithm”, International Journal of Cooperative
Information Systems, 10 (3), 327 –353 (2001).

[11] Michael O. Akinde, Ole Guttorm Jensen, H.Michael Böhlen,
“Minimizing Detail Data in Data Warehouses”, EDBT, pp.
293-307 (1998).

[12] Mohania, M., K. Karlapalem and M. W. Vincent,
“Maintenance of Data Warehouse Views using
Normalization”, COMAD’ 97, Chennai, India (1997).

[13] Mohania, M., S. Konomi, Y. Kambayahsi and M. Vincent,
“Designing View Maintenance Algorithm in Data
Warehousing Environment”, In Proc. of the 9th International
Conference on Management of Data (COMAD'98),
Hyderabad, India (1998).

[14] Quass, D., “Maintenance Expressions for Views with
Aggregation”. In Proc. of the Workshop on Materialized
Views: Techniques and Applications, pp. 110–118, Montreal,
Canada (June, 1996).

[15] Ross, K. A., D. Srivastava, and S. Sudarshan, “Materialized
View Maintenance and Integrity Constraint Checking:
Trading Space for Time”, In Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 447–
458, Montreal, Canada (June 1996).

44

[16] Satyanarayana R., Valluri, Soujanya Vadapalli and
Kamalakar Karlapalem, “View Relevance Driven
Materialized View Selection in Data Warehousing
Environment”, In Proc. of 13th Australasian Database
Conference (ADC2002), Australia (2002).

[17] Zhuge, Y., H. Garcia-Molina, J. Hammer and J. Widom,
“View Maintenance in a Warehousing Environment”,
SIGMOD Record, ACM Special Interest Group of
Management of Data 24 (2), 316-327 (1995).

45

