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ABSTRACT
Active databases utilize Event-Condition-Action rules to provide 
active capability to the underlying system. An event was initially 
defined to be an instantaneous, atomic occurrence of interest and 
the time of occurrence of the last event in an event expression was 
used as the time of occurrence for an entire event expression 
(detection-based semantics), rather than the interval over which an 
event expression occurs (interval-based semantics). This 
introduces semantic discrepancy for some operators when they are 
composed more than once. Currently, all active databases detect 
events using the detection-based semantics rather than the 
interval-based semantics. SnoopIB is an interval-based event 
specification language developed for expressing primitive and 
composite events that are part of active rules. Algorithms for 
event detection using interval-based semantics pose some 
challenges, as not all events are known (especially their starting 
points). In this paper, we address the following: 1) briefly explain 
the need for interval-based semantics, 2) formalization of events 
accumulated over a semantic window and 3) how diversified 
events (e.g., sliding window, accumulated) are detected using 
interval-based semantics in the context of Sentinel – an active 
object oriented database. 

1. INTRODUCTION 
There is consensus in the database community on Event-
Condition-Action (or ECA) rules as being one of the most general 
formats for expressing rules in an active database management 
system. As the event component was the least understood 
(conditions correspond to queries, and actions correspond to 
transactions) part of ECA  rule, there is a  large body  of  work [1- 

11] on the language for event specification. Snoop [1, 2] was 
developed as the event specification component of the ECA rule 
formalism used as a part of the Sentinel project [12-15]. Snoop 
supports expressive ECA rules that include coupling modes and 
parameter contexts or event consumption modes. 

An event is an occurrence of interest, which can be either 
primitive (e.g., depositing cash in bank) or composite (e.g., 
depositing cash in bank, followed by withdrawal of cash from 
bank). Primitive events occur at a point in time (i.e., time of 
depositing) and composite events occur over an interval (i.e., 
interval starts at the time cash is deposited and ends when cash is 
withdrawn). Thus, primitive events are detected at a point in time, 
whereas the composite events can be detected either at the end of 
the interval (i.e., detection-based semantics, where start of the 
interval is not considered) or can be detected over the interval 
(i.e., interval-based semantics). Event consumption modes are 
needed while detecting events, since, not all the detected events 
using unrestricted context (i.e., none of the event occurrences are 
discarded after participating in event detection) are meaningful for 
an application.  

In all event specification languages used in Active DBMSs 
(Snoop [1, 2], COMPOSE [3, 4], Samos [5, 6], ADAM [7, 8], 
ACOOD [16, 17], event-based conditions [9], and Reach [10, 11, 
18]), events are considered as “instantaneous”, although an event 
occurs over an “interval”. Because of this, all these event 
specification languages detect a composite event at the end of an 
interval over which it occurs (i.e., detection-based semantics). 
When events are detected using the detection-based semantics, 
where event occurrence and event detection are not differentiated, 
it leads to certain unintended semantics as pointed out in [19, 20] 
when certain operators, such as sequence are composed more than 
once. 

SnoopIB [21-23] is an event specification language based on 
interval-based semantics. Active rules have been shown to 
provide active capability to object oriented databases, relational 
databases, and so on. Lately, they have been shown to support 
diverse application areas such as information filtering [24], 
information security [25], data stream processing [26], XML 
processing [27], semantic web [28], and sensor databases [29]. 
Interval-based semantics has far-reaching applications and has 
been utilized in information filtering [24], XML processing [27], 
and cooperative information system [30]. 
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SnoopIB event operators were formally defined in the recent 
context (i.e., for applications where the events are happening at a 
fast rate and multiple occurrences of the same type of event only 
refine the previous data value e.g., sensor applications.) using 
interval-based semantics in [22] and over a sliding window (i.e., 
for trend analysis and forecasting applications e.g., stock market, 
after-the-fact diagnosis) using interval-based semantics in [23]. 
Interval-based semantics has substantial differences as compared 
to detection-based semantics and is explained below using a 
simple example (refer [21, 22, 30] for more critical examples).  

“Department of transportation needs to find whether there is a 
traffic jam in (Road_2 AND Road_3) after Road_1 has 
encountered a traffic jam”. Thus, the condition (time of traffic jam 
in Road_1 < (time of traffic jam in Road_2 AND time of traffic 
jam in Road_3)) is checked in order to detect a traffic jam. Let us 
assume that there is a traffic jam at the following time: Road_1
(10.00 a.m.), Road_2 (9.30 a.m.) and Road_3 (12.00 p.m.). Thus, 
we should check the following condition (10.00 a.m. < (9.30 a.m. 
AND 12.00 p.m.)). As the detection-based semantics uses the end 
time of the entire expression, 12.00 p.m. is treated as the time of 
(Road_2 AND Road_3) traffic jam. Thus, the condition whether 
(10.00 a.m. < 12.00 p.m.) is checked, and since it is true traffic 
jam is notified. This is not as intended, since traffic jam in 
Road_2 occurs at 9.30 a.m. way before Road_1.

When interval-based semantics is used, the time for Road_1
traffic jam is treated as (10 a.m., 10 a.m.), where the first entry 
represents the start time and the second entry represents the end 
time. Thus, traffic jam in (Road_2 AND Road_3) occurs over an 
interval (9.30 a.m. to 12.00 p.m.), where 9.30 a.m. starts the event 
and 12.00 p.m. ends the event. When the condition (10 a.m. < 
9.30 a.m.) (i.e., whether traffic jam in Road_1 has occurred before 
the start time of the composite event (Road_2 AND Road_3)) is 
checked, it returns false and traffic jam is not notified. 

Detection-based semantics was adopted as begin and end events 
were of significance in most of the database related work. From 
our example above, it is evident that events are detected as 
intended when interval-based semantics is used in place of 
detection-based semantics. Thus, event detection using interval-
based semantics is a trusted way and not just another way of 
detecting events. 

1.1 Our Contributions 
SnoopIB event operators were formally defined in the recent 
context using interval-based semantics in [22] and over a sliding 
window using interval-based semantics in [23]. In this paper, we 
have formally defined event operators for detecting accumulated 
events over a semantic window (i.e., applications where multiple 
occurrences of a constituent event needs to be grouped and used 
in a meaningful way when the event occurs e.g., banking 
application) using interval-based semantics. Algorithms for event 
detection using interval-based semantics pose some challenges, as 
not all events are known (especially their starting points). We 
discuss the implementation issues and show how events are 
detected in various event consumption modes using interval-based 
semantics in the context of Sentinel – an active object oriented 
database. 

1.2 Outline 
The rest of the paper is organized as follows. Section 2 refers to 
related work on event specification. Section 3 explains the 
interval-based semantics of Snoop. Section 4 extends the above to 
the accumulated events that are detected over a semantic window. 
Section 5 provides the implementation details along with the 
algorithms. Section 6 has conclusions and future work. Appendix 
A has additional algorithms. 

2. RELATED WORK 
There has been a considerable amount of work done in the 
interval-based semantics. Why the interval-based semantics is 
needed for event detection is explained with concrete examples in 
[30], using Snoop operators, but does not deal with formal 
semantics, algorithms and implementation for any of the context 
in Snoop. [31] explains the event detection using the duration-
based (i.e., interval-based) semantics, but why it is needed, what 
operators are supported, how it is implemented and the formal 
semantics is not explained. 

Snoop [1, 2] uses event graphs to detect the composite event, 
whereas Samos [5, 6] uses Petri-nets to detect the composite 
events, likewise all the aforementioned event specification 
languages detects the composite event using different approaches, 
but all of them use detection-based semantics, which has some 
problems as we have seen before. Details of event detection by 
other event specification languages and why they are not 
sufficient can be found in [21]. 

Algorithms for event composition and event consumption, which 
make use of accuracy interval based time stamping is illustrated 
along with a window mechanism to deal with varying 
transmission delays when composing events from different 
sources, are dealt in [32]. The paper claims that event 
consumption modes like recent and chronicle can be 
unambiguously defined by using an accuracy interval order that 
guarantees the property of time consistent order. Even though this 
system uses “accuracy interval based time stamping” guaranteeing 
the time consistent order for the event arrival, it uses the 
detection-based semantics for the composite event detection, 
which has the same drawbacks. 

3. INTERVAL-BASED SEMANTICS 
For the purpose of this paper, we assume an equidistant discrete 
time domain having “0” as the origin and each time point 
represented by a non-negative integer as shown in Figure 1. 

Figure 1. Time Line. 

3.1 Primitive Events 
Events can be file operations (i.e., opening, closing, etc.) in 
operating systems, method execution by objects in OODBMs, 
data manipulations such as insert, delete and update in RDBMSs, 
events based on system clock of the underlying system (i.e., 
absolute or relative temporal events), external events (i.e., based 
on the data from sensors), occurrence of regular expressions or 
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keywords in text streams, and so on. These events that are 
predefined in the underlying system (i.e., domain-specific) are 
known as primitive or simple events (for more detail refer to [1, 2, 
33] ). For example, a method execution by an object in an object-
oriented database is a primitive event. These method executions
can be grouped into before and after events (or event types) based 
on when they are detected (immediately before or after the method 
call).

An event occurs over a time interval and is denoted by O (E [t1,
t2]) (see Figure 2, where O represents the interval-based 
semantics, E is the event, t1 is the start interval of the event 
denoted by ↑E, and t2 is the end interval of the event denoted by 
E↓). In the case of primitive events, the start and the end interval 
are assumed to be the same (i.e., t1 = t2). For events that span over 
an interval, the event occurs over the interval [t1, t2] and is 
detected at the end of the interval. 

Figure 2. Event Notations. 

3.2 Event Expressions 
For many applications, supporting only primitive events is 
inadequate. In many real-life applications, there is a need for 
specifying more complex patterns of events such as, arrival of a 
report followed by a detection of a specified object in a specific 
area. The above shown complex pattern cannot be expressed with 
a language that does not support expressive event operators along 
with their semantics. An appropriate set of operators along with 
the closure property allows one to construct complex composite 
events by combining primitive events and composite events in 
ways meaningful to an application interested in situation 
monitoring. To facilitate this, we have defined a set of event 
operators along with their semantics. Snoop(IB) is an event 
specification language that is used to specify combinations of 
events. Motivation for the choice of these operators and how they 
compare with other event specification languages can be found in 
[1, 2]. Some of the event operators are AND (two events occur 
together in any order), Sequence (two events occur together in a 
particular order), NOT (one event does not occur in between two 
other events), OR (any one of the two events occur), Aperiodic 
(aperiodic occurrence of a event between two other events), 
Periodic (periodic occurrence of an event between two other 
events), Aperiodic* and Periodic* (cumulative versions of 
Aperiodic and Periodic operators), Frequency or Cardinality 
(number of times an event should occur), and Plus (event 
occurrence based on another event plus some time). 

3.3 Composite Events 
Composite events are composed of more than one primitive or 
composite event using event operators. These events are 
constructed using primitive events and event operators in a 
recursive manner. A composite event consists of a number of 

primitive events and operators; and the set of primitive events of a 
composite event are termed as constituent events of that 
composite event. A composite event is said to occur over an 
interval, but is detected at the point when the last constituent 
event of that composite event is detected. The detection and 
occurrence semantics is clearly differentiated and the detection is 
defined in terms of occurrence as shown in [19, 20]. Note that 
occurrence of events cannot be defined in terms of detection 
which was the problem with the earlier detection-based 
approaches.  

We introduce the notion of an initiator, detector, and terminator
for defining event occurrences. A composite event occurrence is 
based on the initiator, detector and terminator of that event which 
in turn are constituent events of that composite event. An initiator
of a composite event is the first constituent event whose 
occurrence starts the composite event. Detector of a composite 
event is the constituent event whose occurrence detects the 
composite event, and terminator of a composite event is the 
constituent event that is responsible for terminating the composite 
event. For example, when a stock trading agent requests for a 
stock quote every hour from 9 a.m. to 5 p.m., then 9 a.m. starts the 
event (i.e., initiator), 5 p.m. terminates the event (i.e., terminator) 
and every hour (i.e., 10 a.m., 11 a.m., …) detects an event (i.e., 
detector). For some operators, the detector and terminator are 
different (e.g., Aperiodic), while for other operators, detector and 
terminator are the same (e.g., Sequence). 

Figure 3. Overlapping Event Combinations. 

A composite event E occurs over a time interval and is defined by 
E [t1, t2] where E is a composite event, t1 is the start time of the 
composite event occurrence and t2 is the end time of composite 
event occurrence (t1 is the starting time of the first constituent 
event that occurs (initiator) and t2 is the end time of the detecting 
or terminating constituent event (detector or terminator) and they 

t1 t2
E
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are denoted by ↑E and E↓ respectively). Below, “O” represents 
the occurrence-based or interval-based semantics.

     Start of an event: O (↑↑↑↑E, t) ∃∃∃∃t' (t ≤≤≤≤ t' ∧∧∧∧ O (E, [t, t']))

     End of an event: O (E↓↓↓↓, t) ∃∃∃∃t' ≤≤≤≤ t (O (E, [t', t]))

Event Combinations: Nature of constituent event occurrences of 
a composite event is another important aspect as they can be 
either overlapping or disjoint. 

Overlapping Event Combinations: When events are allowed to 
overlap, all the possible combinations in which two events can 
occur [34, 35] are shown in Figure 3. All operators formally 
defined in this paper assume that events occur in an overlapping 
fashion. 

Disjoint Event Combinations: When events are not allowed to 
overlap, we have fewer combinations. This may be meaningful for 
many applications where the same event should not participate in 
more than one composite event or when only one of the 
overlapping events is of interest. The possible disjoint event 
combinations are shown in Figure 4. 

Figure 4.  Disjoint Event Combinations. 

3.4 Event Histories 
In real world, events occur over a time line (or online). Events can 
be detected as and when it occurs as far as the events are 
predefined in the system (i.e., primitive events). Even though the 
time of occurrence of a composite event is over an interval in 
which it occurs, it is detected only when the last constituent event 
occurs. Thus, history of an initiator and other constituent events 
should be maintained so that they can be paired when 
detector/terminator occurs. An event history maintains a history of 
event occurrences up to a given point in time. Suppose e1 is an 
event instance of type E1, then E1 [H] represents the event history 
that stores all the instances of the event E1 (namely e1

i). In the 
following sections, using the notion of event histories, we 
formalize SnoopIB operator definitions taking event consumption 
modes (or parameter contexts) into account. In order to extend 
these definitions to event consumption modes following notations 
are used. 

Ei [H] = {ei
j [tsi, tei]} 

Ei [H]  Event history for event Ei, 

tsi – Start time of an event instance ei
j of event Ei

tei – End time of an event instance ei
j of event Ei

For example, event histories for the event occurrences shown in 
Figure 5 are shown below. 

E1 [H] = {e1
1 [3, 5]} 

E2 [H] = {e2
1 [1, 2], e2

2 [4, 6]} 

Figure 5.  Event Occurrences. 

3.5 Event Consumption Modes 
Events in the ECA rules are detected in unrestricted (or general) 
context. This means events, once they occur, cannot be discarded 
at all. For a “;” (Snoop sequence operator) event, all event 
occurrences that occur after a particular event will get paired with 
that event as per the unrestricted context semantics. In the absence 
of any mechanism for restricting event usage (or consumption), 
events need to be detected and parameters for those composite 
events need to be computed using the unrestricted context 
definitions of the Snoop event operators. However, the number of 
events produced (with unrestricted context) can be large and not 
all event occurrences may be meaningful for an application. In 
addition, detection of these events has substantial computation 
and space overhead, which may become a problem for situation 
monitoring applications. Thus, Snoop(IB) has five event 
consumption modes based on the application domains and they 
are: Recent, Recent-Unique, Chronicle, Continuous, and 
Cumulative. 

Motivations behind the recent, continuous, and cumulative 
contexts are given below in an intuitive way. In addition, 
semantics used for event detection in these contexts are also 
discussed. 

Recent Context: In applications where events are happening at a 
fast rate and multiple occurrences of the same event only refine 
the previous value can use this context. Only the most recent or 
the latest initiator for any event that has started the detection of a 
composite event is used in this context. This entails that the most 
recent occurrence just updates (summarizes) the previous 
occurrence(s) of the same event type. In this context, not all 
occurrences of a constituent event will be used in the composite 
event detection. An initiator will continue to initiate new event 
occurrences until a new initiator or a terminator occurs. 

Continuous Context (Sliding Window Events): In applications 
where event detection along a moving time window is needed, 
continuous context can be used. This context is especially useful 
for tracking trends of interest on a sliding time point governed by 
the initiator event. For example, computing change of more than 
20% in DowJones average in any 2-hour period requires each 
change to initiate a new occurrence of an event. In this context, 
each initiator starts the detection of that composite event, and a 
single detector or terminator may detect one or more occurrences 
of that same composite event. In other words, each initiator starts 
a new window, and the events are detected until (or when) a 
terminator occurs. For binary SnoopIB operators, all the 
constituent events (initiator, detector and/or terminator) are 
deleted once the event is detected. For ternary SnoopIB operators 
detector and terminator are different. Detectors detect the event 
occurrence (e.g., Aperiodic) and are deleted once detected. 
Terminator terminates the event (e.g., Aperiodic*) and deletes 

E2 E1 E1

1

3

4 6

5

2

e1
1

e2
1

e2
2
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corresponding initiator and terminator pair along with the 
constituent events that cannot be used in future events. Future 
events are the events that are initiated by the initiators that are not 
paired with this terminator. 

Cumulative Context (Semantic Window Events): Applications 
use this context when multiple occurrences of constituent events 
need to be grouped (or accumulated) and used in a meaningful 
way when the event occurs (e.g., banking application). In this 
context, all occurrences of an event type are accumulated as 
instances of that event until the event is terminated (i.e., forming a 
semantic window based on the earliest initiator that was not 
terminated and a terminator). An event occurrence does not 
participate in two distinct occurrences of the same composite 
event. In both the binary and ternary operators, detector and 
terminator are same, and once detected and terminated all 
constituent event occurrences that were part of the detection are 
deleted. Other events that can act as a constituent event for some 
future event are preserved. 

4. EVENT OPERATOR FORMALIZATION 
In this section, we provide the formalization of event operators in 
cumulative context using event histories (explained in Section 
3.4) based on the formal semantics defined for unrestricted [19, 
20], recent [22] and continuous [23] contexts. 

Below, event operators are defined intuitively, examples for event 
detection over cumulative context using interval-based semantics 
are provided, and the formal definitions of the operators in 
cumulative context are given. “O” represents the occurrence-
based or interval-based semantics. 

We will use the start and end of an event defined earlier for 
formally defining the event operators. To enable us to express this 
more concisely the predicate Oin is defined as follows [19, 20].  

Oin (E [t1, t2]) ∃∃∃∃t1', t2' (t1 ≤≤≤≤  t1' ≤≤≤≤  t2' ≤≤≤≤  t2 ∧∧∧∧ O (E, [t1', t2']))

4.1 SEQUENCE (;) Event Operator 
Sequence Operator (;): O (E1; E2, [t1, t2]). Sequence of two 
events E1 and E2, denoted by E1; E2, occurs when E2 occurs 
provided E1 has already occurred. This implies that the end time 
of occurrence of E1 is guaranteed to be less than the start time of 

occurrence of E2. E1 is the initiator and E2 is the 
detector/terminator of the sequence event. 

Example: In this context, a detector or terminator produces only 
one event. Event histories are used for the detection of the “;” 
operator defined above. Event histories corresponding to the event 
occurrences shown in Figure 6 are given below, where E1 [H] is 
the initiator event history and E2 [H] is the terminator even 
history. 

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]} 

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [11, 12]} 

When terminator event e2
1 occurs there is no initiator event in E1

[H] that satisfies the “;” operator condition. Event e1
1 occurrence 

initiates a sequence event. Event e1
2 occurrence is accumulated. 

When the event e2
2 occurs, E1 [H] has events {e1

1 [3, 5], e1
2 [4, 6], 

e1
3 [8, 9]}. Thus, e2

2 detects the event initiated by event e1
1

generating the following event (e1
1, e1

2, e2
2) [3, 10], since it 

satisfies the sequence condition (ts1 ≤ te1 < t s2 ≤ te2) (i.e., (3 ≤ 5 < 
7 ≤ 10) for pair (e1

1, e2
2)). As shown, all the events in between the 

pair (e1
1, e2

2), in this case e1
2, are accumulated. Even though e1

3

occurred before e2
2, it is not detected since it does not satisfy the 

condition (9 < 7). According to the cumulative context definition, 
events e1

1, e1
2 and e2

2 are deleted as they have already participated 
in event detection and cannot act as constituent events for future 
detections. In addition, event e1

3 is also deleted as it has occurred 
before the start time of e2

2 and does not satisfy the sequence 
condition. As there are no events after end time of e2

2, event e2
3

does not detect any event. Event pairs detected by sequence 
operator in continuous context are: (e1

1, e1
2, e2

2) [3, 10] 

Formal Definition in Cumulative Context: 

O (E1 ; E2, [ts1, te2]) 
∀E2 ∈ E2 [H] 
{O (E2, [t s2, t e2]) ∧ ( E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])  

∧ {∀E1 ∈ E1 [H] (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2))}
}
∨
∀E2 ∈ E2 [H] 
{O (E2, [t s2, t e2]) ∧ (( E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])  

∧ ( E2'' [t s', t e'] | (t e' > t e) ∧ (t e' < t e2) ∧ E2'' ∈ E2 [H])) 
∧ {∀E1 ∈ E1 [H] (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2)
∧ (t s1 > t e) ∧ ( E1' [t s1', t e1'] | (t s1' > t e) ∧ (t s1' < t s1)

∧ E1' ∈ E1 [H])) 
      } 
}

Two events e1 ∈ E1 [H] and e2 ∈ E2 [H] are said to occur in 
sequence in the cumulative context only when there is no 
occurrence of e2' ∈ E2 [H] before the occurrence of e2 and all the 
other occurrences of e1' ∈ E1 [H] that occurs in between the pair 
e1 and e2 are accumulated. There are two cases to formally define 
the operator (refer the formal definition above). First case handles 
when there is no other terminator is available in the terminator 
history (i.e., first occurrence of the terminator). In other words, 
there should be no occurrence of other terminators before this 
terminator and this terminator should be in sequence with all 
initiators till that point. In this case, all the event occurrences of 
the initiator are accumulated, and the cumulative event is 

Figure 6.  Examples for SEQUENCE Operator. 
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detected. Second case handles when there is more than one 
terminator present in the history. For this case, there should be no 
occurrence of other terminators in between start of the initiator 
and end of the terminator or a terminator can occur only if its end 
time is less than start time of the initiator. In other words, an 
initiator starts an event occurrence and a terminator terminates 
and detects the “;” event with events in between as constituent 
events and there should be no other instance of the terminator. 

4.2 OR Event Operator 
OR Operator (∇∇∇∇): O (E1∇∇∇∇ E2, [t1, t2]). Disjunction of two 
events E1 and E2, denoted by E1 ∇ E2, occurs when E1 occurs or 
E2 occurs. Occurrences of one of E1 or E2 act as both initiator
and terminator. The semantics of “∇” does not change with 
cumulative context as each occurrence is detected individually. 

4.3 PLUS Event Operator 
Plus Operator: O (Plus (E1, E2) [t, t]). A Plus operator is used to 
specify a relative time event [36]. A Plus operator combines two 
events E1 and E2 where E1 can be any type of event and E2 is a 
time string [t]. E1 is the initiator and E2 is the terminator. The Plus 
event occurs only once after time [t], after the event E1 occurs. 
Plus operator’s unrestricted context definition [21] holds for the 
cumulative context, since Plus operator is detected only once after 
the occurrence of the event E1 and there is only one terminator for 
an initiator. 

Figure 7.  Examples for NOT Operator. 

4.4 NOT Event Operator 
NOT Operator (¬¬¬¬): O (¬¬¬¬ (E3) [E1, E2], [t1, t2]). NOT operator 
detects the non-occurrence of the event E3 in the closed interval 
formed by E1↓ and E2↑.

Example: “¬” Operator can be expressed as the sequence of E1

and E2 where there is no occurrence of the event E3 in the interval 
formed by these events. Event histories corresponding to the event 
occurrences shown in Figure 7 are given below, where E1 [H] is 
the event e1 history, E2 [H] is the event e2 history, and E3 [H] is 
the event e3 history. 

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9], e1

4 [11, 11]} 

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [12, 14]} 

E3 [H] = {e3
1 [5, 5]}  

When terminator event e2
1 occurs there is no initiator event in E1

[H] that can pair with e2
1. Event e1

1 occurrence initiates a 
sequence event. Event e1

2 occurrence is accumulated. When the 
event e2

2 occurs, E1 [H] has events {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 

9]}. But, event e1
1 [3, 5] cannot combine with event e2

2 [7, 10] 
since there is an occurrence of e3

1 [5, 5] in between e1
1 and e2

2

(i.e., 5 ≤ 5 ≤ 7), thus a NOT event is not detected. Event e1
4 [11, 

11] initiates the next NOT event. When event e2
3 [12, 14] occurs, 

it pairs with event e1
4 detecting (e1

4, e2
3) [11, 14] as there is no 

occurrence of event e3 in the interval [11, 12]. The event pair 
generated by NOT operator in cumulative context is: {(e1

4, e2
3)

[11, 14]} 

Formal Definition in Cumulative Context:

O (¬ (E3) [E1, E2], [ts1, te2]) 
∀E2 ∈ E2 [H]  
{O (E2, [t s2, t e2]) ∧ ( E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])  

∧ {∀E1 ∈ E1 [H] ∧ ∀E3 ∈ E3 [H]  
        (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2)

∧ Oin (E3, [te1, ts2]))} 
 } 
∨
∀E2 ∈ E2 [H] 
{O (E2, [t s2, t e2]) ∧ (( E2' [t s, t e] | (t e < t e2) ∧ E2' ∈ E2 [H])  

∧ ( E2'' [t s', t e'] | (t e' > t e) ∧ (t e' < t e2) ∧ E2'' ∈ E2 [H])) 
∧ {∀E1 ∈ E1 [H] ∧ ∀E3 ∈ E3 [H]  

       (O (E1, [t s1, t e1]) ∧ (ts1 ≤ te1 < t s2 ≤ te2) ∧ (t s1 > t e)
∧ ( E1' [t s1', t e1'] | (t s1' > t e) ∧ (t s1' < t s1)

∧ E1' ∈ E1 [H])  
∧ Oin (E3, [te1, ts2])) 

      } 
}

Formal definition above has two cases similar to the sequence 
operator formal definition. Non occurrence of event e3 ∈ E3 [H] 
between two events e1 ∈ E1 [H] and e2 ∈ E2 [H] is said to occur in 
the cumulative context only when there is no occurrence of e2' ∈
E2 [H] before the occurrence of e2 and all the other occurrences of 
e1' ∈ E1 [H] that occurs in between the pair e1 and e2 are 
accumulated. First case handles when there is no other terminator 
is available in the terminator history (i.e., first occurrence of the 
terminator). In other words, there should be no occurrence of 
other terminators before this terminator and this terminator should 
be in sequence with all initiators till that point and there should 
not be any occurrence of event e3 in between the initiator and 
terminator as specified by the condition ( Oin (E3, [te1, ts2])). In 
this case, all the event occurrences of the initiator are 
accumulated, and the cumulative event is detected. Second case 
handles when there is more than one terminator present in the 
history. For this case, there should be no occurrence of other 
terminators in between start of the initiator and end of the 
terminator or a terminator can occur only if its end time is less 
than start time of the initiator. In addition, there should not be any 
occurrence of event e3 in between the initiator of the composite 
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event and the terminator as specified by the condition ( Oin (E3,
[te1, ts2])). 

5. INTERVAL-BASED EVENT 
DETECTION 
In section 4 formal definitions using event histories were given for 
event operators in cumulative context. In real world applications 
such as monitoring applications we cannot assume to have 
complete event histories to detect the composite event since the 
events occur online. In this section we will show the events 
detected based on histories, and explain how composite events are 
detected using event graphs in recent, continuous and cumulative 
contexts from the implementation perspective when events occurs 
online. It poses some challenges as the start of the event is not 
known before hand. We also show that the events detected using 
event histories (or formalization of event operators) and event 
graphs (or implementation of operators) are the same.  

Let us take a simple composite event (E1; E2) as an example 
(please refer [21] for more complex/detailed examples). Event 
(E1; E2) represents the SEQUENCE between event E1 and E2,
occurs when E2 occurs provided E1 has already occurred. This 
implies that the end time of occurrence of E1 is guaranteed to be 
less than the start time of occurrence of E2. E1 is the initiator and 
E2 is the terminator of the sequence event. Event occurrences that 
will be used for detecting events using both event histories and 
event graphs are shown in Figure 6. 

5.1 Event Detection Using Event Histories 
Event histories corresponding to the event occurrences shown in 
Figure 6 are given below, where E1 [H] is the initiator event 
history and E2 [H] is the terminator even history. 

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]} 

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [11, 12]} 

Events detected in Cumulative Context: Based on the formal 
semantics provided in Section 4.1 and the event histories above, 
all the event occurrences for the composite event (E1; E2) detected 
using cumulative context is given below. 

 (e1
1 [3, 5], e1

2 [4, 6], e2
2 [7, 10]) [3, 10] 

Events detected in Recent Context: Formal definition for the 
sequence operator in this context is provided in [22]. According 
to the definition of the recent context in section 3.5 a terminator 
pairs only with a recent initiator, and there should be no other 
instance of the terminator between them. From the event history, 
we can see that for terminator event e2

1 [1, 2] there are no 
initiators, and for terminator event e2

2 [7, 10] the recent initiator is 
e1

3 [8, 9]. Terminator event e2
2 [7, 10] cannot be paired with event 

e1
3 [8, 9] as there it does not satisfy the sequence condition. Thus, 

for these event occurrences composite event (E1; E2) is not 
detected using recent context. 

Events detected in Continuous Context: Formal definition for 
the sequence operator in this context is provided in [23]. 
According to the definition of the continuous context in section 
3.5 a terminator terminates more than one initiator. This context is 
similar to cumulative context, except that the number of events 
generated equals the number of initiators. Thus, the event 

occurrences for the composite event (E1; E2) detected using 
continuous context are given below. 

{(e1
1 [3, 5], e2

2 [7, 10]) [3, 10], (e1
2 [4, 6], e2

2 [7, 10]) [4, 10]} 

5.2 Event Detection Using Event Graphs 
Sentinel [12-15] uses an event graph or event detection graph 
(EDG) for representing an event expression in contrast to other 
approaches such as Petri nets used by Samos [5, 6] and an 
extended finite state automata used by COMPOSE [3, 4]. By 
combining event trees on common sub expressions, an event 
graph is obtained. Data flow architecture is used for the 
propagation of primitive events to detect composite events. By 
using event graphs, the need for detecting the same event multiple 
times is avoided since the event node can be shared by many 
events. In addition to reducing the number of detections, this 
approach saves substantial amount of storage space (for storing 
event occurrences and their parameters), thus leading to an 
efficient approach for detecting events. 

As mentioned earlier, primitive events are detected by the 
underlying system and composite events are detected using the 
occurrence of its constituent events. The time of occurrence of a 
composite event depends on the event operator semantics and 
detection semantics (either detection-based or interval-based). 
Interval-based semantics uses the time of occurrence of both the 
first and last constituent event in an event expression as the time 
of occurrence for the entire event expression. 

Algorithms and Implementation: Semantics of the event 
operators are defined using the event history in the previous 
section. In this section, we will provide algorithms that detect 
events according to the interval-based semantics.  In the manner 
in which ECA rules are used for monitoring situations, events 
occur over a time line and are sent to the event detector. All 
events in the form of an event history are not submitted to the 
event detector. In fact, as part of event detection, the event 
detector at any point sees only a partial history in time. 
Algorithms presented in the following subsections detect events 
according to interval semantics although they do not see the 
complete history at any given point in time. How the start interval 
is handled is shown in the algorithm. The algorithms defined in 
the following subsections are implemented in Sentinel. The 
formal definitions and algorithms have been designed for all 
contexts and are detailed in [21]. Notations that are used while 
writing the algorithms are shown in Table 1. 

Table 1.  Notations used in Algorithms

ei (e.g., e1, e2) Primitive or Composite event instance or 
occurrence 

Ei (e.g., E1, E2) An event List that maintains the partial 
history of the occurrences of event ei

t_s Start time of the event (Start Interval) 
t_e Ending time of the event (End Interval) 

Event Detection Graph: In an EDG, leaf nodes represent 
primitive events and internal nodes represent composite events (or 
event operators) and event occurrences flows in a bottom-up 
fashion. When a primitive event occurs and is detected, it is sent 
from its node to the parent node (if necessary) for detecting a 
composite event. Figure 8 shows a composite event SEQUENCE 
with two events E1 and E2. Leaf nodes, E1, and E2, represent the 
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primitive events and node “A” represent the composite event 
SEQUENCE. Whenever there is an event E1 or E2 occurrence it is 
propagated to node “A”. SEQUENCE event is detected whenever 
both its constituent events occur, where E1 precedes E2 in time. As 
described in section 3.5, introduction of event consumption 
modes make event detection more meaningful for diverse 
applications. 

Figure 8.  Event Graph for E1 ; E2.

Even though Snoop has 5 contexts, we explain the event detection 
only in recent, continuous, and cumulative contexts using the 
EDG shown in Figure 8. In order to provide more meaningful 
examples while discussing the algorithms, we consider the events 
E1 and E2 shown in Figure 8, and their start time and end time are 
same as shown in Figure 6. With each node, there are 5 counters 
indicating whether that event should be detected in that particular 
context. The counter is also used to keep track of number of 
composite events an event participates in. When this counter 
reaches zero, there is no need to detect that event in that context, 
as there are no events dependent on that event.  

5.2.1 Event Detection in Cumulative Context 
Algorithm for Sequence operator in Cumulative Context: 

/* ei can be recognized as coming from the left or right branch of 
the operator tree, and parameter_list represents event properties*/

PROCEDURE seq_cumulative (ei, parameter_list): 
If ei is the left event /* 1 */ 

Append e1 to E1 /* 2 */ 

If ei is the right event /* 3 */ 
If E1 is not empty /* 4 */ 

For every e1 in E1 and if (t_s (e2) > t_e (e1)) /* 5 */ 
Append e1 to tempE1 /* 6 */ 

If tempE1 is not empty /* 7 */ 
Pass <tempE1, e2> to parent with t_s (tempE1’s

EarliestStartTime) and t_e (e2) /* 8 */ 
Remove all event occurrences from tempE1

    Remove all event occurrences from E1 /* 9 */

Explanation of the algorithm:  

/* 1 */ If the event is from the left child (i.e., initiator of this 
operator) then continue 
/* 2 */ Accumulate event e1 occurrences in list E1

/* 3 */ If the event is from the right child (i.e., terminator of this 
operator) then continue 
/* 4 */ When there is an initiator in the list, then continue 
/* 5 */ Check whether each event occurrence of e1 has preceded 
the e2 occurrence 
/* 6 */ if above step is true, then add the event e1 to a list tempE1

/* 7 */ if there is at least one initiator then perform /* 8 */ 

/* 8 */ Pass the accumulated event occurrences of e1 and e2 along 
with the time of occurrence. Start time of the composite event is 
the start time of the first occurrence of e1 (initiator) and End time 
for the composite event is the end time of the terminator.  
/* 9 */ Terminator has occurred and all the event occurrences in 
the left child has to be removed 

Event Detection: Event occurrences shown in Figure 6 are used 
to explain the event detection using EDG. Event e2

1 occurs over 
[1, 2] and is propagated from node E2 to “A”. As specified in the 
algorithm this event enters /* 3 */ as it is propagated from the 
right child. As there are no previous occurrences of E1 this event 
is not consumed. Event e1

1 occurs over [3, 5] and enters /* 1 */ 
where it is appended to list E1. Event e1

2 [4, 6] occurrence also 
enters /* 1 */ and gets appended in E1. From Figure 6 you can see 
that event e2

1 has started, but it is not propagated to the node “A” 
as it is not yet detected. In the mean time event e1

3 [8, 9] occurs 
and appended to E1. When event e2

2 is detected it enters /* 3 */ 
and steps /* 4 */, /* 5 */, and /* 6 */ are performed. Events e1

1 [3, 
5] and e1

2 [4, 6] are appended to the list tempE1. Event e1
3 [8, 9] 

is not added as the condition in /* 5 */ (i.e., 7 > 8) fails. Single 
occurrence of the composite event (E1 ; E2) is detected with events 
{e1

1, e1
2, e2

2} and timestamp [3, 10]. Figure 9 shows the partial 
event history that is maintained in the node “A” when event e2

2

occurs. 

Figure 9.  Partial History for Cumulative and 
Continuous Context. 

5.2.2 Event Detection in Recent Context 
Algorithm for Sequence operator in Recent Context: 

/* ei can be recognized as coming from the left or right branch of 
the operator tree, and parameter_list represents event properties */

PROCEDURE seq_recent (ei, parameter_list): 

If ei is the left event /* 1 */ 
Replace e1 in E1 /* 2 */ 

If ei is the right event /* 3 */ 
If (E1 is not empty and (t_s (e2) > t_e (e1))) /* 4 */ 

Pass <e1, e2> to parent with t_s (e1) and t_e (e2) /* 5 */ 
Remove all event occurrences from E1 /* 6 */

Explanation of the algorithm:  

/* 1 */ If the event is from the left child (i.e., initiator of this 
operator) then continue 

/* 2 */ Make this occurrence as the most recent initiator 

/* 3 */ If the event is from the right child (i.e., terminator of this 
operator) then continue 

/* 4 */ When there is an initiator in the list, check whether start 
time of terminator is greater that end time of initiator 

e1
1 [3, 5] 

e1
2 [4, 6] 

e1
3 [8, 9] 

E1 E2

;

A

E1 E2

;
A
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/* 5 */ Pass the event e1 and e2 along with the time of occurrence. 
Start time of the composite event is the start time of the initiator 
and End time for the composite event is the end time of the 
terminator.  

/* 6 */ Terminator has occurred and all the event occurrences in 
the left child has to be removed 

Event Detection: Event occurrences shown in Figure 6 are used 
to explain the event detection using EDG. Event e2

1 occurs over 
[1, 2] and is propagated from node E2 to “A”. As specified in the 
algorithm this event enters /* 3 */ as it is propagated from the 
right child. As there are no previous occurrences of E1 this event 
is not consumed. Event e1

1 occurs over [3, 5] and enters /* 1 */ 
where it stays as there is no other occurrence to replace. Event e1

2

[4, 6] occurrence also enters /* 1 */ and it replaces e1
1 as the 

recent initiator. From Figure 6 you can see that event e2
1 has 

started, but it is not propagated to the node “A” as it is not yet 
detected. In the mean time event e1

3 [8, 9] occurs and it acts as the 
recent initiator. When event e2

2 is detected it enters /* 3 */ and it 
checks for the condition. As the condition in /* 4 */ fails, the 
composite event is not detected. Figure 10 shows the partial event 
history that is maintained in the node “A” when event e2

2 occurs. 

Figure 10. Partial History for Recent Context. 

5.2.3 Event Detection in Continuous Context 
Algorithm for Sequence operator in Continuous Context: 

/* ei can be recognized as coming from the left or right branch of 
the operator tree, and parameter_list represents event properties*/

PROCEDURE seq_continuous (ei, parameter_list): 
If ei is the left event /* 1 */ 

Append e1 to E1 /* 2 */ 

If ei is the right event /* 3 */ 
If E1 is not empty /* 4 */ 

For every e1 in E1 and if (t_s (e2) > t_e (e1)) /* 5 */ 
Pass <e1,e2> to parent with t_s (e1), t_e (e2) /* 6 */ 

    Remove all event occurrences from E1 /* 7 */

Explanation of the algorithm:  

/* 1 */  to /* 4 */ are same as the algorithm for cumulative context 
/* 5 */ For each event occurrence in E1 check whether it has 
preceded the e2 occurrence 
/* 6 */ if above step is true, then pass the event occurrences of e1

and e2 along with the time of occurrence. Start time of the 
composite event is the start time of e1 and End time for the 
composite event is the end time of the terminator.  
/* 7 */ Terminator has occurred and all the event occurrences in 
the left child has to be removed 

Event Detection: Event occurrences shown in Figure 6 are used 
to explain the event detection using EDG. Event e2

1 occurs over 
[1, 2] and is propagated from node E2 to “A”. As specified in the 
algorithm this event enters /* 3 */ as it is propagated from the 
right child. As there are no previous occurrences of E1 this event 
is not consumed. Event e1

1 occurs over [3, 5] and enters /* 1 */ 
where it is appended to list E1. Event e1

2 [4, 6] occurrence also 
enters /* 1 */ and gets appended in E1. From Figure 6 you can see 
that event e2

1 has started, but it is not propagated to the node “A” 
as it is not yet detected. In the mean time event e1

3 [8, 9] occurs 
and appended to E1. When event e2

2 is detected it enters /* 3 */ 
and steps /* 4 */, /* 5 */, and /* 6 */ are performed. Events e1

1 [3, 
5], e1

2 [4, 6], and e1
3 [8, 9] are checked for the condition. Two 

occurrences of the composite event (E1 ; E2) are detected with 
events {(e1

1, e2
2) [3, 10], (e1

2, e2
2) [4, 10]}. Figure 9 shows the 

partial event history that is maintained in the node “A” when 
event e2

2 occurs. 

5.3 Comparison of Events 
Events that are generated based on formal definitions using event 
histories (section 5.1) and based on algorithms using event graphs 
(section 5.2) are shown in Table 2. As shown below all the events 
that are generated using these two approaches are same, and it 
shows that the formal definitions and the implemented system 
produce the same set of events. 

Table 2. Comparison of events detected using event histories 
and event graphs 

6. CONCLUSIONS AND FUTURE WORK 
Detection-based semantics was adopted as begin and end events 
were of significance in most of the database related work. From 
this paper, it is evident that events are detected as intended when 
interval-based semantics is used as opposed to detection-based 
semantics. Thus, event detection using interval-based semantics is 
a trusted way and not just another way of detecting events. 
SnoopIB [21-23] is an event specification language based on 
interval-based semantics. Interval-based semantics has far-
reaching applications and has been utilized in diverse areas [24, 
27, 30]. SnoopIB event operators were formally defined in the 
recent context in [22] and over a sliding window in [23].  

In this paper, we have briefly explained the need for interval-
based semantics. Cumulative context is necessary for applications 
where multiple occurrences of a constituent event need to be 
grouped and used in a meaningful way when the event occurs 
(e.g., banking application). We have formalized SnoopIB event 
operators for the events accumulated over a semantic window (or 
in cumulative context). Algorithms for event detection using 
interval-based semantics pose some challenges, as not all events 
are known (especially their starting points). We have shown how 
events are detected using event detection graphs and starting 
points of composite events are computed. We have also provided 
algorithms (for additional algorithms refer appendix A) for event 

Event 
Detection 
 (E1; E2)

Using Event Histories  
(section 5.1) 

Using Event Graphs 
(section 5.2) 

Cumulative {(e1
1, e1

2, e2
2) [3, 10]} {(e1

1, e1
2, e2

2) [3, 10]} 
Recent None None 

Continuous 
{(e1

1, e2
2) [3, 10],  

(e1
2, e2

2) [4, 10]} 
{(e1

1, e2
2) [3, 10],  

(e1
2, e2

2) [4, 10]} 

e1
3 [8, 9] 

E1 E2

;

A
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operators in recent, continuous and cumulative contexts using 
interval-based semantics in the context of Sentinel. Finally, we 
have shown that events detected using event histories based on 
formal definitions and event graphs based on algorithms are same.  

All the operators defined in this paper assume that events can 
overlap and it would be interesting to extend the semantics of 
operators to detect composite events that are disjoint using 
interval-based semantics. 
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APPENDIX  

A.  ALGORITHMS 

In addition to the algorithms provided before, in this appendix we 
provide algorithms for NOT operator in cumulative context and 
Aperiodic Operator in recent context. 

Algorithm for NOT (O (¬¬¬¬ (E2) [E1, E3], [t1, t2])) operator in 
Cumulative context:  

NOT operator detects the non-occurrence of the event E2 in the 
closed interval formed by E1↓ and E3↑.

PROCEDURE not_cumulative (ei, parameter_list) 

If ei is the left event /* 1.a */ 
Append e1 to E1 /* 1.b */ 

If ei is the middle event /* 2 */ 
If E1 is not empty and t_e (E1’s EarliestEndTime) ≤ t_s (e2)
/* 3 */ 
Append e2 to E2 /* 4 */ 

If ei is the right event /* 5 */ 
If (E1 is not empty and (t_e (E1’s EarliestEndTime) < t_s (e3))
/* 6 */ 

If E2 is not empty /* 7 */ 
For every e1 in E1 /* 8.a */ 

If (t_e (e1) < t_s (e3)) /* 8.b */ 
For all e2’s in E2 /* 8.c */ 

If (t_e (e2) > t_s (e3) or t_s (e2) < t_s (e1))
/* 8.d */ 
Append e1 to tempE1 /* 8.e*/ 

Delete e1 from E1 /* 8.f */ 
If tempE1 is not empty /* 9.a */ 

Pass <tempE1, e3> to the parent with t_s 
(tempE1’s EarliestStartTime) and t_e (e3) /* 9.b */ 
For every e2 in E2 /* 10.a */ 

If (t_e (E1’s EarliestEndTime) > t_s (e2))
/* 10.b */ 

Delete e2 from E2 /* 10.c */ 
Else /* 11 */ 

For every e1 in E1 /* 11.a */ 
If (t_e (e1) < t_s (e3)) /* 11.b */ 

Append e1 to tempE1 /* 11.c */ 
Delete e1 from E1 /* 11.d */ 

Pass <tempE1, e3> to the parent with t_s (tempE1’s
EarliestStartTime) and t_e (e3) /* 11.e */ 

Explanation of the algorithm: 

/* 1 */ If the event is from the left child (i.e., initiator of this 
operator) then append it to the list E1

/* 2 */ If the event is from the middle child (i.e., event E2 in our 
case) then continue 
/* 3, 4 */ If the list E1 is not empty and the end time of the first 
occurrence of event e1 is less than or equal to the start time of the 
this event then append this event to list E2

/* 5 */ If the event is from the right child (i.e., event E3 in our 
case) then continue 
/* 6 */ When there is an initiator in the list and the end time of the 
first occurrence of event e1 is less than to the start time of the this 
event then continue 
/* 7 - 10 */ Check whether all the event occurrences of e1 has 
preceded the e3 occurrence and there is no occurrence of event e2

in between them. If there is any event pair then detect the NOT 
event. Remove all the event e2 occurrences that satisfies the 
condition in /* 10.b */ 
/* 11 */ if there is no occurrence of event e2 detect a NOT event 
with all the event e1 occurrences and event e3

Algorithm for Aperiodic operator in Recent context: 
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Aperiodic Operator (O (E1, E2, E3), [t1, t2]): This operator is 
represented as “A”. Occurrence time of this operator is the 
occurrence time for E2; an occurrence of event “A” is an 
occurrence of E2 and is determined by E1 and E3. There must be 
no occurrence of E3 wholly within the interval between the 
occurrence of E1 and E2. E1 is the initiator, E2 is the detector and 
E3 is the terminator. The event is detected whenever the middle 
event is occurs and it is terminated whenever the right side event 
occurs. In the recent context, the initiator (i.e., E1) is replaced 
with a new instance of the initiator. 

PROCEDURE a_recent (ei, parameter_list) 

If ei is the left event /* 1.a */ 
Replace e1 in E1 /* 1.b */ 

If ei is the middle event /* 2.a */ 
If (E1 is not Empty and (t_e (e1) < t_s (e2))) /* 2.b */ 

Pass <e1, e2> to the parent with t_s (e2) and t_e (e2)
/* 2.c */ 

If ei is the right event /* 3.a */ 
If E1 is not empty /* 3.b */ 

If (t_e (e1) < t_s (e3)) /* 3.c */ 
Delete E1 /* 3.d */ 

Explanation of the algorithm: 

/* 1 */ If the event is from the left child (i.e., initiator of this 
operator) then replace e1 in E1

/* 2 */ If the event is from the middle child (i.e., event E2 in our 
case) and E1 is not empty, then check for the condition in /* 2.b 
*/. If the condition is satisfied then detect an “A” event. 
/* 3 */ If the event is from the right child (i.e., event E3 in our 
case) and E1 is not empty, then remove events from E1 that satisfy 
the condition specified in /* 3.c */   
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