Partially Materialized Partitioned Views

Satyanarayana R Valluri
satya@iiit.net
Centre for Data Engineering
International Institute of Information Technology
Gachibowli, Hyderabad, INDIA

ABSTRACT

Selection of materialized views and maintaining them is an
important problem studied in literature. In this paper, we
develop the notion of Partially Materialized Partitioned Views
(PMPYV) in which a materialized view is first partitioned and
only a part of the view is materialized. The partitioning is
done based on the workload of the database: the read-only
queries and the update queries. The PMPYV approach offers
many advantages. The notion of PMPYV is independent of
the view selection algorithm and the algorithm used for an-
swering the queries using the materialized views. The space
occupied by the PMPVs will be less than the normal mate-
rialized views and hence saving the storage space. Since the
sizes of PMPVs will be less than the normal materialized
views, the cost of processing queries using PMPVs might be
less than that of using the normal materialized views. The
number of updates that need to be considered while main-
taining PMPVs will be less than that of the normal mate-
rialized views. We discuss the algorithms for selecting the
PMPVs and maintaining them. The experimental results
show that the PMPYV approach offers advantage in terms of
saving the storage space and decrease in the query process-
ing cost at the expense of increase in the maintenance cost
of the PMPVs.

1. INTRODUCTION

A data warehouse provides integrated access to multiple,
distributed, heterogeneous databases and other information
sources [38]. Pre-computation of query results and storing
them as materialized views is a very popular technique used
in data warehousing environments. Given the query work-
load, the problem of determining the materialized views that
are to be maintained at the warehouse is called the “view se-
lection problem” [13]. Since the underlying data sources get
updated, the process of updating the materialized views to
keep them consistent with the data sources is called “view

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

maintenance” [11]. Storing materialized views incurs two
kinds of costs: storage cost and view maintenance cost. Var-
ious algorithms are proposed to select that set of material-
ized views which minimize the total query response time and
the cost of maintaining the selected views, in the presence
of storage space/maintenance cost constraint [17, 13, 15, 3,
39].

The cost to be paid for having materialized views is the
view maintenance cost. Since it is wasteful to compute
the entire view for every update, “incremental view mainte-
nance” becomes very attractive to reduce the maintenance
cost. Algorithms that compute changes to a view in re-
sponse to changes to the base relations are called “incre-
mental view maintenance algorithms” [11]. Many incremen-
tal view maintenance algorithms are proposed in literature
[6, 12, 11, 14, 35, 10, 1, 26]. In the presence of extra infor-
mation, some views can be maintained without accessing the
base relations. Such views are called self-maintainable views
and the extra information required is called auxiliary view.
The problem of deriving the axillary views and thereby mak-
ing the materialized views self-maintainable is studied in [29,
19, 32].

Traditional method of processing OLTP queries is to ex-
tract the information from the sources only when the queries
are posed. This approach is called a lazy or on-demand
approach [38] . The other alternative is an eager or in-
advance approach wherein the information is extracted from
the sources in advance and stored in a repository, and when
the queries are posed, they are answered using the reposi-
tory without accessing the original information sources. The
lazy and the eager approaches represent two ends of vast
spectrum of possibilities [18]. In this paper, we explore an
alternative which lies between the two ends. Instead of ma-
terializing the full view, the view is partitioned such that
only those partitions which are required by the workload are
materialized. We assume that the workload of the database,
the read-only and the update queries, are known in advance
and the partitioning of the views is done based on them.
We identify the overlap between the queries conservatively,
we do not consider explicitly how conditions relate to each
other as in [4].

1.1 Motivating Example

When a view V is materialized, it may contain many tu-
ples which are not useful to any of the queries in the work-
load. The PMPYV technique proposed determines the useful
set of tuples and materializes only them. We first present a

simple example to illustrate the idea of the PMPV method.

Example 1. Consider a database which has four relations
A,B,C and D. Let (A1, A2,...), (B1,B2,...), (C1,C2,...)
and (D1, D2,...) be the attributes of A, B, C and D respec-
tively. Consider two read-only queries:

Query 1:((0a3>104) MNa2=p2 B) Xp3=c3 C

Query 2:((0a1<35A4) MNa2=p2 B) XMpa=ps D
Consider a materialized view V which has definition:
V = Aas—B2 B

Both the queries can be answered by using the view V. If
there is no other query which uses V for processing, then
instead of materializing the whole view, materializing those
tuples of V' which join either with C or D on the given join
conditions would reduce the size of V. Consider a partition
of V, V' which has the definition®:
V' = (d(a1<ss)v(as>10)A) Xaz—p2 B and (Vt € V'
either 3 t. € C such that t xp3=cs3 t. is true

or 3t4 € D such that t <pa=p4 tq is true)

The select condition on A: (Al < 35) V (A3 > 10) selects
only those tuples of A which are useful to either Queryl or
Query2 or both. The condition “It. € C such that t <Bs=c3
tc is true” selects only those tuples of V' which are useful
in answering Query 1. Similarly, the condition “3J tq €
D such that t bps=pa tq is true” selects only those tuples
of V which are useful in answering Query 2. Thus, V'’ de-
notes only those tuples of V' which are useful in answering
either Query 1 or Query 2 or both.

Materializing V' instead of V will still allow both the
queries to be answered. At the same time, it saves the space
because the size of V' will be less than V. If the differences
in sizes of V and V' is large, then the cost of answering the
queries using V' will be less than that by using V. Now
consider the following update queries on the database:

Update 1: UPDATE A SET A4 = 40

WHERE A5 > 10
Update 2: UPDATE A SET A4 = 10

WHERE A1 > 50 AND A3 < 50
Update 3: UPDATE C SET C3 = 20

WHERE C1 < 20

As discussed earlier, storing V' instead of V would be bene-
ficial. Now the update query 1 updates only some tuples of
V. The update query 2 does not updates any of the tuples in
V' because the ‘where’ condition of the query (A1 > 50 AND
A3 < 50) contradicts with the condition of V' (A1 < 35 OR
A3 > 10). The update query 3 updates V' although C is
not a base relation of V’ because it modifies the attribute
C3 and the definition of V' depends on the values of the
attribute C3. There might be an overlap between the tuples
which are accessed by Query 1 and the tuples which are up-
dated by either Update 1 or Update 2 or both. Thus, we
now define two partitions of the view V, V?* and V? which

'We used relational algebra along with logical conditions to
define the view definitions for ease of specifying constraints.

a7

are defined as:

| A — (O'(A1535)V(A3>10)A) Das—p2 B and Vt € VI
(either 3 t. € C such that t <p3—c3 t. is true) or
((t satisfies A5 > 10) or
(3 tc € C such that t <p3—c3 t. is true
and t. satisfies C'1 < 20))
Ve ((o(a1<35)v(a3>10)A4) Maz=p2 B and Vt € V*
(3 tq € D such that t <ipa—pa4 tq is true)

Now, Query 1 can be answered using V?“ and Query 2 can
be answered using V9. The view V" needs to be maintained
due to the updates of the queries Update 1 and Update 3.
The update query Update 2 need not be maintained because
V9" does not contain any tuples which are updated by it.
The sizes of V' and V7 will be less than of V. Hence, ma-
terializing V7 and VY instead of V reduces the storage cost.
Also, it does not reduce the number of queries that can be
answered since every read-only query can still be answered
using VI or V9. Also, the cost of answering the queries
using V' and V7 will be less than that by using V' because
the sizes of V9% and V? will be less than that of V. Thus,
it gives two advantages: the saving in the storage cost and
the saving in the query answering cost.

If V were to be materialized, all the update queries Update
1, Update 2 and Update 3 incur maintenance on V. But,
if V9" and V? were to be materialized, then only Update
1 and Update 3 queries incur maintenance on V7% as illus-
trated above. Thus, the number of updates that need to
maintained will decrease if V%“ and V¢ are materialized.
But, the cost of maintaining updates of an update query
on V7 will be much more than the cost of maintaining on
V because extra relations need to be scanned for maintain-
ing V9. For example, if updates due to Update 3 are to
be maintained, in addition to scanning V7%, relation C also
needs to be scanned to determined the tuples that belong
to/does not belong to V* after the update.

Thus, at the expense of the increase in the maintenance cost,
materializing V9 and V¥ instead of V offer advantages in
terms of decrease in the storage cost and the query process-
ing cost. O

The partitions of V, V9% and V¢ defined in example 1 are
called the Partially Materialized Partitioned Views (PM-
PVs) of V. We now present a more complicated example
which illustrates the usefulness of the PMPYV approach. We
use this as a running example through out the paper.

Example 2. Consider schema of a company database as
shown in table 1. All the primary keys are underlined.

e The relation Employee stores the information about
employee which is the ID of the employee (EID), the
name of the employee (EName), the age of the em-
ployee (EAge), the salary of the employee (ESal) in
thousands and the ID of the department in which he
works (DID which is a foreign key of DID of Depart-
ment).

The relation Department stores the information about
the department which is the ID of the department

(DID), the name of the department (DName), the lo-
cation of the department (DepLoc) and the budget of
the department (DBudget) in thousands.

e The relation Project stores the project details which
are the ID of the project (PID), the name of the project
(PName), the duration of the project (PDur) and the
location of the project (PLoc).

e The relation Controls stores the details of which de-
partment (DID which is a foreign key of DID of De-
partment) controls which project (PID which is a for-
eign key of PID of Project). StartDate denotes date
on which the department takes charge of the project.

e The relation Has_Dependent stores the information
about the dependents of each employee. It has ID of
the employee (EID which is a foreign key of EID of
Employee), name of the dependent (Dep_Name) and
the relationship the employee has with the dependent
(Relnship).

Employee(EID, EName, EAge, ESal, DID)
Department(DID, DName, DepLoc, DBudget)
Project(PID, PName, PDur, PLoc)
Controls(DID, PID, StartDate)
Has_Dependent(EID, Dep_Name, Relnship)

Table 1: Example Schema
The read-only queries of the workload are shown in table 2
(queries Q1-Q5) and table 3 (queries Q6-Q10). The update
queries of the workload are shown in the table 4 (queries
U1-U8).

@1: SELECT EName, ESal, DepLoc
FROM Employee, Department
WHERE Employee.DID = Department.DID

AND ESal > 80

@Q2: SELECT EID, EName, DName
FROM Employee, Department
WHERE Employee.DID = Department.DID

AND DepLoc = “Hyderabad”

@3: SELECT EName, PName, StartDate

FROM Employee, Department, Project, Controls
WHERE Employee.DID = Department.DID
AND Department.DID = Controls.DID

AND Controls.PID = Project.PID

AND StartDate > “01-01-04”

SELECT EName, DBudget, PDur

FROM Employee, Department, Project, Controls
WHERE Employee.DID = Department.DID
AND Department.DID = Controls.DID

AND Controls.PID = Project.PID

AND StartDate < “03-05-04” AND DBudget > 75

SELECT EName, Dep_Name

FROM Employee, Has_Dependent

WHERE Employee.EID = Has_Dependent.EID
AND ESal < 40

Table 2: Read-only queries: Queries Q1-Q5
Now, let us assume that a materialized view V is defined
whose definition is: V' = Employee Xprp=prp Department.
The SQL definition for V is as follows:

48

SELECT DName, PDur, EName

FROM Employee, Department, Project, Controls
WHERE Employee.DID = Department.DID
AND Department.DID = Controls.DID

AND Controls.PID = Project.PID

AND PDur > 30 AND DBudget > 40
SELECT EName, DName

FROM Employee, Department

WHERE Employee.DID = Department.DID
AND DBudget > 40 AND DBudget < 50
AND ESal < 10

SELECT DName, PName, PLoc

FROM Department, Project, Controls
WHERE Department.DID = Controls.DID
AND Controls.DID = Project.DID

AND DBudget > 80

SELECT EName, DBudget

FROM Employee, Department, Project, Controls
WHERE Employee.DID = Department.DID
AND Department.DID = Controls.DID

AND Controls.PID = Project.PID

AND PLoc = “Chennai”

AND DBudget > 40 AND DBudget < 50
SELECT EName, DBudget

FROM Employee, Department, Project, Controls
WHERE Employee.DID = Department.DID
AND Department.DID = Controls.DID

AND Controls.PID = Project.PID

AND ESal > 50 AND DBudget > 40

AND EAge > 25

Qo:

Table 3: Read-only queries: Queries Q6-Q10

SELECT *
FROM Employee, Department
WHERE Employee.DID = Department.DID

Then using the traditional materialized view approach,
the queries {Q1, Q2, @3, Q4, Qs, @7, Q9, @10} can be answered
using V. And the update queries {U1, Uz, Us, Us, Uz, Us}
need to be maintained, i.e, whenever one of the above up-
date queries occurs, V' has to be maintained.

We show later in the paper that using the PMPYV approach
V will be partitioned into two partitions. Also, the queries
{ @1, Q4, Qs, Q10 } can be answered using one partition
and the queries { Q2, @3, Q7, Qo } can be answered using
the another. Thus, all the queries can still answered using
the PMPV approach. The sizes of the partitions of V' will
be less than that of V' and hence the cost of storing the
partitions of V' will be less than that of storing V' and the
cost of answering queries using the partitions will be less
than the cost using V.

Only the update queries {U2,Us,Us} need to be main-
tained, thus decreasing the number of update queries that
incur maintenance. But the cost maintaining the updates
of {Uz,Us, Us} on the partitions of V will be more than the
cost of maintaining the updates of {U1, Uz, Us, Us, U7, Us}
on V. Thus, the cost of maintenance may increase although
the number of update queries that incur maintenance may
decrease.

Thus, using the PMPV approach, the storage cost and
the query answering cost can be decreased at the expense of

Ui: UPDATE Employee
SET ESal = 40
WHERE ESal > 15
AND ESal < 30
U>: UPDATE Employee
SET ESal = 60
WHERE ESal > 60
AND EAge < 30
Us: UPDATE Department
SET DBudget = DBudget*0.5
WHERE DBudget > 60
Us: UPDATE Department
SET DBudget = 60
WHERE DBudget < 30
Us: UPDATE Project
SET PDur = PDur - 10 AND PLoc = “Delhi”
WHERE PDur > 20
Us: UPDATE Project
SET PLoc = “Mumbai”
WHERE PLoc = “Delhi”
U;: UPDATE Department
SET DLoc = “Delhi”
WHERE PLoc = “Mumbai”
Us: UPDATE Employee
SET ESal = ESal*2
WHERE ESal > 11
AND EAge < 20

Table 4: Update queries of the workload

increase in the maintenance cost. O

1.2 Advantages of PMPV approach

We develop the notion of partially materialized partitioned
view (PMPYV) wherein each view is partitioned based on the
workload of the database and only some of the partitions of
each view are materialized (hence the name “partially mate-
rialized”). The notion of PMPV has many-fold advantages:

e The idea of PMPYV is independent of the view selec-
tion algorithm and the algorithm used for answering
the queries using the materialized views (sections 3.2
and 3.3).

e Since only a portion of the view is materialized, the
space occupied by the view will be less. Hence, under
a storage space constraint more views can be materi-
alized.

e Since the sizes of the PMPVs will be less than the
traditional views, the cost of processing queries using
PMPVs will be less than the cost of using the tradi-
tional views.

e Not all updates on the base relations incur updates
on the PMPVs. Based on the workload and the PM-
PVs, it can be easily determined which of the updates
queries incur updates on the PMPVs. But the cost of
maintaining a PMPV will be greater than cost of main-
taining its corresponding normal materialized view.

1.3 Contributions

In this paper, we

e developed the notion of Partially Materialized Parti-
tioned Views and showed its advantages over the nor-
mal materialized views,

o developed algorithm for selecting and maintaining PM-
PVs and

e experimentally evaluated the performance of PMPVs
over the traditional approach and showed the useful-
ness of the approach.

The organization of the paper is as follows. Section 2
describes the notions of partitioning the materialized views
and partially materializing them. Section 3 describes algo-
rithm to select PMPVs. Section 4 discusses method to main-
tain PMPVs. Section 5 presents the experimental results.
Section 6 presents the related work. Section 7 describes the
future work and finally section 8 concludes the paper.

2. PARTIALLY MATERIALIZED PARTITIONED

VIEWS

We assume that the workload of the database is known in
advance. The workload consists of the “read-only queries”
and “update queries”. In this paper, we assume that the
read-only queries will only be SPJ queries and the update
queries will be on single relations (i.e. both the read sets and
write sets of any update query belong to a single relation).

2.1 Notation

Let R = {R1, Rs,...,R,} be the set of n base relations.
A(R;) denotes the set of attributes of relation R;.

Let Q = {Q1,Q3, - - ., @y} be the set of p read-only queries.
For each query Q;:

e R(Q;) denotes the set of base relations which partici-
pate in the query Q;.

e A(Q;) denotes the set of attributes which belong to
the WHERE clause or SELECT clause of Q;.

o C(A(Q;)) denotes the where clause of Q;.

e f; denotes the frequency of occurrence of the query Q;.
Example 3. For query @ of the example,

e R(Q1) = {Employee, Department}

e A(Q1) = {Employee.DID, EName, ESal, Department.DID,
DepLoc} and

e C(A(Q1)) = “Employee.DID = Department.DID AND
ESal > 80”

Similarly, for query Qo,

e R(Q9) = {Employee, Department, Project, Controls},

e A(Q9) = {Employee.DID, EName, Department.DID,
DBudget, Project.PID, PLoc, Controls.PID, Controls.DID}
and

¢ C(A(Q9)) = “Employee.DID = Department.DID AND
Department.DID = Controls.DID AND Controls.PID
= Project.PID AND PLoc = “Chennai” AND DBud-
get > 40 AND DBudget < 50”. O

Let U = {U:,Us,...,U,} be the set of r update queries.
For each update query Us;:

e R(U;) denotes the base relation on which U; performs
the update. Since we assume only single table updates,
R(U;) will be a single relation.

e Ag (U;) denotes the set of attributes that belong to the
set clause of the update query U;.

e Aw (U;) denotes the set of attributes that belong to
the where clause of the update query Us;.

o C(As(U;)) and C(Aw (U;)) denotes the set condition
and where condition of the update query U; respec-
tively.

e g; denotes the frequency of occurrence of the query Us;.
Example 4. For the update query Us in the example,

e R(Uz) = Employee

As (Uz) = {ESal}

Aw (Uz) = {ESal, EAge}

C(As (Uz)) = “ESal = 60”

C(Aw (Uz)) = “ESal > 60 AND EAge < 30”

Similarly, for the update query Us in the example,

e R(Us) = Project

As (Us) = {PDur, PLoc}

Aw (Us) = {PDur, PLoc}

C(As (Us)) = “PDur = PDur-10 AND PLoc=“Delhi””
C(Aw (Us)) = “PDur > 20” O

Note that As(Ul),AW (Ul) c A(R(UZ))
As (U;) N Aw (U;) may not be empty.

Let V be a view that is selected to be materialized. Based
on V', we define the notion of PMPV.

Also, the set

e Let R(V) denote the set of base relations that partici-
pate in the view V.

e Let A(V) be the set of attributes that are present in
the definition of V.

e Let C(A(V)) be the condition on which V is defined.

Let Q(V') be the set of read-only queries which can be
answered using the view V, i.e., each query in it can be
re-written using V. Trivially, Q V) C Q. The set Q(V') is
called the set of answerable queries of V

The set of answerable queries of V is further divided into
two parts: the set of answerable queries of V with updates
Qqu (V) and the set of answerable queries of V' without up-
dates @, (V). They are defined as follows:

e The set of answerable queries of V with up-
dates, Q. (V): It is the subset of the set of answer-
able queries of V, such that for every query @Q; that
belongs to it, there exists at least one update query
which updates the attributes of Q;, A(Q;).

Qg (V) {Q: € Q(V) | 3U; € U such that
AQ:) NAs(U;) # ¢ and
C(A(Q:)) A C(Aw (U:))}

50

e The set of answerable queries of V without up-
dates, Q,(V): It is the subset of the set of answer-
able queries of V| such that for every query @Q; that
belongs to it, there does not exists even one update
query which updates the attributes of Q;, A(Q;).

Q (V) {Qi € Q(V) | YU; € U either
AQi) NAs (Us) = ¢ or
C(A(Q:)) A C(Aw (1)) is false
or both}

Any query which can be answered using V should belong
to either Qqy (V) or @, (V). That is, Qu (V) U Qy (V) =
V).

Based on the definition of Qg (V), the update queries
which affect the PMPYV is defined which is called the set of
required updates of V', Ugy (V).

The set of required updates of V, Uz (V): It is
defined as the set of update queries which update the at-
tributes of at least one query in the set of answerable queries
of V with updates.

Uqu (V)

{U; € U | 3Q;i € Qqu (V) such that
AQi) NAs (Ui) # ¢ and
C(A(Q:)) A C(Aw (Ui))}

The disjunction of the conditions of all the queries in
Qqu (V) is denoted as Cy (Qy (V)) and is called as disjunc-
tion of Qg (V).

Cv (Qu (V)
Qi€Qqu(V)

Similarly, the disjunction of Q, (V') is defined and denoted

as Cy (Qq (V))
The disjunction of Ug, (V') is defined as the disjunction of
the where conditions of all its update queries and is denoted

as Cv (Qqu (V).
Cv (Uqu(V)) =

C(A(Q:))

\V Caw @)
UiEUqu(V)
Example 5. Let V be the materialized view as defined

in the example: V = Employee <xprp=prp Department.
Then,

> A

(V) = {Employee, Department }

(V') = {Employee.DID, Department.DID}
C(A(V)) = “Employee.DID = Department.DID”
Q(V) = {Qla Q2’ Q3’ Q47 QG: Q71 QQ: QlO}

Qq“ (V) = {Qla Q4, QG, QIO}

o Q (V) ={Q2,Q3,Q7,Q¢}

° Uqu(V) = {UQ,U3:U5}

For each query in Q. (V'), there exists at least one update
query which updates the attributes of it. For @1, the up-
date query Us updates the tuples which are accessed by Q1.
Similarly, for Q4 it is Us, for Q¢ it is Us and Us and for Q10
it is Uz and Us.

For each query in @, (V), there does not exist at least one
update query which updates the tuples which are accessed
by it.

For each update query in Uy, (V'), there is at least one query
in Quu (V') whose tuples it updates.

o Cy (Qqu(V)) will be the disjunction of the where clauses

of {Qla Q4: QG’ QIO}-
e Cy (Q(V)) will be the disjunction of the where clauses

of {Q2a Q3: Q7: QQ}
e Cy (Ugu(V)) will be the disjunction of the where clauses
of {UQ, Us, U5}. O

2.2 Partitions of Views

Given a view V, based on the set of answerable set of
queries with updates and without updates Q,,, (V') and Q, (V')
and the set of required update queries Ug,(V), the view V
will be partitioned into three partitions:

¢ Read and Update Partition of V', V9%: It contains
all the tuples of V' which are accessed by at least one of
the queries in the set of answerable queries of V' with
updates or updated by at least one of the queries in
the set of required update queries.

Ve {t € V | 3Q; € Quu (V) such that
Q@; accesses t
or 3U; € Uy (V) such that

U; accesses t}

o Read-Only Partition of V, V%: It contains all the
tuples of V' which are accessed by at least one of the
query in the set of answerable queries of V without
updates. Since each tuple in it will be accessed by one
of the query in @, (V'), none of the update queries in
the set of required update queries of V' update it.

Vq

{t € V | t satisfies Cy (Q, (V))}

¢ Remaining Partition of V, V™™: It contains all
the tuples of V' which belong to neither V¢ nor V9.

Ve =y — (VI U V)

Thus, each tuple in V9" satisfies the condition C(A(V)) A
(Cv (Quu (V))VCy (Ugu(V))). And, each tuple in V' satisfies
the condition C(A(V')) A Cy(Qq(V)). Also, the partitions
V' and V? may be overlapping, i.e., V?* N V< may not be
empty.

2.3 Partial Materialization

Given a view V, the read and update partition of V, V"
and the read-only partition of V, V¢ constitute the Partially
Materialized Partition View of V. Thus, instead of materi-
alizing the entire V, only V* and V? will be materialized.
The remaining partition V"™ need not be materialized. All
the queries which belong to Q. (V) can be rewritten using
V2 instead of V. Similarly, all the queries which belong
to @, (V) can be rewritten using V7 instead of V. Since
Quu (VYU Qy (V) = QV), all the queries which can be an-
swered using V' can now be answered using either V% or
V? using the PMPV approach. Thus, not materializing the
remaining partition of V, V"*™ does not affect the set of
queries which can be answered using the materialized view.
Only the update queries which belong to Ugy (V') incur main-
tenance cost for PMPV. Also, each update query in Ug, (V)
updates only the tuples of V%,

{t € V| t satisfies Cv (Qgu (V)) V Cv (Ugu(V))}

{t € V | 3Q; € Q; (V) such that Q; accesses t}

51

Example 6. If V is defined as before: V' = Employee Xprp=p1p

Department, if the PMPV V? and V? are materialized
then:

e the queries Quu (V) = {Q1,Q4,Qs, Q10} can be an-
swered using VI

e the queries @, (V) = {Q2, Qs, @7, Q9 } can be answered
using V¢

e only the update queries in Ug,, (V') = {U2, Us, Us } incur
maintenance of V. O

3. SELECTION OF PMPV

Since the workload that is to be supported is a fixed set of
“read-only queries”, a multi-query optimizer [7, 33, 31, 30]
can be run and an execution plan will be generated. The ex-
ecution plan will contain intermediate results of the queries
and each such intermediate result is a potential candidate
for materialization since it may reduce the query processing
cost. Once an intermediate node is materialized, the updates
on the base relations will incur updates on the materialized
view in order to maintain the consistency.

The existing techniques to select the “best” set of materi-
alized views is to associate a benefit value to each of the in-
termediate results and select the most beneficial set of views
to be materialized based on a cost model [13, 15]. [31] dis-
cusses three heuristics to select the materialized views based
on the Volcano architecture [9]. [3, 34] discuss the selection
of materialized views in a multidimensional database. [39]
proposes a heuristic approach called MVPP to select the
most beneficial set of views.The notion of PMPV is inde-
pendent of the cost model and the view selection algorithm
used to select the views.

Intuitively, the technique of PMPYV works well, if the selec-
tivity factors of the read-only queries and the update queries
is low and if there is a large overlap between the tuples that
are accessed by the various read-only queries as well as be-
tween the tuples that are accessed by the read-only queries
and the update queries. On the other hand, if the above
conditions are not met, it will be beneficial to materialize V'
itself, instead of partitioning it and partially materializing
it. We now define the notion of benefit of a PMPV.

3.1 Benefit of PMPYV of a view

Let V be the materialized view and V%, V¢ be its cor-
responding PMPVs. Let Q(V') and U(V) denote the set of
read-only and the set of update queries that access/update
the view V respectively. Let Q. (V) and Q, (V') denote the
set of read-only queries that access V¢* and V¢ respectively.
Let Ugu(V) denote the set of update queries that update
V. Let QC(Q;:,V) be the cost of processing the query
Q; using the materialized V and let UC(U;, V) be the cost
of updating the materialized view V because of the update
query U;. Then the benefit of PMPYV of a materialized view
V, Bpmpv (V) is given by:

Brupv(V) [(ZQicam fi * QC(Qi,V)
+ Xy,evny i * UC(Us, V)]
[20; e fi * QO(Qs, V)
+ Zg;equv) fi * QC(Q:, V)
+ Xy, ev,uv)gi ¥ UC(Ui, V)

The first part of the benefit function denotes the sum of
the cost of processing the read-only queries using V' and the
cost of maintaining V' due to the update queries. The second
part of the query denotes the sum of answering the read-only
queries using V7 and V9 and the cost of maintaining V9
due to the update queries. The difference between the two
denotes the benefit of materializing the PMPV of V, VI
and V¥ instead of materializing V.

If Bpmpv (V) is a positive quantity, then it implies that
it is beneficial to materialize V“ and V¢ instead of V.

If M = {V1,Va,...,Vn} is the set of materialized views
and PMPVs already selected, then the benefit of PMPYV of
V w.r.t. M is denoted by Bpympv(V, M). The views in M
may be the full complete views in the traditional sense or
some of them might be PMPVs. The benefit function for
Bpupyv(V, M) can be written as:

Bpupv(V,M) = [Eq,eq)fi *QC(Qi, M UYV)
+ 3y, euvwv)gi * UC(Ui, M U V)]

- [Zgiequv)fi* QC(Q:, M UV)
+ X0, e, fi * QC(Qi, MU V)

required.

e Case 2: t, € V™ and t, € VI, t, € V™ and t, ¢ V.
Since t,, does not belongs to V¢, delete the tuple #;, from V9.
e Case 3: t, € V™ and t;, € VI, t, ¢ V' and t, € V.
Since t, does not belongs to V%, delete the tuple ¢} from
Vv,

e Case 4: t, € V™ and t, € V9, t;, ¢ V™ and ¢, ¢ V.
Since, t, does not belongs to V¢* and V9, delete the tuple
t}, from V9% and V7.

e Case b: t, € Vi and t, ¢ V¢, t, € VI and t, € V.
Since t,, belongs to V¢ though t; does not belongs to V',
insert ¢/, into V7.

e Case 6: t, € Vi and t, ¢ V¢, t, € VI and ¢, ¢ V.
Since there are no changes, no action is required.

eCase T: t, € Vi and t, ¢ V¢, t, ¢ VI and t, € V9.
Since t;, belongs to V?* but t, does not belongs to V%,
delete the tuple t; from V9*. Since ¢, does not belongs to
V2 but t,, belongs to V9, insert the tuple ¢, into V9.

e Case 8: t, € V™ and t, ¢ V9, t, ¢ V™ and ¢, ¢ V.
Since t; belongs to V" but ¢, does not belongs to V%,
delete the tuple t; from V%,

e Case 9: t, ¢ Vi* and t, € V¢, t, € VI and t, € V.

+ Zvsev,u(vgi * UCUs, MU V™) gince t;, does not belongs to V?* but t;, not belongs to V*,

3.2 PMPV Selection Algorithm

If M is the set of materialized views and PMPVs already
selected and if a view selection algorithm selects V' to be
materialized, then if the benefit of PMPV of V w.r.t. M,
Bpupv(V, M) is a positive quantity then V9 and V¢ will
be materialized. Otherwise, V' will be materialized. Thus,
the selection of PMPYV is independent of the algorithm used
to select the traditional materialized views.

3.3 Answering queries using PMPV

If PMPVs of a view V are materialized, then the queries
Qqu (V) can be answered using V¢ and the queries Q, (V)
can be answered using V?. Also, Qg (V) UQ, (V) = Q(V).
Thus, all the queries that can be answered using V can as
well be answered using the PMPVs of V.

Corollary 1. If a query Q can be answered by a view V', it
can also be answered by the PMPVs of V, V% and V1.

Therefore, the standard algorithms that are used to an-
swer queries using materialized views [21, 28, 16], can be
used for PMPVs also without any changes.

4. MAINTENANCE OF PMPV

Let U; € Uqu (V) be an update query which updates the
base relation R; € R. Let ¢, € R; be a tuple which is getting
updated due to U;. Hence, ¢, satisfies C(Aw (U;)). Let tq
be the resultant tuple obtained after updating ts.

Let t, € V be the corresponding tuple in V' to which ¢
contributes. Let t, be the resultant tuple obtained after
updating tj,.

The various cases for maintaining PMPVs are shown in
the table 5. insert(¢, V') means inserting the tuple ¢ into the
view V and delete(t, V') means deleting the tuple ¢ from the
view V.

For cases 1 to 16, we assume that t, € V and t, € V.

e Case 1: t, € V¥ and t, € V9, t, € VI and t,, € V.
Since t; and t, both belong to V?* and V¢, no action is

insert the tuple ¢, into V%,

e Case 10: t, ¢ V™ and t, € V%, t;, € V™ and t,, ¢ V.
Since t;, does not belongs to V* but t, not belongs to V%,
insert the tuple ¢, into V*. Since t; belongs to V¢ but t,,
does not belongs to V¢, delete the tuple t;, from V9.

e Case 11: t, ¢ V™ and t, € V9, t;, ¢ VI* and t,, € V.
Since there are no changes, no action is required.

e Case 12: t;, ¢ V™ and t, € V?, t, ¢ VI and t,, ¢ V.
Since t;, belongs to V¢ but ¢, does not belongs to V¢, delete
the tuple #,, from V.

e Case 13: t, ¢ V™ and ¢, ¢ V9, t;, € V™ and ¢, € V.
Since t;, does not belongs to V4% but ¢, not belongs to V%,
insert the tuple ¢, into V9*. Since ¢, belongs to V¢ though
t;, does not belongs to V¢, insert ¢, into V7.

e Case 14: t;, ¢ V™ and t, ¢ V9, t, € VI and t,, ¢ V.
Since t}, does not belongs to V¢* but ¢, not belongs to V%,
insert the tuple ¢/, into V%,

e Case 15: t, ¢ V™ and t, ¢ V9, t, ¢ VI and ¢, € V.
Since ¢, belongs to V¢ though t; does not belongs to V9,
insert t;, into V2.

e Case 16: t, ¢ V™ and t, ¢ V%, t, ¢ V™ and t, ¢ V.
Since there are no changes, no action is required.

For cases 17 to 20, we assume that t; € V and ¢, ¢ V.

e Case 17: t, € V™ and t;, € V9. Since t;, does not belongs
to V, delete the tuple t;, from V9% and V9.

e Case 18: t, € V% and t;, ¢ V9. Since t, belongs to V?*
but ¢, does not belongs to V, delete the tuple t; from V9.
e Case 19: t, ¢ V? and t;, € V. Since t} belongs to V¢
but ¢/, does not belongs to V', delete the tuple ¢}, from V9.
e Case 20: t, ¢ V9 and t;, ¢ V7. Since there are no
changes, no action is required.

For cases 21 to 24, we assume that t;, ¢ V and t;, € V.

e Case 21: t, € V% and t, € V9. Since t;, does not belongs
to V but ¢, belongs to both V?* and V¢, insert ¢, into V*
and V9.

e Case 22: t, € V% and t, ¢ V9. Since t;, does not belongs
to V but ¢, belongs to V%, insert t,, into V*.

e Case 23: t, ¢ V% and t, € V9. Since t;, does not belongs

thev
t, EVTA t, € VI"A to § VA ta € VA ¢V
t, e V4 t, ¢ V¢ t, € V4 t, ¢ V¢
t, € VIUA 1.No action 2. delete(ty,, V?) | 3. delete(t,, VI%) | 4. delete(t, VI*) | 17. delete(t,, V")
t, €V delete(t;, V?) delete(t;, V)
t, € VIA | 5. insert(t;, VY) 6.No action 7. delete(t,, V™) | 8. delete(ty, V) | 18. delete(t;, V™)
eV | t, ¢V insert(t,, V%)
t, € VA | 9. insert(ty, V%) | 10. insert(t,, VI®) 11.No action 12, delete(ty,, V?) | 19. delete(t,, VY)
t, e Ve delete(ty,, V?)
t, I¢¢V‘“;/\ 13. insert((tlg,V:’)‘) 14. insert(t,, V") | 15. insert(t), V) 16.No action 20.No action
t, ¢V insert(t,, V'
¢V 21. insert(t,;, V) | 22. insert(t,, V%) | 23. insert(t,,V?) 24.No action 25.No action
insert(tg, V)

Table 5: Maintenance of PMPV

to V but ¢, belongs to V¢, insert t,, into V7.
e Case 24: t, ¢ VI and t, ¢ V% Since, there are no
changes, no action is required.
For case 25, we assume that t;, ¢ V and t, ¢ V.
e Case 25: t;, ¢ V and t, ¢ V. Since, there are no changes,
no action is required.

Depending on into which case each tuple falls into, the
corresponding action will be taken.

S. EXPERIMENTAL RESULTS

We implemented the notion of PMPV and compared the
performance of the results with that of the normal materi-
alized views.

‘We considered ten read-only queries and five update queries
(we omit their SQL statements due to lack of space) on the
schema described in example 2 for our experiments. The
selectivity factors of the conditions in the queries and the
frequencies of the queries are varied as described later. We
do not assume presence of indexes on any of the relations.
The workload of the database is analyzed and a global plan
for answering the queries is constructed. A greedy version
of the algorithm proposed in [31, 30] is implemented to ob-
tain the global plan. We implemented the greedy algorithm
(Gupta algorithm) proposed in [13] to select the views to
be materialized based on the global plan constructed. Us-
ing the method proposed in the paper, we find the corre-
sponding PMPVs for each of the views selected by Gupta
algorithm. Let the views selected by Gupta algorithm be
called as Gupta views and the views selected by the PMPV
algorithm be called as PMPVs.

Let Sy and S, be the space occupied by the views selected
by Gupta algorithm and the PMPYV algorithm respectively.
Let QCy and QCp be the cost of answering the queries using
the Gupta views and using the PMPYV respectively. Let UC|
and UC) be the cost of maintaining the Gupta views and
PMPVs respectively.

To compare the performance of the PMPVs with that the
Gupta views, we considered three measures. The constraint
is put on the number of views selected. If the same number
of views are allowed to be selected by both Gupta algorithm
and PMPYV algorithm, then the following measures are cal-
culated from them.

o Percentage Space Saved: It gives the percentage of the
space saved by storing the PMPVs with respect to storing

the Gupta views. It denotes the percentage of the space
occupied by Gupta views that is saved by storing PMPV
instead of Gupta views. The more its value, the better is
the efficiency of the PMPV approach. It is given by:
Percentage Space Saved = % * 100
g

e Percentage Query Cost Saved: It gives the percentage
of the saving made on the cost of answering the queries using
PMPVs with respect to the cost using the Gupta views. It
denotes the percentage of cost of answering queries using
Gupta views that is saved if the queries are answered using
PMPVs. The more its value, the better is the efficiency of
the PMPYV approach. It is given by:

QCg _ QCP %
Q0

o Percentage Maintenance Cost: It gives the percentage
of the extra maintenance cost incurred due to storing the
PMPVs with respect to the maintenance cost the Gupta
Views. It denotes the percentage of the extra maintenance
cost that is incurred due to storage of PMPVs instead of
normal materialized views. The less its value, the better is
the efficiency of the PMPYV approach. It is given by:

Uc, — UG,
uc,

We studied the effect of the selectivity factors of the queries
and the frequency of the queries on the above three mea-
sures. The selectivity factors and frequency of the queries
in the workload are varied as follows.

The selectivity factor of a query is defined as the average
of the selectivity factors of all the conditions present in the
query. The selectivity factors of the queries are varied at
three values: 0.1 (low), 0.5 (medium) and 0.9 (high). The
average frequency of the queries in the workload is varied
from 5 to 100 in steps of 5. The number of views to be
selected is varied between 1 and 10.

Percentage Query Cost Saved = 100

Percentage Maintenance Cost = * 100

5.1 Storage Space Saved

Figure 1 shows the percentage of the space saved when:
the average selectivity factor is 0.1, the number of views
selected varies from 1 to 10 and the average frequency of
the queries increases from 25 to 100. Since the selectivity
factors of the queries is very low (average is 0.1), the sizes of

53

% Space Saved (Sel Factor: 0.1) % Space Saved (Sel Factor: 0.9)
99 T T T T 18 T T T T T
Avg. Freq: 25 —— Avg. Freq: 25 ——
98 Avg. Freq: 50 —— sveFreg: 50
Avg. Freq: 65 —*— Avg. Freq: 65 —*—
97 Avg. Freq: 85 —s— A
Avg. Freq: 100 —=—
k=] =) 1
o (5]
> >
< < 7
% %)
Q Q 4
g 2
a, a,
% 2 1
IS8 1S3
88 s s s s s s s s s s s s
1 2 3 4 5 6 7 8 9 10 6 7 8 9 10
No. Of Views Selected No. Of Views Selected
Figure 1: % Space Saved (sel. factor: 0.1) Figure 3: % Space Saved (sel. factor: 0.9)
% Space Saved (Sel Factor: 0.5) % Query Cost Saved (Sel Factor: 0.1)
» - - » - - - 70 T T T
Avg. Freq: 25 —— Avg. Freq: 25 ——
Avg. Freq: 50 —— vg. Bréq:
Avg. Freq: 65 —*— 60 ¢ Freq: 65 b
Avg. Freq: 85 —&— 5 T
Avg. Freq: 100 —=— | 3 sob Avig. Freq: 100 |
3 z
s | &
ff) %’ 40 4
S 1 O
9 | 2 30t 1
@ 5
IS8] o
= 207 1
10 t 4
‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ .
3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
No. Of Views Selected No. Of Views Selected

Figure 2: % Space Saved (sel. factor: 0.5)

the PMPVs compared to the sizes of the Gupta views will
be very less. Hence, the percentage of the space saved will
be high and it varies around 95 %.

Figure 2 shows the percentage of the space saved when
the selectivity factor is increased to 0.5. Since the selectivity
factor of the queries has increased, the sizes of the PMPVs
also increase when compared to the previous case of low
selectivity factor. Hence, the percentage of the space saved
decreases and it varies between 50 and 70 %.

Figure 3 shows the percentage of the space saved when
the selectivity factor is further increased to 0.9. Since the
selectivity factor is very high, the sizes of the PMPVs se-
lected will be of the order of the Gupta views. Hence, the
percentage of the space saved will decrease further and it
varies between 8 and 18 %.

5.2 Query Processing Cost Saved

Figure 4 shows the percentage of the query cost saved
when: the selectivity factor is taken to be 0.1, the number
of views selected is varied between 1 and 10 and the average
frequency increases from 25 to 100. At a lower value of the
average frequencies (around 25), the query cost saved varies
around 50. But it decreases from 50 to 0 as the number

Figure 4: % Query Cost Saved (sel. factor: 0.1)

of views selected increases from 1 to 10. When the average
frequency increases to 100, as the number of views selected
increases to 7 and thereafter, the query processing cost with
Gupta views increases and hence the percentage of the query
cost saved tends to 0.

Figure 5 shows the percentage of the query cost saved
when the selectivity factor increases to 0.5. The behavior of
the graph is similar to the above case where the query cost
saved decreases as the number of views selected increases
from 1 to 10.

Figure 6 shows the percentage of the query cost saved
when the selectivity factor further increases to 0.9. Just like
the above cases, even here the query cost saved decreases as
the number of views selected increases from 1 to 10.

Thus, as the selectivity factor of the queries increases, the
sizes of the PMPVs increase and hence the percentage of the
query cost saved will decrease.

5.3 Maintenance Cost

Figure 7 shows the percentage of the increase in the main-
tenance cost when: the selectivity factor is taken to be 0.1,
the number of views selected varies between 2 and 10 and
the average frequency of the queries increases from 25 to

54

% Query Cost Saved (Sel Factor: 0.5)

T T T
Avg. Freq: 25 ——
Avg. Freq: 50 ——
Avg. Freq: 65 ——
Avg. Freq: 85 —=—

Avg. Freq: 100 —=—

80

% Query Cost Saved

1 2 3 4 5 6 7 8 9 10
No. Of Views Selected

% Increase in Maint. Cost (Sel Factor: 0.1)
66 T
vg. Freq:
A req: 50 ——

- 64 1 Avg. 65 —*— |
2 Avg/ Freq: 85
o 62r Avxg. [Freq: 100 b
£
a 60 L -
=
£ S8]
% 56
=1
Q
S s4t]
I3

52 F b

50 ‘ ‘ ‘ ‘ ‘ ‘ ‘

2 3 4 5 6 7 8 9 10
No. Of Views Selected

Figure 5: % Query Cost Saved (sel. factor: 0.5)

Figure 7: % Increase in Maint. Cost (sel. factor: 0.1)

% Query Cost Saved (Sel Factor: 0.9)

60 T T T
Avg. Freq: 25 ——
Avg. Freq: 50 ——
50 | Avg. Freq: 65 —— |
Avg. Freq: 85 —=—
3 Avg. Freq: 100 —=—
Z 40t)
wn
2
=}
O 30 F i
z
E
S 20 ¢ 1
I3
10 - 1
0 . , , . -

1 2 3 4 5 6 7 8 9 10
No. Of Views Selected

% Increase in Maint. Cost (Sel Factor: 0.5)

Avg. Freq: 25 ——

Avg. Freq: 50 —— |
Avg. Freq: 65 ——
Avg. Freq: 85 —&—
Avg. Freq: 100 —=—

% Increase in Maint. Cost

3 4 5 6 7 8 9 10
No. Of Views Selected

Figure 6: % Query Cost Saved (sel. factor: 0.9)

100. As the number of views selected varies between 2 and
10, the increase in the maintenance cost also increases.

When the selectivity factor is taken to be 0.5, the percent-
age maintenance cost varies between 69 and 71 as shown in
figure 8. When the selectivity factor is taken at 0.9, it varies
between 73 and 75 as shown in figure 9.

As the selectivity factor of the query increases, the sizes
of the PMPVs also increase and hence the cost of main-
taining them also increase. The cost of maintenance of the
PMPVs will also depend on the commonality between the
expressions that are present in the ‘where’ clause of read-
only queries and the ‘where’ clause of the update queries.

Thus, the experimental results show that PMPV approach
decreases the cost of storing the materialized views and the
cost of answering the queries at the expense of increase in
the maintenance cost.

6. RELATED WORK

The problem of materialized view selection and mainte-
nance has received wide attention in research community.
In this section, we cite the major papers on the materialized
views. The list is not exhaustive due to the space limitation.

Figure 8: % Increase in Maint. Cost (sel. factor: 0.5)

The algorithms to select the set of materialized views to
be maintained based on the workload of the databases are
discussed in [13, 15, 39, 36, 3, 34, 2, 8, 40, 23]. [13, 15] select
the views using a greedy approach by defining a cost model
which assigns benefit to each of the candidate views under
space constraint and maintenance cost constraint. [39] dis-
cusses a heuristic approach to select the set of candidate
views based on the notion of Multiple View Processing Plan
(MVPP) and defines a cost model to select the materialized
views based on MVPP. [36] discusses selecting the material-
ized views based on the notion of view relevance wherein the
relevance of a view in the presence of already selected set
of materialized views is considered. [3, 34] discuss the prob-
lem of selecting the materialized views for multidimensional
databases. [40] presents a genetic algorithm for selection of
materialized views based on multiple processing plans. [2]
presents an architecture for automated selection of indexes
and materialized views. [8] discusses materialized views for
nested Generalized Projection, Selection and Join queries.
[23] discusses the problem of view selection by exploiting
the common sub expressions between different view mainte-
nance expressions.

The problem of view maintenance is studied in [11, 12, 1,

55

% Increase in Maint. Cost (Sel Factor: 0.9)

T T
Avg. Freq: 25 ——
Avg. Freq: 50 ——
Avg. Freq: 65 —*—
Avg. Freq: 85 —=—

Avg. Freq: 100 —=—

745

‘
744 |
743
74.2
74.1

74

% Increase in Maint. Cost

73.9

73.8

No. Of Views Selected

Figure 9: % Increase in Maint. Cost (sel. factor: 0.9)

6, 14, 35, 10, 26, 41, 37, 23, 22, 25]. Self-maintenance of the
materialized views, views that can be maintained without
accessing the source data, has also been studied well. [29,
19, 32, 20, 24, 22] discuss the problem of self-maintenance.

The work in literature that is closest to the PMPV ap-
proach, to the best of our knowledge, are [18] and [5]. In [18],
three view materialization strategies are described: fully ma-
terialized, fully virtual and partially materialized. The no-
tion of partially materialized means some of the attributes
of the views will be materialized while others remain virtual.
The paper describes a framework for supporting hybrid ma-
terialized /virtual integrated views based on a special class of
mediators called Squirrel integration mediators. The PMPV
approach is substantially different from the hybrid approach.
In PMPYV approach, the query workload is analyzed and a
view is partitioned such that only those partitions which
are accessed by the read-only and the update queries are
materialized instead of the whole view.

[5] discusses strategies to fragment the tables of a star
schema to reduce the query execution time and facilitate
parallel execution of queries. Thus, the problem addressed
is the issue of designing a star schema by partitioning its
tables and using the partitioned warehouse for efficiently
answering the queries. On the other hand, the problem ad-
dressed by the PMPYV approach is completely different which
is partitioning the materialized views of a warehouse so as
to reduce the storage cost and the query answering cost. [5]
does not considers the workload of the database in terms of
the read-only and the update queries whereas the PMPV
approach finds the partitions based on the workload.

7. FUTURE WORK

The work presented in this paper on the PMPYV approach
is only preliminary and there is lot of scope for doing future
work in this direction.

In this paper, we assumed that the queries will be simple
SPJ queries. Extending the PMPV approach for supporting
aggregate queries with group by and having clauses along
with the nested queries will be an interesting direction for
future work.

In this paper, we assume that for a view V', the PMPVs of

56

V, VI and V? will be materialized, if their benefit is pos-
itive. But, this restriction can be removed and the benefit
of V4 and V? can be calculated independently and a deci-
sion to materialize either V% or V? or both can be taken.
Also, our approach for selecting the PMPVs is based on the
standard view selection algorithm. Although this approach
might have the advantage of using the existing view selection
algorithms, it may not be the optimal way of selecting the
PMPVs. Designing an optimal PMPYV selection algorithm
is challenging.

In the PMPYV approach, presented in the paper, the ma-
terialized views are partitioned horizontally, i.e., based on
the conditions in the ‘where’ clause of the queries. The ap-
proach can be generalized where a materialized view can be
partitioned vertically also using the vertical fragmentation
algorithms [27].

Developing a formal framework for supporting PMPVs
is an important future work. Based on the workload of
the database, the frequencies of the queries and the storage
space/maintenance cost constraint, determining the optimal
set of PMPVs to be selected is very interesting.

Making the PMPVs self-maintainable by selecting some
extra auxiliary views may decrease the cost of maintaining
the PMPVs.

8. CONCLUSIONS

Instead of materializing a complete view, materializing
only a portion of the view which is accessed by the queries
offers many advantages as discussed in the paper. To do
this, the view is first partitioned and only some of the parti-
tions are materialized. The PMPYV selection algorithms and
the method for maintaining PMPVs are naive and more so-
phisticated methods can be developed. The experimental
results show the utility of the PMPV approach in terms of
decrease in the storage space and the query processing cost
at the expense of increase in the maintenance cost. The
maintenance cost of the PMPVs can be brought down by
making them self-maintainable which is part of the future
work.

Acknowledgments: I thank Kamal Karlapalem for his nu-
merous comments and suggestions during the preparation of
the paper. Ithank Jhansi Rani Vennam, Ravindranath Jam-
pani, Risi V. Thonangi and Soujanya Vadapalli for proof-
reading the paper. I thank the anonymous reviewers for
their helpful comments.

9. REFERENCES

[1] D. Agrawal, A. E. Abbadi, A. K. Singh, and T. Yurek.
Efficient view maintenance at data warehouses. pages
417-427. SIGMOD, 1997.

S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and indexes
in sql databases. pages 496-505. VLDB, 2000.

E. Baralis, S. Paraboschi, and E. Teniente.
Materialized view selection in a multidimensional
database. pages 156-165. VLDB, 1997.

E. Baralis and J. Widom. An algebraic approach to
rule analysis in expert database systems. pages
475-486. VLDB, 1994.

[2]

8]

[4]

[5]

[6]

[7]

(8]

[24]

[25]

L. Bellatreche, K. Karlapalem, M. K. Mohania, and
M. Schneider. What can partitioning do for your data
warehouses and data marts? pages 437-446. IDEAS,
2000.

J. Blakeley, P. N. Larson, and F. Tompa. Efficiently
updating materialized views. pages 61-71. SIGMOD,
1986.

U. S. Chakravarthy and J. Minker. Processing
multiple queries in database systems. volume 5(3),
pages 38-44. Database Engineering, 1982.

M. Golfarelli and S. Rizzi. View materialization for
nested gpsj queries. page 10. DMDW, 2000.

G. Graefe and W. J. McKenna. Extensibility and
search efficiency in the volcano optimizer generator.
Technical Report CU-CS-91-563, University of
Colorado at Boulder, 1991.

T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. pages 328-339. SIGMOD, 1995.
A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. volume 18(2), pages 3-18. Data
Engineering Bulletin, 1995.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. pages 157-166.
SIGMOD, 1993.

H. Gupta. Selection of views to materialize in a data
warehouse. pages 98-112. ICDT, 1997.

H. Gupta and I. S. Mumick. Incremental maintenance
of aggregate and outerjoin expressions. Technical
report, Stanford University, 1999.

H. Gupta and I. S. Mumick. Selection of views to
materialize under a maintenance cost constraint.
pages 453-470. ICDT, 1999.

A. Y. Halevy. Answering queries using views: A
survey. volume 10(4), pages 270-294. VLDB J., 2001.
V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. pages 205-216.
SIGMOD, 1996.

R. Hull and G. Zhou. A framework for supporting
data integration using the materialized and virtual
approaches. pages 481-492. SIGMOD, 1996.

N. Huyn. Efficient view self-maintenance. pages 17-25.
VIEWS, 1996.

N. Huyn. Multiple-view self-maintenance in data
warehousing environments. pages 26-35. VLDB, 1997.
A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and

D. Srivastava. Answering queries using views. pages
95-104. PODS, 1995.

J. Liu, M. W. Vincent, and M. K. Mohania.
Maintaining views in object-relational databases.
volume 5(1), pages 50-82. Knowl. Inf. Syst., 2003.

H. Mistry, P. Roy, S. Sudarshan, and

K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization.
SIGMOD, 2001.

M. K. Mohania and Y. Kambayashi. Making
aggregate views self-maintainable. volume 32(1), pages
87-109. Data Knowl. Eng., 2000.

M. K. Mohania, K. Karlapalem, and Y. Kambayashi.

[26]

27]

28]

[29]

(30]

31]

32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

57

Data warehouse design and maintenance through view
normalization. pages 747-750. DEXA, 1999.

M. K. Mohania, S. Konomi, and Y. Kambayashi.
Incremental maintenance of materialized views. pages
551-560. DEXA, 1997.

M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, second edition, 1999.
R. Pottinger and A. Y. Halevy. Minicon: A scalable
algorithm for answering queries using views. volume
10(2-3), pages 182-198. VLDB J., 2001.

D. Quass, A. Gupta, I. S. Mumick, and J. Widom.
Making views self-maintainable for data warehousing.
pages 158-169. PDIS, 1996.

P. Roy. Multi-Query Optimization and Applications.
PhD thesis, 2000.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. pages 249-260. SIGMOD, 2000.

S. Samtani, V. Kumar, and M. K. Mohania. Self
maintenance of multiple views in data warehousing.
pages 292-299. CIKM, 1999.

T. K. Sellis. Multiple query optimization. volume
13(1), pages 23-52. ACM TODS, 1988.

A. Shukla, P. Deshpande, and J. Naughton.
Materialized view selection for multidimensional
datasets. pages 488-499. VLDB, 1998.

M. Staudt and M. Jarke. Incremental maintenance of
externally materialized views. pages 75-86. VLDB,
1996.

S. R. Valluri, S. Vadapalli, and K. Karlapalem. View
relevance driven materialized view selection in data
warehousing environment. Australasian Database
Conference, 2002.

D. Vista. Optimizing Incremental View Maintenance
Ezxpressions in Relational Databases. PhD thesis, 1997.
J. Widom. Research problems in data warehousing.
pages 25-30. CIKM, 1995.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for
materialized view design in data warehousing
environment. pages 136-145. VLDB, 1997.

C. Zhang, X. Yao, and J. Yang. An evolutionary
approach to materialized views selection in a data
warehouse environment. volume 31(3), pages 282-294.
IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 2001.

Y. Zhuge, H. G. Molina, J. Hammer, and J. Widom.
View maintenance in a warehousing environment.
pages 316-327. SIGMOD, 1995.

