
Formalization and Detection of Events

Using Interval-Based Semantics
Raman Adaikkalavan

IT Laboratory and Department of CSE
The University of Texas at Arlington

Arlington, TX 76019-0015
(+1) - 817-272-5188

adaikkal@cse.uta.edu

Sharma Chakravarthy
IT Laboratory and Department of CSE
The University of Texas at Arlington

Arlington, TX 76019-0015
(+1) - 817-272-2082

sharma@cse.uta.edu

ABSTRACT
Active databases utilize Event-Condition-Action rules to provide
active capability to the underlying system. An event was initially
defined to be an instantaneous, atomic occurrence of interest and
the time of occurrence of the last event in an event expression was
used as the time of occurrence for an entire event expression
(detection-based semantics), rather than the interval over which an
event expression occurs (interval-based semantics). This
introduces semantic discrepancy for some operators when they are
composed more than once. Currently, all active databases detect
events using the detection-based semantics rather than the
interval-based semantics. SnoopIB is an interval-based event
specification language developed for expressing primitive and
composite events that are part of active rules. Algorithms for
event detection using interval-based semantics pose some
challenges, as not all events are known (especially their starting
points). In this paper, we address the following: 1) briefly explain
the need for interval-based semantics, 2) formalization of events
accumulated over a semantic window and 3) how diversified
events (e.g., sliding window, accumulated) are detected using
interval-based semantics in the context of Sentinel – an active
object oriented database.

1. INTRODUCTION
There is consensus in the database community on Event-
Condition-Action (or ECA) rules as being one of the most general
formats for expressing rules in an active database management
system. As the event component was the least understood
(conditions correspond to queries, and actions correspond to
transactions) part of ECA rule, there is a large body of work [1-

11] on the language for event specification. Snoop [1, 2] was
developed as the event specification component of the ECA rule
formalism used as a part of the Sentinel project [12-15]. Snoop
supports expressive ECA rules that include coupling modes and
parameter contexts or event consumption modes.

An event is an occurrence of interest, which can be either
primitive (e.g., depositing cash in bank) or composite (e.g.,
depositing cash in bank, followed by withdrawal of cash from
bank). Primitive events occur at a point in time (i.e., time of
depositing) and composite events occur over an interval (i.e.,
interval starts at the time cash is deposited and ends when cash is
withdrawn). Thus, primitive events are detected at a point in time,
whereas the composite events can be detected either at the end of
the interval (i.e., detection-based semantics, where start of the
interval is not considered) or can be detected over the interval
(i.e., interval-based semantics). Event consumption modes are
needed while detecting events, since, not all the detected events
using unrestricted context (i.e., none of the event occurrences are
discarded after participating in event detection) are meaningful for
an application.

In all event specification languages used in Active DBMSs
(Snoop [1, 2], COMPOSE [3, 4], Samos [5, 6], ADAM [7, 8],
ACOOD [16, 17], event-based conditions [9], and Reach [10, 11,
18]), events are considered as “instantaneous”, although an event
occurs over an “interval”. Because of this, all these event
specification languages detect a composite event at the end of an
interval over which it occurs (i.e., detection-based semantics).
When events are detected using the detection-based semantics,
where event occurrence and event detection are not differentiated,
it leads to certain unintended semantics as pointed out in [19, 20]
when certain operators, such as sequence are composed more than
once.

SnoopIB [21-23] is an event specification language based on
interval-based semantics. Active rules have been shown to
provide active capability to object oriented databases, relational
databases, and so on. Lately, they have been shown to support
diverse application areas such as information filtering [24],
information security [25], data stream processing [26], XML
processing [27], semantic web [28], and sensor databases [29].
Interval-based semantics has far-reaching applications and has
been utilized in information filtering [24], XML processing [27],
and cooperative information system [30].

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

58

SnoopIB event operators were formally defined in the recent
context (i.e., for applications where the events are happening at a
fast rate and multiple occurrences of the same type of event only
refine the previous data value e.g., sensor applications.) using
interval-based semantics in [22] and over a sliding window (i.e.,
for trend analysis and forecasting applications e.g., stock market,
after-the-fact diagnosis) using interval-based semantics in [23].
Interval-based semantics has substantial differences as compared
to detection-based semantics and is explained below using a
simple example (refer [21, 22, 30] for more critical examples).

“Department of transportation needs to find whether there is a
traffic jam in (Road_2 AND Road_3) after Road_1 has
encountered a traffic jam”. Thus, the condition (time of traffic jam
in Road_1 < (time of traffic jam in Road_2 AND time of traffic
jam in Road_3)) is checked in order to detect a traffic jam. Let us
assume that there is a traffic jam at the following time: Road_1
(10.00 a.m.), Road_2 (9.30 a.m.) and Road_3 (12.00 p.m.). Thus,
we should check the following condition (10.00 a.m. < (9.30 a.m.
AND 12.00 p.m.)). As the detection-based semantics uses the end
time of the entire expression, 12.00 p.m. is treated as the time of
(Road_2 AND Road_3) traffic jam. Thus, the condition whether
(10.00 a.m. < 12.00 p.m.) is checked, and since it is true traffic
jam is notified. This is not as intended, since traffic jam in
Road_2 occurs at 9.30 a.m. way before Road_1.

When interval-based semantics is used, the time for Road_1
traffic jam is treated as (10 a.m., 10 a.m.), where the first entry
represents the start time and the second entry represents the end
time. Thus, traffic jam in (Road_2 AND Road_3) occurs over an
interval (9.30 a.m. to 12.00 p.m.), where 9.30 a.m. starts the event
and 12.00 p.m. ends the event. When the condition (10 a.m. <
9.30 a.m.) (i.e., whether traffic jam in Road_1 has occurred before
the start time of the composite event (Road_2 AND Road_3)) is
checked, it returns false and traffic jam is not notified.

Detection-based semantics was adopted as begin and end events
were of significance in most of the database related work. From
our example above, it is evident that events are detected as
intended when interval-based semantics is used in place of
detection-based semantics. Thus, event detection using interval-
based semantics is a trusted way and not just another way of
detecting events.

1.1 Our Contributions
SnoopIB event operators were formally defined in the recent
context using interval-based semantics in [22] and over a sliding
window using interval-based semantics in [23]. In this paper, we
have formally defined event operators for detecting accumulated
events over a semantic window (i.e., applications where multiple
occurrences of a constituent event needs to be grouped and used
in a meaningful way when the event occurs e.g., banking
application) using interval-based semantics. Algorithms for event
detection using interval-based semantics pose some challenges, as
not all events are known (especially their starting points). We
discuss the implementation issues and show how events are
detected in various event consumption modes using interval-based
semantics in the context of Sentinel – an active object oriented
database.

1.2 Outline
The rest of the paper is organized as follows. Section 2 refers to
related work on event specification. Section 3 explains the
interval-based semantics of Snoop. Section 4 extends the above to
the accumulated events that are detected over a semantic window.
Section 5 provides the implementation details along with the
algorithms. Section 6 has conclusions and future work. Appendix
A has additional algorithms.

2. RELATED WORK
There has been a considerable amount of work done in the
interval-based semantics. Why the interval-based semantics is
needed for event detection is explained with concrete examples in
[30], using Snoop operators, but does not deal with formal
semantics, algorithms and implementation for any of the context
in Snoop. [31] explains the event detection using the duration-
based (i.e., interval-based) semantics, but why it is needed, what
operators are supported, how it is implemented and the formal
semantics is not explained.

Snoop [1, 2] uses event graphs to detect the composite event,
whereas Samos [5, 6] uses Petri-nets to detect the composite
events, likewise all the aforementioned event specification
languages detects the composite event using different approaches,
but all of them use detection-based semantics, which has some
problems as we have seen before. Details of event detection by
other event specification languages and why they are not
sufficient can be found in [21].

Algorithms for event composition and event consumption, which
make use of accuracy interval based time stamping is illustrated
along with a window mechanism to deal with varying
transmission delays when composing events from different
sources, are dealt in [32]. The paper claims that event
consumption modes like recent and chronicle can be
unambiguously defined by using an accuracy interval order that
guarantees the property of time consistent order. Even though this
system uses “accuracy interval based time stamping” guaranteeing
the time consistent order for the event arrival, it uses the
detection-based semantics for the composite event detection,
which has the same drawbacks.

3. INTERVAL-BASED SEMANTICS
For the purpose of this paper, we assume an equidistant discrete
time domain having “0” as the origin and each time point
represented by a non-negative integer as shown in Figure 1.

Figure 1. Time Line.

3.1 Primitive Events
Events can be file operations (i.e., opening, closing, etc.) in
operating systems, method execution by objects in OODBMs,
data manipulations such as insert, delete and update in RDBMSs,
events based on system clock of the underlying system (i.e.,
absolute or relative temporal events), external events (i.e., based
on the data from sensors), occurrence of regular expressions or

59

keywords in text streams, and so on. These events that are
predefined in the underlying system (i.e., domain-specific) are
known as primitive or simple events (for more detail refer to [1, 2,
33]). For example, a method execution by an object in an object-
oriented database is a primitive event. These method executions
can be grouped into before and after events (or event types) based
on when they are detected (immediately before or after the method
call).

An event occurs over a time interval and is denoted by O (E [t1,
t2]) (see Figure 2, where O represents the interval-based
semantics, E is the event, t1 is the start interval of the event
denoted by ↑E, and t2 is the end interval of the event denoted by
E↓). In the case of primitive events, the start and the end interval
are assumed to be the same (i.e., t1 = t2). For events that span over
an interval, the event occurs over the interval [t1, t2] and is
detected at the end of the interval.

Figure 2. Event Notations.

3.2 Event Expressions
For many applications, supporting only primitive events is
inadequate. In many real-life applications, there is a need for
specifying more complex patterns of events such as, arrival of a
report followed by a detection of a specified object in a specific
area. The above shown complex pattern cannot be expressed with
a language that does not support expressive event operators along
with their semantics. An appropriate set of operators along with
the closure property allows one to construct complex composite
events by combining primitive events and composite events in
ways meaningful to an application interested in situation
monitoring. To facilitate this, we have defined a set of event
operators along with their semantics. Snoop(IB) is an event
specification language that is used to specify combinations of
events. Motivation for the choice of these operators and how they
compare with other event specification languages can be found in
[1, 2]. Some of the event operators are AND (two events occur
together in any order), Sequence (two events occur together in a
particular order), NOT (one event does not occur in between two
other events), OR (any one of the two events occur), Aperiodic
(aperiodic occurrence of a event between two other events),
Periodic (periodic occurrence of an event between two other
events), Aperiodic* and Periodic* (cumulative versions of
Aperiodic and Periodic operators), Frequency or Cardinality
(number of times an event should occur), and Plus (event
occurrence based on another event plus some time).

3.3 Composite Events
Composite events are composed of more than one primitive or
composite event using event operators. These events are
constructed using primitive events and event operators in a
recursive manner. A composite event consists of a number of

primitive events and operators; and the set of primitive events of a
composite event are termed as constituent events of that
composite event. A composite event is said to occur over an
interval, but is detected at the point when the last constituent
event of that composite event is detected. The detection and
occurrence semantics is clearly differentiated and the detection is
defined in terms of occurrence as shown in [19, 20]. Note that
occurrence of events cannot be defined in terms of detection
which was the problem with the earlier detection-based
approaches.

We introduce the notion of an initiator, detector, and terminator
for defining event occurrences. A composite event occurrence is
based on the initiator, detector and terminator of that event which
in turn are constituent events of that composite event. An initiator
of a composite event is the first constituent event whose
occurrence starts the composite event. Detector of a composite
event is the constituent event whose occurrence detects the
composite event, and terminator of a composite event is the
constituent event that is responsible for terminating the composite
event. For example, when a stock trading agent requests for a
stock quote every hour from 9 a.m. to 5 p.m., then 9 a.m. starts the
event (i.e., initiator), 5 p.m. terminates the event (i.e., terminator)
and every hour (i.e., 10 a.m., 11 a.m., …) detects an event (i.e.,
detector). For some operators, the detector and terminator are
different (e.g., Aperiodic), while for other operators, detector and
terminator are the same (e.g., Sequence).

Figure 3. Overlapping Event Combinations.

A composite event E occurs over a time interval and is defined by
E [t1, t2] where E is a composite event, t1 is the start time of the
composite event occurrence and t2 is the end time of composite
event occurrence (t1 is the starting time of the first constituent
event that occurs (initiator) and t2 is the end time of the detecting
or terminating constituent event (detector or terminator) and they

t1 t2
E

60

are denoted by ↑E and E↓ respectively). Below, “O” represents
the occurrence-based or interval-based semantics.

 Start of an event: O (↑↑↑↑E, t) ∃∃∃∃t' (t ≤≤≤≤ t' ∧∧∧∧ O (E, [t, t']))

 End of an event: O (E↓↓↓↓, t) ∃∃∃∃t' ≤≤≤≤ t (O (E, [t', t]))

Event Combinations: Nature of constituent event occurrences of
a composite event is another important aspect as they can be
either overlapping or disjoint.

Overlapping Event Combinations: When events are allowed to
overlap, all the possible combinations in which two events can
occur [34, 35] are shown in Figure 3. All operators formally
defined in this paper assume that events occur in an overlapping
fashion.

Disjoint Event Combinations: When events are not allowed to
overlap, we have fewer combinations. This may be meaningful for
many applications where the same event should not participate in
more than one composite event or when only one of the
overlapping events is of interest. The possible disjoint event
combinations are shown in Figure 4.

Figure 4. Disjoint Event Combinations.

3.4 Event Histories
In real world, events occur over a time line (or online). Events can
be detected as and when it occurs as far as the events are
predefined in the system (i.e., primitive events). Even though the
time of occurrence of a composite event is over an interval in
which it occurs, it is detected only when the last constituent event
occurs. Thus, history of an initiator and other constituent events
should be maintained so that they can be paired when
detector/terminator occurs. An event history maintains a history of
event occurrences up to a given point in time. Suppose e1 is an
event instance of type E1, then E1 [H] represents the event history
that stores all the instances of the event E1 (namely e1

i). In the
following sections, using the notion of event histories, we
formalize SnoopIB operator definitions taking event consumption
modes (or parameter contexts) into account. In order to extend
these definitions to event consumption modes following notations
are used.

Ei [H] = {ei
j [tsi, tei]}

Ei [H] Event history for event Ei,

tsi – Start time of an event instance ei
j of event Ei

tei – End time of an event instance ei
j of event Ei

For example, event histories for the event occurrences shown in
Figure 5 are shown below.

E1 [H] = {e1
1 [3, 5]}

E2 [H] = {e2
1 [1, 2], e2

2 [4, 6]}

Figure 5. Event Occurrences.

3.5 Event Consumption Modes
Events in the ECA rules are detected in unrestricted (or general)
context. This means events, once they occur, cannot be discarded
at all. For a “;” (Snoop sequence operator) event, all event
occurrences that occur after a particular event will get paired with
that event as per the unrestricted context semantics. In the absence
of any mechanism for restricting event usage (or consumption),
events need to be detected and parameters for those composite
events need to be computed using the unrestricted context
definitions of the Snoop event operators. However, the number of
events produced (with unrestricted context) can be large and not
all event occurrences may be meaningful for an application. In
addition, detection of these events has substantial computation
and space overhead, which may become a problem for situation
monitoring applications. Thus, Snoop(IB) has five event
consumption modes based on the application domains and they
are: Recent, Recent-Unique, Chronicle, Continuous, and
Cumulative.

Motivations behind the recent, continuous, and cumulative
contexts are given below in an intuitive way. In addition,
semantics used for event detection in these contexts are also
discussed.

Recent Context: In applications where events are happening at a
fast rate and multiple occurrences of the same event only refine
the previous value can use this context. Only the most recent or
the latest initiator for any event that has started the detection of a
composite event is used in this context. This entails that the most
recent occurrence just updates (summarizes) the previous
occurrence(s) of the same event type. In this context, not all
occurrences of a constituent event will be used in the composite
event detection. An initiator will continue to initiate new event
occurrences until a new initiator or a terminator occurs.

Continuous Context (Sliding Window Events): In applications
where event detection along a moving time window is needed,
continuous context can be used. This context is especially useful
for tracking trends of interest on a sliding time point governed by
the initiator event. For example, computing change of more than
20% in DowJones average in any 2-hour period requires each
change to initiate a new occurrence of an event. In this context,
each initiator starts the detection of that composite event, and a
single detector or terminator may detect one or more occurrences
of that same composite event. In other words, each initiator starts
a new window, and the events are detected until (or when) a
terminator occurs. For binary SnoopIB operators, all the
constituent events (initiator, detector and/or terminator) are
deleted once the event is detected. For ternary SnoopIB operators
detector and terminator are different. Detectors detect the event
occurrence (e.g., Aperiodic) and are deleted once detected.
Terminator terminates the event (e.g., Aperiodic*) and deletes

E2 E1 E1

1

3

4 6

5

2

e1
1

e2
1

e2
2

61

corresponding initiator and terminator pair along with the
constituent events that cannot be used in future events. Future
events are the events that are initiated by the initiators that are not
paired with this terminator.

Cumulative Context (Semantic Window Events): Applications
use this context when multiple occurrences of constituent events
need to be grouped (or accumulated) and used in a meaningful
way when the event occurs (e.g., banking application). In this
context, all occurrences of an event type are accumulated as
instances of that event until the event is terminated (i.e., forming a
semantic window based on the earliest initiator that was not
terminated and a terminator). An event occurrence does not
participate in two distinct occurrences of the same composite
event. In both the binary and ternary operators, detector and
terminator are same, and once detected and terminated all
constituent event occurrences that were part of the detection are
deleted. Other events that can act as a constituent event for some
future event are preserved.

4. EVENT OPERATOR FORMALIZATION
In this section, we provide the formalization of event operators in
cumulative context using event histories (explained in Section
3.4) based on the formal semantics defined for unrestricted [19,
20], recent [22] and continuous [23] contexts.

Below, event operators are defined intuitively, examples for event
detection over cumulative context using interval-based semantics
are provided, and the formal definitions of the operators in
cumulative context are given. “O” represents the occurrence-
based or interval-based semantics.

We will use the start and end of an event defined earlier for
formally defining the event operators. To enable us to express this
more concisely the predicate Oin is defined as follows [19, 20].

Oin (E [t1, t2]) ∃∃∃∃t1', t2' (t1 ≤≤≤≤ t1' ≤≤≤≤ t2' ≤≤≤≤ t2 ∧∧∧∧ O (E, [t1', t2']))

4.1 SEQUENCE (;) Event Operator
Sequence Operator (;): O (E1; E2, [t1, t2]). Sequence of two
events E1 and E2, denoted by E1; E2, occurs when E2 occurs
provided E1 has already occurred. This implies that the end time
of occurrence of E1 is guaranteed to be less than the start time of

occurrence of E2. E1 is the initiator and E2 is the
detector/terminator of the sequence event.

Example: In this context, a detector or terminator produces only
one event. Event histories are used for the detection of the “;”
operator defined above. Event histories corresponding to the event
occurrences shown in Figure 6 are given below, where E1 [H] is
the initiator event history and E2 [H] is the terminator even
history.

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]}

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [11, 12]}

When terminator event e2
1 occurs there is no initiator event in E1

[H] that satisfies the “;” operator condition. Event e1
1 occurrence

initiates a sequence event. Event e1
2 occurrence is accumulated.

When the event e2
2 occurs, E1 [H] has events {e1

1 [3, 5], e1
2 [4, 6],

e1
3 [8, 9]}. Thus, e2

2 detects the event initiated by event e1
1

generating the following event (e1
1, e1

2, e2
2) [3, 10], since it

satisfies the sequence condition (ts1 ≤ te1 < t s2 ≤ te2) (i.e., (3 ≤ 5 <
7 ≤ 10) for pair (e1

1, e2
2)). As shown, all the events in between the

pair (e1
1, e2

2), in this case e1
2, are accumulated. Even though e1

3

occurred before e2
2, it is not detected since it does not satisfy the

condition (9 < 7). According to the cumulative context definition,
events e1

1, e1
2 and e2

2 are deleted as they have already participated
in event detection and cannot act as constituent events for future
detections. In addition, event e1

3 is also deleted as it has occurred
before the start time of e2

2 and does not satisfy the sequence
condition. As there are no events after end time of e2

2, event e2
3

does not detect any event. Event pairs detected by sequence
operator in continuous context are: (e1

1, e1
2, e2

2) [3, 10]

Formal Definition in Cumulative Context:

O (E1 ; E2, [ts1, te2])
∀E2 ∈ E2 [H]
{O (E2, [t s2, t e2]) ∧ (E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])

∧ {∀E1 ∈ E1 [H] (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2))}
}
∨
∀E2 ∈ E2 [H]
{O (E2, [t s2, t e2]) ∧ ((E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])

∧ (E2'' [t s', t e'] | (t e' > t e) ∧ (t e' < t e2) ∧ E2'' ∈ E2 [H]))
∧ {∀E1 ∈ E1 [H] (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2)
∧ (t s1 > t e) ∧ (E1' [t s1', t e1'] | (t s1' > t e) ∧ (t s1' < t s1)

∧ E1' ∈ E1 [H]))
 }
}

Two events e1 ∈ E1 [H] and e2 ∈ E2 [H] are said to occur in
sequence in the cumulative context only when there is no
occurrence of e2' ∈ E2 [H] before the occurrence of e2 and all the
other occurrences of e1' ∈ E1 [H] that occurs in between the pair
e1 and e2 are accumulated. There are two cases to formally define
the operator (refer the formal definition above). First case handles
when there is no other terminator is available in the terminator
history (i.e., first occurrence of the terminator). In other words,
there should be no occurrence of other terminators before this
terminator and this terminator should be in sequence with all
initiators till that point. In this case, all the event occurrences of
the initiator are accumulated, and the cumulative event is

Figure 6. Examples for SEQUENCE Operator.

1

3

4 6

5

2

7

9

10

8

e2
2

e1
1

e2
1

e1
2

e1
3

1211 e2
3

62

detected. Second case handles when there is more than one
terminator present in the history. For this case, there should be no
occurrence of other terminators in between start of the initiator
and end of the terminator or a terminator can occur only if its end
time is less than start time of the initiator. In other words, an
initiator starts an event occurrence and a terminator terminates
and detects the “;” event with events in between as constituent
events and there should be no other instance of the terminator.

4.2 OR Event Operator
OR Operator (∇∇∇∇): O (E1∇∇∇∇ E2, [t1, t2]). Disjunction of two
events E1 and E2, denoted by E1 ∇ E2, occurs when E1 occurs or
E2 occurs. Occurrences of one of E1 or E2 act as both initiator
and terminator. The semantics of “∇” does not change with
cumulative context as each occurrence is detected individually.

4.3 PLUS Event Operator
Plus Operator: O (Plus (E1, E2) [t, t]). A Plus operator is used to
specify a relative time event [36]. A Plus operator combines two
events E1 and E2 where E1 can be any type of event and E2 is a
time string [t]. E1 is the initiator and E2 is the terminator. The Plus
event occurs only once after time [t], after the event E1 occurs.
Plus operator’s unrestricted context definition [21] holds for the
cumulative context, since Plus operator is detected only once after
the occurrence of the event E1 and there is only one terminator for
an initiator.

Figure 7. Examples for NOT Operator.

4.4 NOT Event Operator
NOT Operator (¬¬¬¬): O (¬¬¬¬ (E3) [E1, E2], [t1, t2]). NOT operator
detects the non-occurrence of the event E3 in the closed interval
formed by E1↓ and E2↑.

Example: “¬” Operator can be expressed as the sequence of E1

and E2 where there is no occurrence of the event E3 in the interval
formed by these events. Event histories corresponding to the event
occurrences shown in Figure 7 are given below, where E1 [H] is
the event e1 history, E2 [H] is the event e2 history, and E3 [H] is
the event e3 history.

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9], e1

4 [11, 11]}

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [12, 14]}

E3 [H] = {e3
1 [5, 5]}

When terminator event e2
1 occurs there is no initiator event in E1

[H] that can pair with e2
1. Event e1

1 occurrence initiates a
sequence event. Event e1

2 occurrence is accumulated. When the
event e2

2 occurs, E1 [H] has events {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8,

9]}. But, event e1
1 [3, 5] cannot combine with event e2

2 [7, 10]
since there is an occurrence of e3

1 [5, 5] in between e1
1 and e2

2

(i.e., 5 ≤ 5 ≤ 7), thus a NOT event is not detected. Event e1
4 [11,

11] initiates the next NOT event. When event e2
3 [12, 14] occurs,

it pairs with event e1
4 detecting (e1

4, e2
3) [11, 14] as there is no

occurrence of event e3 in the interval [11, 12]. The event pair
generated by NOT operator in cumulative context is: {(e1

4, e2
3)

[11, 14]}

Formal Definition in Cumulative Context:

O (¬ (E3) [E1, E2], [ts1, te2])
∀E2 ∈ E2 [H]
{O (E2, [t s2, t e2]) ∧ (E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])

∧ {∀E1 ∈ E1 [H] ∧ ∀E3 ∈ E3 [H]
 (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2)

∧ Oin (E3, [te1, ts2]))}
 }
∨
∀E2 ∈ E2 [H]
{O (E2, [t s2, t e2]) ∧ ((E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])

∧ (E2'' [t s', t e'] | (t e' > t e) ∧ (t e' < t e2) ∧ E2'' ∈ E2 [H]))
∧ {∀E1 ∈ E1 [H] ∧ ∀E3 ∈ E3 [H]

 (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2) ∧ (t s1 > t e)
∧ (E1' [t s1', t e1'] | (t s1' > t e) ∧ (t s1' < t s1)

∧ E1' ∈ E1 [H])
∧ Oin (E3, [te1, ts2]))

 }
}

Formal definition above has two cases similar to the sequence
operator formal definition. Non occurrence of event e3 ∈ E3 [H]
between two events e1 ∈ E1 [H] and e2 ∈ E2 [H] is said to occur in
the cumulative context only when there is no occurrence of e2' ∈
E2 [H] before the occurrence of e2 and all the other occurrences of
e1' ∈ E1 [H] that occurs in between the pair e1 and e2 are
accumulated. First case handles when there is no other terminator
is available in the terminator history (i.e., first occurrence of the
terminator). In other words, there should be no occurrence of
other terminators before this terminator and this terminator should
be in sequence with all initiators till that point and there should
not be any occurrence of event e3 in between the initiator and
terminator as specified by the condition (Oin (E3, [te1, ts2])). In
this case, all the event occurrences of the initiator are
accumulated, and the cumulative event is detected. Second case
handles when there is more than one terminator present in the
history. For this case, there should be no occurrence of other
terminators in between start of the initiator and end of the
terminator or a terminator can occur only if its end time is less
than start time of the initiator. In addition, there should not be any
occurrence of event e3 in between the initiator of the composite

1

3

4 6

5

2

7

9

10

8

e2
2

e1
1

e2
1

e1
2

e1
3

1111 e1
4

e3
155

1412 e2
3

63

event and the terminator as specified by the condition (Oin (E3,
[te1, ts2])).

5. INTERVAL-BASED EVENT
DETECTION
In section 4 formal definitions using event histories were given for
event operators in cumulative context. In real world applications
such as monitoring applications we cannot assume to have
complete event histories to detect the composite event since the
events occur online. In this section we will show the events
detected based on histories, and explain how composite events are
detected using event graphs in recent, continuous and cumulative
contexts from the implementation perspective when events occurs
online. It poses some challenges as the start of the event is not
known before hand. We also show that the events detected using
event histories (or formalization of event operators) and event
graphs (or implementation of operators) are the same.

Let us take a simple composite event (E1; E2) as an example
(please refer [21] for more complex/detailed examples). Event
(E1; E2) represents the SEQUENCE between event E1 and E2,
occurs when E2 occurs provided E1 has already occurred. This
implies that the end time of occurrence of E1 is guaranteed to be
less than the start time of occurrence of E2. E1 is the initiator and
E2 is the terminator of the sequence event. Event occurrences that
will be used for detecting events using both event histories and
event graphs are shown in Figure 6.

5.1 Event Detection Using Event Histories
Event histories corresponding to the event occurrences shown in
Figure 6 are given below, where E1 [H] is the initiator event
history and E2 [H] is the terminator even history.

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]}

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [11, 12]}

Events detected in Cumulative Context: Based on the formal
semantics provided in Section 4.1 and the event histories above,
all the event occurrences for the composite event (E1; E2) detected
using cumulative context is given below.

 (e1
1 [3, 5], e1

2 [4, 6], e2
2 [7, 10]) [3, 10]

Events detected in Recent Context: Formal definition for the
sequence operator in this context is provided in [22]. According
to the definition of the recent context in section 3.5 a terminator
pairs only with a recent initiator, and there should be no other
instance of the terminator between them. From the event history,
we can see that for terminator event e2

1 [1, 2] there are no
initiators, and for terminator event e2

2 [7, 10] the recent initiator is
e1

3 [8, 9]. Terminator event e2
2 [7, 10] cannot be paired with event

e1
3 [8, 9] as there it does not satisfy the sequence condition. Thus,

for these event occurrences composite event (E1; E2) is not
detected using recent context.

Events detected in Continuous Context: Formal definition for
the sequence operator in this context is provided in [23].
According to the definition of the continuous context in section
3.5 a terminator terminates more than one initiator. This context is
similar to cumulative context, except that the number of events
generated equals the number of initiators. Thus, the event

occurrences for the composite event (E1; E2) detected using
continuous context are given below.

{(e1
1 [3, 5], e2

2 [7, 10]) [3, 10], (e1
2 [4, 6], e2

2 [7, 10]) [4, 10]}

5.2 Event Detection Using Event Graphs
Sentinel [12-15] uses an event graph or event detection graph
(EDG) for representing an event expression in contrast to other
approaches such as Petri nets used by Samos [5, 6] and an
extended finite state automata used by COMPOSE [3, 4]. By
combining event trees on common sub expressions, an event
graph is obtained. Data flow architecture is used for the
propagation of primitive events to detect composite events. By
using event graphs, the need for detecting the same event multiple
times is avoided since the event node can be shared by many
events. In addition to reducing the number of detections, this
approach saves substantial amount of storage space (for storing
event occurrences and their parameters), thus leading to an
efficient approach for detecting events.

As mentioned earlier, primitive events are detected by the
underlying system and composite events are detected using the
occurrence of its constituent events. The time of occurrence of a
composite event depends on the event operator semantics and
detection semantics (either detection-based or interval-based).
Interval-based semantics uses the time of occurrence of both the
first and last constituent event in an event expression as the time
of occurrence for the entire event expression.

Algorithms and Implementation: Semantics of the event
operators are defined using the event history in the previous
section. In this section, we will provide algorithms that detect
events according to the interval-based semantics. In the manner
in which ECA rules are used for monitoring situations, events
occur over a time line and are sent to the event detector. All
events in the form of an event history are not submitted to the
event detector. In fact, as part of event detection, the event
detector at any point sees only a partial history in time.
Algorithms presented in the following subsections detect events
according to interval semantics although they do not see the
complete history at any given point in time. How the start interval
is handled is shown in the algorithm. The algorithms defined in
the following subsections are implemented in Sentinel. The
formal definitions and algorithms have been designed for all
contexts and are detailed in [21]. Notations that are used while
writing the algorithms are shown in Table 1.

Table 1. Notations used in Algorithms

ei (e.g., e1, e2) Primitive or Composite event instance or
occurrence

Ei (e.g., E1, E2) An event List that maintains the partial
history of the occurrences of event ei

t_s Start time of the event (Start Interval)
t_e Ending time of the event (End Interval)

Event Detection Graph: In an EDG, leaf nodes represent
primitive events and internal nodes represent composite events (or
event operators) and event occurrences flows in a bottom-up
fashion. When a primitive event occurs and is detected, it is sent
from its node to the parent node (if necessary) for detecting a
composite event. Figure 8 shows a composite event SEQUENCE
with two events E1 and E2. Leaf nodes, E1, and E2, represent the

64

primitive events and node “A” represent the composite event
SEQUENCE. Whenever there is an event E1 or E2 occurrence it is
propagated to node “A”. SEQUENCE event is detected whenever
both its constituent events occur, where E1 precedes E2 in time. As
described in section 3.5, introduction of event consumption
modes make event detection more meaningful for diverse
applications.

Figure 8. Event Graph for E1 ; E2.

Even though Snoop has 5 contexts, we explain the event detection
only in recent, continuous, and cumulative contexts using the
EDG shown in Figure 8. In order to provide more meaningful
examples while discussing the algorithms, we consider the events
E1 and E2 shown in Figure 8, and their start time and end time are
same as shown in Figure 6. With each node, there are 5 counters
indicating whether that event should be detected in that particular
context. The counter is also used to keep track of number of
composite events an event participates in. When this counter
reaches zero, there is no need to detect that event in that context,
as there are no events dependent on that event.

5.2.1 Event Detection in Cumulative Context
Algorithm for Sequence operator in Cumulative Context:

/* ei can be recognized as coming from the left or right branch of
the operator tree, and parameter_list represents event properties*/

PROCEDURE seq_cumulative (ei, parameter_list):
If ei is the left event /* 1 */

Append e1 to E1 /* 2 */

If ei is the right event /* 3 */
If E1 is not empty /* 4 */

For every e1 in E1 and if (t_s (e2) > t_e (e1)) /* 5 */
Append e1 to tempE1 /* 6 */

If tempE1 is not empty /* 7 */
Pass <tempE1, e2> to parent with t_s (tempE1’s

EarliestStartTime) and t_e (e2) /* 8 */
Remove all event occurrences from tempE1

 Remove all event occurrences from E1 /* 9 */

Explanation of the algorithm:

/* 1 */ If the event is from the left child (i.e., initiator of this
operator) then continue
/* 2 */ Accumulate event e1 occurrences in list E1

/* 3 */ If the event is from the right child (i.e., terminator of this
operator) then continue
/* 4 */ When there is an initiator in the list, then continue
/* 5 */ Check whether each event occurrence of e1 has preceded
the e2 occurrence
/* 6 */ if above step is true, then add the event e1 to a list tempE1

/* 7 */ if there is at least one initiator then perform /* 8 */

/* 8 */ Pass the accumulated event occurrences of e1 and e2 along
with the time of occurrence. Start time of the composite event is
the start time of the first occurrence of e1 (initiator) and End time
for the composite event is the end time of the terminator.
/* 9 */ Terminator has occurred and all the event occurrences in
the left child has to be removed

Event Detection: Event occurrences shown in Figure 6 are used
to explain the event detection using EDG. Event e2

1 occurs over
[1, 2] and is propagated from node E2 to “A”. As specified in the
algorithm this event enters /* 3 */ as it is propagated from the
right child. As there are no previous occurrences of E1 this event
is not consumed. Event e1

1 occurs over [3, 5] and enters /* 1 */
where it is appended to list E1. Event e1

2 [4, 6] occurrence also
enters /* 1 */ and gets appended in E1. From Figure 6 you can see
that event e2

1 has started, but it is not propagated to the node “A”
as it is not yet detected. In the mean time event e1

3 [8, 9] occurs
and appended to E1. When event e2

2 is detected it enters /* 3 */
and steps /* 4 */, /* 5 */, and /* 6 */ are performed. Events e1

1 [3,
5] and e1

2 [4, 6] are appended to the list tempE1. Event e1
3 [8, 9]

is not added as the condition in /* 5 */ (i.e., 7 > 8) fails. Single
occurrence of the composite event (E1 ; E2) is detected with events
{e1

1, e1
2, e2

2} and timestamp [3, 10]. Figure 9 shows the partial
event history that is maintained in the node “A” when event e2

2

occurs.

Figure 9. Partial History for Cumulative and
Continuous Context.

5.2.2 Event Detection in Recent Context
Algorithm for Sequence operator in Recent Context:

/* ei can be recognized as coming from the left or right branch of
the operator tree, and parameter_list represents event properties */

PROCEDURE seq_recent (ei, parameter_list):

If ei is the left event /* 1 */
Replace e1 in E1 /* 2 */

If ei is the right event /* 3 */
If (E1 is not empty and (t_s (e2) > t_e (e1))) /* 4 */

Pass <e1, e2> to parent with t_s (e1) and t_e (e2) /* 5 */
Remove all event occurrences from E1 /* 6 */

Explanation of the algorithm:

/* 1 */ If the event is from the left child (i.e., initiator of this
operator) then continue

/* 2 */ Make this occurrence as the most recent initiator

/* 3 */ If the event is from the right child (i.e., terminator of this
operator) then continue

/* 4 */ When there is an initiator in the list, check whether start
time of terminator is greater that end time of initiator

e1
1 [3, 5]

e1
2 [4, 6]

e1
3 [8, 9]

E1 E2

;

A

E1 E2

;
A

65

/* 5 */ Pass the event e1 and e2 along with the time of occurrence.
Start time of the composite event is the start time of the initiator
and End time for the composite event is the end time of the
terminator.

/* 6 */ Terminator has occurred and all the event occurrences in
the left child has to be removed

Event Detection: Event occurrences shown in Figure 6 are used
to explain the event detection using EDG. Event e2

1 occurs over
[1, 2] and is propagated from node E2 to “A”. As specified in the
algorithm this event enters /* 3 */ as it is propagated from the
right child. As there are no previous occurrences of E1 this event
is not consumed. Event e1

1 occurs over [3, 5] and enters /* 1 */
where it stays as there is no other occurrence to replace. Event e1

2

[4, 6] occurrence also enters /* 1 */ and it replaces e1
1 as the

recent initiator. From Figure 6 you can see that event e2
1 has

started, but it is not propagated to the node “A” as it is not yet
detected. In the mean time event e1

3 [8, 9] occurs and it acts as the
recent initiator. When event e2

2 is detected it enters /* 3 */ and it
checks for the condition. As the condition in /* 4 */ fails, the
composite event is not detected. Figure 10 shows the partial event
history that is maintained in the node “A” when event e2

2 occurs.

Figure 10. Partial History for Recent Context.

5.2.3 Event Detection in Continuous Context
Algorithm for Sequence operator in Continuous Context:

/* ei can be recognized as coming from the left or right branch of
the operator tree, and parameter_list represents event properties*/

PROCEDURE seq_continuous (ei, parameter_list):
If ei is the left event /* 1 */

Append e1 to E1 /* 2 */

If ei is the right event /* 3 */
If E1 is not empty /* 4 */

For every e1 in E1 and if (t_s (e2) > t_e (e1)) /* 5 */
Pass <e1,e2> to parent with t_s (e1), t_e (e2) /* 6 */

 Remove all event occurrences from E1 /* 7 */

Explanation of the algorithm:

/* 1 */ to /* 4 */ are same as the algorithm for cumulative context
/* 5 */ For each event occurrence in E1 check whether it has
preceded the e2 occurrence
/* 6 */ if above step is true, then pass the event occurrences of e1

and e2 along with the time of occurrence. Start time of the
composite event is the start time of e1 and End time for the
composite event is the end time of the terminator.
/* 7 */ Terminator has occurred and all the event occurrences in
the left child has to be removed

Event Detection: Event occurrences shown in Figure 6 are used
to explain the event detection using EDG. Event e2

1 occurs over
[1, 2] and is propagated from node E2 to “A”. As specified in the
algorithm this event enters /* 3 */ as it is propagated from the
right child. As there are no previous occurrences of E1 this event
is not consumed. Event e1

1 occurs over [3, 5] and enters /* 1 */
where it is appended to list E1. Event e1

2 [4, 6] occurrence also
enters /* 1 */ and gets appended in E1. From Figure 6 you can see
that event e2

1 has started, but it is not propagated to the node “A”
as it is not yet detected. In the mean time event e1

3 [8, 9] occurs
and appended to E1. When event e2

2 is detected it enters /* 3 */
and steps /* 4 */, /* 5 */, and /* 6 */ are performed. Events e1

1 [3,
5], e1

2 [4, 6], and e1
3 [8, 9] are checked for the condition. Two

occurrences of the composite event (E1 ; E2) are detected with
events {(e1

1, e2
2) [3, 10], (e1

2, e2
2) [4, 10]}. Figure 9 shows the

partial event history that is maintained in the node “A” when
event e2

2 occurs.

5.3 Comparison of Events
Events that are generated based on formal definitions using event
histories (section 5.1) and based on algorithms using event graphs
(section 5.2) are shown in Table 2. As shown below all the events
that are generated using these two approaches are same, and it
shows that the formal definitions and the implemented system
produce the same set of events.

Table 2. Comparison of events detected using event histories
and event graphs

6. CONCLUSIONS AND FUTURE WORK
Detection-based semantics was adopted as begin and end events
were of significance in most of the database related work. From
this paper, it is evident that events are detected as intended when
interval-based semantics is used as opposed to detection-based
semantics. Thus, event detection using interval-based semantics is
a trusted way and not just another way of detecting events.
SnoopIB [21-23] is an event specification language based on
interval-based semantics. Interval-based semantics has far-
reaching applications and has been utilized in diverse areas [24,
27, 30]. SnoopIB event operators were formally defined in the
recent context in [22] and over a sliding window in [23].

In this paper, we have briefly explained the need for interval-
based semantics. Cumulative context is necessary for applications
where multiple occurrences of a constituent event need to be
grouped and used in a meaningful way when the event occurs
(e.g., banking application). We have formalized SnoopIB event
operators for the events accumulated over a semantic window (or
in cumulative context). Algorithms for event detection using
interval-based semantics pose some challenges, as not all events
are known (especially their starting points). We have shown how
events are detected using event detection graphs and starting
points of composite events are computed. We have also provided
algorithms (for additional algorithms refer appendix A) for event

Event
Detection
 (E1; E2)

Using Event Histories
(section 5.1)

Using Event Graphs
(section 5.2)

Cumulative {(e1
1, e1

2, e2
2) [3, 10]} {(e1

1, e1
2, e2

2) [3, 10]}
Recent None None

Continuous
{(e1

1, e2
2) [3, 10],

(e1
2, e2

2) [4, 10]}
{(e1

1, e2
2) [3, 10],

(e1
2, e2

2) [4, 10]}

e1
3 [8, 9]

E1 E2

;

A

66

operators in recent, continuous and cumulative contexts using
interval-based semantics in the context of Sentinel. Finally, we
have shown that events detected using event histories based on
formal definitions and event graphs based on algorithms are same.

All the operators defined in this paper assume that events can
overlap and it would be interesting to extend the semantics of
operators to detect composite events that are disjoint using
interval-based semantics.

7. REFERENCES
1. Chakravarthy, S. and D. Mishra, Snoop: An Expressive Event

Specification Language for Active Databases. in Data and
Knowledge Engineering, 1994. 14(10): p. 1--26.

2. Chakravarthy, S., et al., Composite Events for Active
Databases: Semantics, Contexts and Detection, in Proc.
Int'l. Conf. on Very Large Data Bases VLDB. 1994:
Santiago, Chile. p. 606--617.

3. Gehani, N.H., H.V. Jagadish, and O. Shmueli, Event
Specification in an Active Object-Oriented Database, in
Proc. of the ACM SIGMOD Conference on Management of
Data. 1992: San Diego. p. 81--90.

4. Gehani, N.H., H.V. Jagadish, and O. Shmueli, Composite
Event Specification in an Active Databases: Model &
Implementation, in Proc. of the VLDB Conference. 1992:
Vancouver, British Columbia, Canada. p. 327--338.

5. Gatziu, S. and K.R. Dittrich, Events in an Active Object-
Oriented Database System, 1993: in Proc. of the 1st Intl
Conference on Rules in Database Systems.

6. Gatziu, S. and K.R. Dittrich, Detecting Composite Events in
Active Database Systems Using Petri Nets, in IEEE RIDE
Proc. 4th Int'l. Workshop on Research Issues in Data
Engineering. 1994: Houston, Texas, USA.

7. Diaz, O., N. Paton, and P. Gray, Rule Management in
Object-Oriented Databases: A Unified Approach, in
Proceedings 17th International Conference on Very Large
Data Bases. 1991: Barcelona (Catalonia, Spain).

8. Paton, N., et al., Dimensions of Active Behaviour, in Rules in
Database Systems., N. Paton and M. Williams, Editors.
1993, Springer. p. 40--57.

9. Bertino, E., E. Ferrari, and G. Guerrini. An Approach to
model and query event-based temporal data. in Proceedings
of TIME. 1998.

10. Buchmann, A.P., et al., REACH: A REal-Time, ACtive and
Heterogenous Mediator System. in IEEE Bulletin of the
Technical Committee on Data Engineering, 1992. 15(1-4).

11. Buchmann, A.P., A. Deutsch, and J. Zimmermann, The
REACH Active OODBMS, 1995. Technical University
Darmstadt.

12. Anwar, E., L. Maugis, and S. Chakravarthy, A New
Perspective on Rule Support for Object-Oriented Databases,
in 1993 ACM SIGMOD Conf. on Management of Data.
1993: Washington D.C. p. 99-108.

13. Chakravarthy, S., Early Active Databases: A Capsule
Summary. in IEEE Transactions on Knowledge and Data
Engineering, 1995. 7(6): p. 1008--1011.

14. Chakravarthy, S., et al., Design of Sentinel: An Object-
Oriented DBMS with Event-Based Rules. in Information and
Software Technology, 1994. 36(9): p. 559--568.

15. Chakravarthy, S., et al. ECA Rule Integration into an
OODBMS: Architecture and Implementation. in ICDE.
1995.

16. Engstrom, H., M. Berndtsson, and B. Lings, ACOOD
Essentials, 1997. University of Skovde.

17. Berndtsson, M. and B. Lings, On Developing Reactive
Object-Oriented Databases. in IEEE Bulletin of the
Technical Committee on Data Engineering, 1992. 15(1-4): p.
31--34.

18. Buchmann, A.P., et al., Rules in an Open System: The
REACH Rule System, in Rules in Database Systems., N.
Paton and M. Williams, Editors. 1993, Springer. p. 111--
126.

19. Galton, A. and J. Augusto, Two Approaches to Event
Definition, 2001. University of Exeter: Technical Report
401, Department of Computer Science.

20. Galton, A. and J. Augusto. Two Approaches to Event
Definition. in proceedings of 13th International Conference
on Database and Expert Systems Applications. 2002. Aix en
Provence, France.

21. Adaikkalavan, R., Snoop Event Specification: Formalization,
Algorithms, and Implementation using Interval-based
Semantics, in MS Thesis, Department of Computer Science
and Engineering. 2002, The University of Texas at
Arlington: Arlington. On-line:
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/rama
n.pdf

22. Adaikkalavan, R. and S. Chakravarthy. SnoopIB: Interval-
Based Event Specification and Detection for Active
Databases. in Advances in Databases and Information
Systems. September 2003. Germany: Lecture Notes in
Computer Science 2798.

23. Adaikkalavan, R. and S. Chakravarthy. Formalization and
Detection of Events Over a Sliding Window in Active
Databases Using Interval-Based Semantics. in Advances in
Databases and Information Systems. September, 2004.
Hungary.

24. Elkhalifa, L., R. Adaikkalavan, and S. Chakravarthy,
InfoFilter: Complex Pattern Specification and Detection
Over Text Streams, 2004. Technical Report CSE-2004-1,
Department of Computer Science and Engineering, The
University of Texas at Arlington. On-line:
http://www.cse.uta.edu/Research/Publications/Downloads/C
SE-2004-1.pdf.

25. Adaikkalavan, R. and S. Chakravarthy, A Framework for
Supporting and Enforcing RBAC and its Extensions in a
Seamless Manner, 2004. Technical Report CSE-2004-2,
Department of Computer Science and Engineering, The
University of Texas at Arlington. On-line:
http://www.cse.uta.edu/Research/Publications/Downloads/C
SE-2004-2.pdf.

26. Jiang, Q., R. Adaikkalavan, and S. Chakravarthy, Estreams:
Towards an Integrated Model for Event and Stream
Processing, 2004. Technical Report CSE-2004-4,
Department of Computer Science and Engineering, The
University of Texas at Arlington. On-line:

67

http://www.cse.uta.edu/Research/Publications/Downloads/C
SE-2004-4.pdf.

27. Bernauer, M., G. Kappel, and G. Kramler. Composite Events
for XML. in International World Wide Web Conference.
2004.

28. Papamarkos, G., A. Poulovassilis, and P.T. Wood. Event-
Condition-Action Rule Languages for the Semantic Web. in
Workshop on Semantic Web and Databases, at VLDB'03.
2003.

29. Roussos, G., M. Zoumboulakis, and A. Poulovasilis. Active
Rules for Sensor Databases. in International Workshop on
Data Management for Sensor Networks, at VLDB'04. 2004.

30. Rönn, P., Two Approaches to Event Detection in Active
Database Systems, in M.Sc. Dissertation - Database
Technology, Department of Computer Science (M.Sc.
Dissertation). 2001, University of Skövde. On-line:
http://www.ida.his.se/ida/htbin/exjobb/2001/HS-IDA-MD-
01-010

31. Roncancio, C.L. Toward Duration-Based, Constrained and
Dynamic Event Types. in Active, Real-Time, and Temporal
Database Systems, Second International Workshop, ARTDB-
97. 1997. Como, Italy, September 8-9: Lecture Notes in
Computer Science 1553 Springer 1998, ISBN 3-540-65649-
9.

32. Liebig, C., M. Cilia, and A.P. Buchmann. Event Composition
in Time-dependent Distributed Systems. in Proceedings of
the Fourth IFCIS International Conference on Cooperative
Information Systems. 1999. Edinburgh, Scotland.

33. Chakravarthy, S. and D. Mishra, Towards An Expressive
Event Specification Language for Active Databases, in Proc.
of the 5th International Hong Kong Computer Society
Database Workshop on Next generation Database Systems.
1994: Kowloon Shangri-La, Hong Kong.

34. Allen, J., Towards a general Theory of action and time. in
Artificial Intelligence, 1984. 23(1): p. 23-54.

35. Allen, J. and G. Gerguson, Action and Events in Interval
Temporal Logic. in Journal of Logic and Computation, 1994.
4(5): p. 31-79.

36. Lee, H., Support for Temporal Events in Sentinel: Design,
Implementation, and Preprocessing, in Masters Thesis, MS
Thesis. 1996, Database Systems R&D Center CISE
University of Florida, Gainesville, FL 32611.

APPENDIX

A. ALGORITHMS

In addition to the algorithms provided before, in this appendix we
provide algorithms for NOT operator in cumulative context and
Aperiodic Operator in recent context.

Algorithm for NOT (O (¬¬¬¬ (E2) [E1, E3], [t1, t2])) operator in
Cumulative context:

NOT operator detects the non-occurrence of the event E2 in the
closed interval formed by E1↓ and E3↑.

PROCEDURE not_cumulative (ei, parameter_list)

If ei is the left event /* 1.a */
Append e1 to E1 /* 1.b */

If ei is the middle event /* 2 */
If E1 is not empty and t_e (E1’s EarliestEndTime) ≤ t_s (e2)
/* 3 */
Append e2 to E2 /* 4 */

If ei is the right event /* 5 */
If (E1 is not empty and (t_e (E1’s EarliestEndTime) < t_s (e3))
/* 6 */

If E2 is not empty /* 7 */
For every e1 in E1 /* 8.a */

If (t_e (e1) < t_s (e3)) /* 8.b */
For all e2’s in E2 /* 8.c */

If (t_e (e2) > t_s (e3) or t_s (e2) < t_s (e1))
/* 8.d */
Append e1 to tempE1 /* 8.e*/

Delete e1 from E1 /* 8.f */
If tempE1 is not empty /* 9.a */

Pass <tempE1, e3> to the parent with t_s
(tempE1’s EarliestStartTime) and t_e (e3) /* 9.b */
For every e2 in E2 /* 10.a */

If (t_e (E1’s EarliestEndTime) > t_s (e2))
/* 10.b */

Delete e2 from E2 /* 10.c */
Else /* 11 */

For every e1 in E1 /* 11.a */
If (t_e (e1) < t_s (e3)) /* 11.b */

Append e1 to tempE1 /* 11.c */
Delete e1 from E1 /* 11.d */

Pass <tempE1, e3> to the parent with t_s (tempE1’s
EarliestStartTime) and t_e (e3) /* 11.e */

Explanation of the algorithm:

/* 1 */ If the event is from the left child (i.e., initiator of this
operator) then append it to the list E1

/* 2 */ If the event is from the middle child (i.e., event E2 in our
case) then continue
/* 3, 4 */ If the list E1 is not empty and the end time of the first
occurrence of event e1 is less than or equal to the start time of the
this event then append this event to list E2

/* 5 */ If the event is from the right child (i.e., event E3 in our
case) then continue
/* 6 */ When there is an initiator in the list and the end time of the
first occurrence of event e1 is less than to the start time of the this
event then continue
/* 7 - 10 */ Check whether all the event occurrences of e1 has
preceded the e3 occurrence and there is no occurrence of event e2

in between them. If there is any event pair then detect the NOT
event. Remove all the event e2 occurrences that satisfies the
condition in /* 10.b */
/* 11 */ if there is no occurrence of event e2 detect a NOT event
with all the event e1 occurrences and event e3

Algorithm for Aperiodic operator in Recent context:

68

Aperiodic Operator (O (E1, E2, E3), [t1, t2]): This operator is
represented as “A”. Occurrence time of this operator is the
occurrence time for E2; an occurrence of event “A” is an
occurrence of E2 and is determined by E1 and E3. There must be
no occurrence of E3 wholly within the interval between the
occurrence of E1 and E2. E1 is the initiator, E2 is the detector and
E3 is the terminator. The event is detected whenever the middle
event is occurs and it is terminated whenever the right side event
occurs. In the recent context, the initiator (i.e., E1) is replaced
with a new instance of the initiator.

PROCEDURE a_recent (ei, parameter_list)

If ei is the left event /* 1.a */
Replace e1 in E1 /* 1.b */

If ei is the middle event /* 2.a */
If (E1 is not Empty and (t_e (e1) < t_s (e2))) /* 2.b */

Pass <e1, e2> to the parent with t_s (e2) and t_e (e2)
/* 2.c */

If ei is the right event /* 3.a */
If E1 is not empty /* 3.b */

If (t_e (e1) < t_s (e3)) /* 3.c */
Delete E1 /* 3.d */

Explanation of the algorithm:

/* 1 */ If the event is from the left child (i.e., initiator of this
operator) then replace e1 in E1

/* 2 */ If the event is from the middle child (i.e., event E2 in our
case) and E1 is not empty, then check for the condition in /* 2.b
*/. If the condition is satisfied then detect an “A” event.
/* 3 */ If the event is from the right child (i.e., event E3 in our
case) and E1 is not empty, then remove events from E1 that satisfy
the condition specified in /* 3.c */

69

