A Temporal Foundation for Continuous Queries
over Data Streams

Jurgen Kramer and Bernhard Seeger

Department of Mathematics and Computer Science
Philipps-University Marburg, Germany

{kraemerj,seeger } @informatik.uni-marburg.de

ABSTRACT

Despite the surge of research in continuous stream process-
ing, there is still a semantical gap. In many cases, contin-
uous queries are formulated in an enriched SQL-like query
language without specifying the semantics of such a query
precisely enough. To overcome this problem, we present a
sound and well defined temporal operator algebra over data
streams ensuring deterministic query results of continuous
queries. In analogy to traditional database systems, we dis-
tinguish between a logical and physical operator algebra.
While our logical operator algebra specifies the semantics of
each operation in a descriptive way over temporal multisets,
the physical operator algebra provides adequate implemen-
tations in form of stream-to-stream operators. We show
that query plans built with either the logical or the physical
algebra produce snapshot-equivalent results. Moreover, we
introduce a rich set of transformation rules that forms a solid
foundation for query optimization, one of the major research
topics in the stream community. Examples throughout the
paper motivate the applicability of our approach and illus-
trate the steps from query formulation to query execution.

1. INTRODUCTION

Continuous queries over data streams have been emerged
as an important type of queries. Their need is motivated by
a variety of applications [4, 13, 8, 25, 10, 29] like network and
traffic monitoring. In order to express continuous queries,
different query languages have been proposed recently [1,
10, 29, 3, 13]. However, most of these languages lack of a
formal foundation since they are solely motivated by provid-
ing illustrative examples. This causes a semantic gap that
makes it hard or even impossible to compute a determin-
istic output of a continuous query. This observation was
the starting point of our work. We introduce a well-defined
and expressive operator algebra with precise semantics for
supporting continuous queries over data streams.

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

70

The most important task of a data stream management
system (DSMS) is to support continuous queries over a set of
heterogeneous data sources, mainly data streams. In anal-
ogy to traditional database management systems (DBMS),
we propose the following well-known steps from query for-
mulation to query execution:

1. A query has to be expressed in some adequate query
language, e.g. a declarative language with windowing
constructs such as CQL [2].

2. A logical query plan is built from this syntactical query
representation.

3. Based on algebraic transformation rules, the logical
query plan is optimized according to a specific cost
model.

4. The logical operations in the query plan are replaced
by physical operators.

5. The physical query plan is executed.

Due to the fact that in many stream applications, e.g. sen-
sor streams, the elements within a data stream are associ-
ated with a timestamp attribute, we decided to define and
implement a temporal operator algebra. In this paper, we
show that the above mentioned process from query formula-
tion to query execution is also feasible in the context of con-
tinuous queries over data streams. While this paper paves
the way for rule-based optimization of continuous queries,
there are many important optimization problems that may
benefit from our approach. Since many queries are long-
running, new cost models are required that take stream rates
into account [28]. Moreover, dynamic query re-optimization
at runtime [30] is required to adapt to changes in the sys-
tem load. Eventually, multi-query optimization [20, 19] is
of utmost importance to save system resources. All of these
optimization techniques employ rules for generating equiva-
lent query plans and therefore, they require as a prerequisite
a precise semantics of the continuous queries.

In this paper, we introduce a temporal semantics for con-
tinuous queries and provide a large set of optimization rules.
The main contributions of the paper are:

e We define a logical temporal operator algebra for data
streams that extends the well-known semantics of the
extended relational algebra [11]. This includes the de-
finition of a novel operator to express both, temporal

vijay
ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

vijay
70

sliding and fixed windows. This allows us to map con-
tinuous queries expressed in a SQL-like query language
to a logical operator plan.

e We outline the implementation concepts and advan-
tages of our physical operator algebra, which provides
efficient data-driven implementations of the logical op-
erators in form of non-blocking stream-to-stream op-
erators. Moreover, we employ and extend research re-
sults from the temporal database community [22, 23],
because stream elements handled in our physical op-
erator algebra are associated with time intervals that
model their validity independent from the granularity
of time. We demonstrate the beneficial usage of these
validity information to perform window queries. This
allows, for example, to unblock originally blocking op-
erators such as difference or aggregation. Furthermore,
we show that a physical operator produces a result that
is snapshot-equivalent to the result of its logical coun-
terpart. This proves the correctness of the physical
operators and allows to replace a logical operator by
its physical counterpart during the query translation
process.

e We introduce a rich set of transformation rules, which
consists of conventional as well as temporal transfor-
mation rules, forming an excellent foundation for alge-
braic query optimization. Since most of our operations
are compliant to the temporal ones proposed by [23],
we are able to transfer temporal research results to
stream processing. Moreover, we propose a novel kind
of physical optimization by introducing two new oper-
ators in the stream context, namely coalesce and split.
These operators do not have any impact on the seman-
tics, but allow to adaptively change the runtime behav-
ior of a DSMS with respect to stream rates, memory
consumption as well as the production of early results.

The rest of this paper is structured as follows. We start
with a motivating example as well as the basic definitions
and assumptions in Section 2. Then, we formalize the se-
mantics of our operations in Section 3 by defining the logical
operator algebra. The main concepts of the physical oper-
ator algebra are discussed in Section 4. Section 5 shows
that our approach represents a good foundation for query
optimization. Thereafter, we compare our approach with
related ones and conclude finally.

2. PRELIMINARIES

This section motivates our approach by discussing an ex-
ample query, which is first formulated declaratively and then
transformed into an equivalent logical operator plan. There-
after, we discuss the integration of external input streams
and their internal stream representation. Thereby, we intro-
duce underlying assumptions and give basic definitions.

2.1 A Running Example

At first, let us describe our example application scenario
that represents an abstraction from the Freeway Service Pa-
trol project. We consider a highway with five lanes where
loop detectors are installed at measuring stations. Each
measuring station consists of five detectors, one detector per

71

lane. Each time a vehicle passes such a sensor, a new record
is generated. This record contains the following informa-
tion: lane at which the vehicle passed the detector, the ve-
hicle’s speed in meters per second, its length in meters and
a timestamp. Hence, each detector generates a stream of
records. In our application, the primary goal is to measure
and analyze the traffic flow. In the following subsections,
we give a brief overview of how we model, express, and exe-
cute queries in this use-case using our semantics and stream
infrastructure [17].

2.2 Query Formulation

The focus of this paper is neither on the definition of an
adequate query language for continuous query processing
over data streams nor on the translation of language con-
structs to logical operator plans. Instead, our goal is to
establish a platform for possible stream query languages by
defining a sound and expressive operator algebra with a pre-
cise semantics. In order to illustrate the complete process
from query formulation to query execution as discussed in
the introduction, we exemplarily express a query in some
fictive SQL-like query language using the sliding window
expressions from CQL [2].

Example: A realistic query in our running example
might be: ”At which measuring stations of the highway has
the average speed of vehicles been below 15 m/s over the last
15 minutes.” This query may indicate traffic-congested sec-
tions of the highway. Let us assume that our query addresses
20 measuring stations. Then, the following text represents
the query expressed in our fictive query language:

SELECT sectionID

FROM (SELECT AVG(speed) AS avgSpeed, 1 AS sectionID

FROM HighwayStreaml [Range 15 minutes]
UNION ALL

UNION ALL
SELECT AVG(speed) AS avgSpeed, 20 AS sectionID
FROM HighwayStream20 [Range 15 minutes]

)
WHERE avgSpeed < 15;

2.3 Stream Types

In analogy to traditional DBMS, we distinguish between
the logical operator algebra and its implementation, the
physical operator algebra. We use the term logical streams
to denote streams processed in the logical operator algebra,
whereas physical streams refer to the ones processed in the
physical operator algebra. In addition to logical and phys-
ical streams as our internal stream types, we also consider
raw input streams as a third type of streams that model
those arriving at our DSMS.

2.3.1 Raw Input Streams

The representation of the elements from a raw input
stream depends on the specific application. We assume
that an arbitrary but fixed schema exists for each raw input
stream providing the necessary metadata information about
the stream elements. However, this schema is not restricted
to be relational, since our operators are parameterized by
arbitrary functions and predicates. Our approach is power-
ful enough to support XML streams.

vijay
71

Let Q be the universe, i.e. the set of all records of any
schema.

Definition 1. (Raw Input Stream) A raw input stream S”
is a possibly infinite sequence of records e €) sharing the
same schema. S" denotes the set of all raw input streams.

Note that this definition corresponds to the one of a list.
Thus, a raw input stream may contain duplicates, and the
ordering of its elements is significant.

Example: For simplicity reasons, we focus on the follow-
ing flat schema in our example:

HighwayStream (short lane, float speed, float length,
Timestamp timestamp);

A measuring station might generate the following raw input
stream:

(5; 18.28; 5.27; 03/11/1993 05:00:08)
(2; 21.33; 4.62; 03/11/1993 05:01:32)
(4; 19.69; 9.97; 03/11/1993 05:02:16)

2.3.2 Internal Streams

A physical stream is similar to a raw input stream, but
each record is associated with a time interval modeling its
validity. In general, this validity refers to application time
and not to system time. As long as such a stream element is
valid, it is processed by the operators of the physical oper-
ator algebra. An element expires when it has no impact on
future results anymore. Then, it can be removed from the
system. In a logical stream, we break up the time intervals
of a physical stream element into chronons that correspond
to time units at finest time granularity.

In the following, we formalize our notions and representa-
tions of logical and physical streams. In particular, we show
how a raw input stream is mapped to our internal represen-
tation and provide an equivalence relation for transforming
a physical stream into a logical stream and vice versa.

2.4 Basic Definitions

Let T = (T; <) be a discrete time domain as proposed by
[6]. Let I := {[ts,te) € T x T | ts < te} be the set of time
intervals.

Definition 2. (Physical Stream) A pair S = (M, <:,s.)
is a physical stream, if

e M is a potentially infinite sequence of tuples (e, [ts, tc)),
where e € Q and [ts, te) € I,

e all elements of M share the same schema,

o <;. . is the order relation over M such that tuples
(e, [ts, te)) are lexicographically ordered by timestamps,
i.e. primarily by ts and secondarily by t..

SP denotes the set of all physical streams.

The meaning of a stream tuple (e, [ts,te)) is that a record
e is valid during the half-open time interval [ts,te). The
schema of a physical stream is a combination of the record
schema and a temporal schema that consists of two time at-
tributes modeling the start and end timestamps.

72

Our approach relies on multisets for the following two rea-
sons. First, applications may exist where duplicates in a raw
input stream might arise. In our example, this would occur
if two vehicles with the same length and speed would pass
the same sensor within one second (assuming that the finest
time resolution of the detectors is in seconds). Consequently,
this would result in two identical records. Second, operators
like projection may produce duplicates during runtime, even
if all elements of the raw input stream are unique. In this
case, the term duplicates has a slightly different meaning
and we use value-equivalent stream elements instead.

Definition 3. (Value-equivalence) Let S? = (M, <y, :.) €
SP be a physical stream. We denote two elements (e, [ts, te)),
(& [ts,te)) € M as value-equivalent, iff e = é.

Note that ordering by <, :, enforces no order within real
duplicates, i.e., when the records as well as time intervals
of two elements are equal.

2.5 Transformation

Now we describe the transformation of a raw input stream

S™ € S” into a physical stream SP € SP. Especially when
sensors are involved, many applications produce a raw in-
put stream where the elements are already associated with a
timestamp attribute. Typically, these streams are implicitly
ordered by their timestamps. This holds for instance in our
running example. If streams arrive at a DSMS out of order
and uncoordinated with each other, e.g. due to latencies
introduced by a network, techniques like the ones presented
in [24] can be applied. It is also possible that a stream does
not provide any temporal information. In this case, a DSMS
can stamp the elements at their arrival by using an internal
system clock.
We then use the start timestamp of each raw input stream
element as the start timestamp of a physical stream tuple.
The corresponding end timestamp is set to infinity because
initially we assume each record to be valid forever. That
means, we map each element e in S” to a tuple (e, [ts,00)) in
S? where tg is the explicit timestamp retrieved from e. This
implies that the order of S” is preserved in S?. The schema
of S? extends the schema of S” by two additional timestamp
attributes modeling the start and end timestamps.

Example: Applying the transformation to the raw input
stream of our running example would produce the following
physical stream of tuples (record, time interval):

((5; 18.28; 5.27; 03/11/1993 05:00:08),
[03/11/1993 05:00:08, o0))

((2; 21.33; 4.62; 03/11/1993 05:01:32),
[03/11/1993 05:01:32, 00))

((4; 19.69; 9.97; 03/11/1993 05:02:16),
[03/11/1993 05:02:16, 00))

2.6 Window Operations

The usage of windows is a commonly applied technique in
stream processing mainly for the following reasons [13]:

e At any time instant often an excerpt of a stream is
only of interest.

e Stateful operators such as the difference would be
blocking in the case of unbounded input streams.

vijay
72

a) sliding window b) fixed window

Figure 1: Windowing constructs

e The memory requirements of stateful operators are
limited, e. g. in a join.

e In temporally ordered streams, newly arrived elements
are often more relevant than older ones.

In our logical as well as in our physical operator algebra, we
model windows by introducing a novel window operator w
that assigns a finite validity to each stream element. For a
given physical input stream, this is easily achieved by setting
the end timestamp of each incoming stream element, which
is initially set to infinity, to a certain point in time according
to the type and size of the window.

Let S? = (M, <, t.) € SP be a physical stream. Let
w € T be the window size. By using the window operator
ww : SP x T — SP, we are able to perform a variety of
continuous window queries involving the following types of
windows (see Figure 1):

e Sliding windows: In order to retrieve sliding win-
dow semantics, the window operator w,, sets the end
timestamp ¢, of each physical stream tuple (e, [ts, 00))
€ M to ts + w. This means that each element e is
valid for w time units starting from its corresponding
start timestamp ¢s.

o Fized windows: In the case of fixed windows [25],
we divide the time domain T in sections of fixed size
w € T. Hence, each section contains exactly w sub-
sequent points in time, where 0 stands for the earli-
est time instant. Thus, section ¢ starts at i - w where
1 € Np. Fixed window semantics can be obtained, if the
window operator w,, sets the end timestamp ¢. of each
physical stream tuple (e, [ts,00)) € M to the point in
time where the next section starts. Consequently, for
a given element (e, [ts,00)) € M, the window operator
determines the closest point in time t. = ¢ - w with
ts < te.

Note that it is sufficient for performing continuous window
queries to place a single window operator on each path from
a source to a sink in a query plan. These window operators
are typically located near the sources of a query plan.

Example: Applying a sliding window of 15 minutes to
the physical stream in our example would change the time
intervals as follows:

((5; 18.28; 5.27; 03/11/1993 05:00:08),
[03/11/1993 05:00:08, 03/11/1993 05:15:08))
((2; 21.33; 4.62; 03/11/1993 05:01:32),
[03/11/1993 05:01:32, 03/11/1993 05:16:32))
((4; 19.69; 9.97; 03/11/1993 05:02:16),

73

[03/11/1993 05:02:16, 03/11/1993 05:17:16))

At this point, we want to sketch the basic ideas of our
physical algebra approach with regard to windowing con-
structs: We have physical streams consisting of record /time-
interval pairs. The time intervals model the validity of each
record which in turn is set via our window operator. The
physical operators are aware of the time intervals and use
them effectively to guarantee non-blocking behavior as well
as limited memory requirements. Based on these physical
operators we are able to build query plans that perform con-
tinuous window queries over arbitrary data streams while
ensuring deterministic semantics.

Before we go into the details of the physical algebra in Sec-
tion 4, we will first start the discussion of the logical algebra
in the next section. The reason for introducing a logical
algebra is similar to the approach in a traditional DBMS.
The logical algebra abstracts from the physical implemen-
tation of the operators, while providing powerful algebraic
transformation rules to rearrange operators in a query plan.

3. LOGICAL OPERATOR ALGEBRA

This section formalizes the term logical stream and shows
how a logical stream is derived from its physical counterpart.
Then, the basic operators of our logical operator algebra are
introduced by extending the work on multisets [11] towards
a temporal semantics and windowing constructs.

3.1 Logical Streams

Definition 4. (Logical Stream) A logical stream S' is a
possibly infinite multiset of triples (e,t,n) composed of a
record e € (), a point in time t € T, and a multiplicity
n € N. All records e of a logical stream belong to the same
schema. Moreover, the following condition holds for a logical
stream S': V (e,t,n) € S*. B (¢,f,n) € St e=¢é A t =1
Let S' be the set of all logical streams.

The condition in the definition ensures that exactly one ele-
ment (e, t,n) exists in S ! for each record e valid at a point in
time ¢. To put it in other words: The projection on the first
two attributes of each stream triple in the set representation
of a logical stream is unique.

A stream triple (e, t,n) has the following semantics: An ele-
ment e is valid at time instant ¢ and occurs exactly n times.
Since we treat a logical stream as a multiset, we additionally
store the multiplicity of each record in analogy to [11]. This
logical point of view implies that all records, their validity as
well as their multiplicity are known in advance. We do not
take the order in a logical stream into account. Therefore,
it is only relevant in the logical model, when a record e is
valid and how often it occurs at a certain point in time ¢.
The schema of a logical stream is composed of the record
schema and two additional attributes, namely a timestamp
and the multiplicity.

3.1.1 Transformation: Physical to Logical Stream
Let S? = (M, <t,+.) € S? be a physical stream. We define
the transformation 7 : p(Q xI) — S' from a physical stream
S? into its logical counterpart as follows:
T(M) :={(e,t,n) € A x T x N |
n={(e[ts,te)) € M | L € [ts, te)}[}

vijay
73

For each tuple (e, [ts,tc)) € M, we split the associated time
interval into points of time at finest time granularity. Thus,
we get all instants in time when the record e is valid. Since
we allow value-equivalent elements in a physical stream, we
have to add the multiplicity n of a record e at a certain point
in time ¢.

3.2 Basic Operators

In our logical operator algebra, we introduce the following
operations as basic ones since they are minimal and orthogo-
nal [23]: filter(o), map (u), Cartesian product (x), duplicate
elimination (4), difference (—), group (), aggregation («),
union (U) and window (w).

Appendix A reports the definition of more complex opera-
tions derived from the basic ones, e. g. a join.

3.2.1 Filter

Let P be the set of all well-defined filter predicates. A
filter o : S' x P — S' returns all elements of a logical stream
S' ¢ S' that fulfill the predicate p € P with p: (2 x T) —
{true, false}. We follow the notation of the extended rela-
tional algebra and express the argument predicate as sub-
script. Note that our definition also allows temporal filter-
ing.

crp(Sl) = {(e,t,n) € S | ple,t)} (1)

The schema of the logical stream S' remains unchanged, if
a filter operation is performed.

3.2.2 Map

Let Fyap be the set of all mapping functions. The map
operator py : St x Frap — S' applies a mapping function f
given as subscript on the record of each stream element in
a logical stream S' € S'. Let f € Fpuap with f : Q — Q.
Note, that f can also express an n-ary function due to the
definition of €2 as a universe of all elements.

pr(SY) :={(e,t,n) | n= i}
{(e,t,n)eSt|f(&)=e}

(2)

This definition is more powerful than the projection operator
of the relational algebra because the mapping function may
generate new attributes or even new records. Thus, the
schema of the resulting logical stream essentially depends
on the mapping function. Note, that the mapping function
does not change the timestamp attribute of an element.

3.2.3 Cartesian Product

The Cartesian product x : S' x §' — §' of two logical
streams S}, S5 € S is defined by:

X(SLS&) = {(0(61762)7157”1-712) | 3

3 (e1,t,m1) € St A 3 (ea,t,n2) € S} (3)
For each pair of elements from S} and S} valid at the same
point in time ¢, a new result is created as concatenation of
both records by the auxiliary function o : Q x Q2 — Q.
The multiplicity of the result is determined by the product of
the multiplicities of the two qualifying elements. The result-
ing schema of the logical output stream is a concatenation
of both record schemas, the timestamp, and the multiplicity
attribute.

74

3.2.4 Duplicate Elimination

The duplicate elimination is an unary operation 8 : S —
S' that produces for a given logical stream S' € S' a set
of elements. This implies that each element in S' occurs
exactly once.

5(8") = {(e,t,1) | Im. (e,t,m) € 5} (4)

The definition intuitively shows how duplicate elimination
works, because the multiplicity for each element in S' is
simply set to 1. The schema of a logical stream after a
duplicate elimination corresponds to that of the logical input
stream.

3.2.5 Difference

Applying a difference operation — : S x S' — S! enforces
that all elements of the second logical stream S5 € S' are
subtracted from the first logical stream SY € S' in terms
of their multiplicities. Thus, the schema of the difference
matches that of S!. Obviously, a difference operation can
only be performed if the schemas of both input streams are
compliant.

—(8%,8%) :={(e;t,n) | I na. (e,t,m1) € St
A3 na. (e,t,n2) €S A n=n1Sna A n>0)
V ((e,t,n) € St A B na. (e,t,n2) € S5}
niy —n ,ifn1>n2
0 , otherwise

()

where n1 © ng 1=
This definition distinguishes between two cases: The first
one assumes that an element of S! exists that is value-
equivalent to one of S% and both elements are valid at the
same point in time ¢. Then, the resulting multiplicity is
the subtraction of the corresponding multiplicities. An ele-
ment only appears in the output if its resulting multiplicity
is greater than 0. In the second case, no element of S5
matches with an element of Si. In this case the element is
retained.

At the end of this definition, we want to highlight one
major benefit of our descriptive logical algebra approach,
namely that the operator semantics can be expressed very
compact and intuitive. For instance, the difference is simply
reduced to the difference in multiplicities, whereas related
approaches using the A-calculus [23] hide this property and
turn out to be more complicated.

3.2.6 Group

Let Fyroup be the set of all grouping functions. The group
operation
v St X Fyroup — (S' x ... x S
k times

produces a tuple of logical streams. It assigns a group to
each element of a logical stream S € S' based on a grouping
function f € Fgroup with f : QxT — {1,...,k}. Each group

S! represents a new logical stream for j € {1,...,k} having
the same schema as S'.
77(S') = (S1,..., Sk)

where St := {(e,t,n) € S" | f(e,t) = j}. (6)

The group operation solely assigns elements to groups with-
out modifying them. The j-th group contains all elements

vijay
74

for which the grouping function f returns j. This definition
differs from its relational counterpart which includes an ad-
ditional aggregation step.

We also define a projection operator, which is a map oper-
ator

7 (S'x...xS)xN — §
~—_——
k times

that is typically used in combination with the group opera-
tion. For a given index j, m returns the j-th logical output
stream (group): m;(S%,...,Sh) :== S

3.2.7 Aggregation

Let Fagy be the set of all well-defined aggregation func-
tions. The aggregation operation ay : S' xFqgy — S invokes
an aggregation function f € Fog, with f : S' — Q on all ele-
ments of a logical stream S’ € S' that are valid at the same
point in time ¢:

ap(8') = {(agg, t,1) | agg = f({(e,;t,n) € SN} (7)

The aggregation eliminates duplicates because an aggregate
is computed on all elements valid at the same point in time.
Thus, the aggregation operator returns a set. The schema of
a logical stream after an aggregation obviously depends on
the aggregation function, but only the record schema has to
be adopted, while the timestamp and multiplicity attributes
of the input schema remain unchanged.

Contrary to DBMS, our definitions of group and aggrega-
tion additionally offer to use both operations independently
in query plans. For example, it is possible to apply an ag-
gregation to a stream without grouping.

3.2.8 Union

The union operation U; : S x ' — S! merges two logical
data streams. Its result contains all elements of S! and
Sh e st

U4 (S, %) := {(e,t,n1 + n2) |
. . 1
m:{ g 3 (e,t,7) € 5; for i € {1,2}}

, otherwise

If an element only occurs in a single input stream, it is di-
rectly added to the result. If the same record is contained
in both input streams and valid at the same point in time ¢,
both instances are combined to a single element by summing
up their multiplicities.

Note, that a union can only be performed if both logical
input streams are schema-compliant. Then, the resulting
schema is taken from the more general input schema.

3.2.9 Window

The window operator w,, : St x T — S! restricts the va-

lidity of each record according to the window type and size
w € T. We assume as a precondition of the input stream
that each record has an infinite validity as already mentioned
in Section 2.6.
Let S' be a logical stream whose records have an infinite
validity. Therefore, the multiplicity of a record in S' is
monotonically increasing over time. We differ between the
following two types of window operations:

(8)

1. Sliding Window: Informally, a sliding window wy, sets
the validity of a record, which is valid for the first time

75

at a starting point ts € T', to w time units, i.e., the
element is valid from ts to ts + w — 1. However, the
multiplicity of a record may change over time. An in-
crease in the multiplicity at a certain point in time
indicates that further value-equivalent elements start
to be valid at this time instant. Consequently, we also
have to set the validity of these value-equivalent ele-
ments correctly by assigning a validity of w time units
relative to their starting points.

Wi (SY = {(e,t,n) | 3 A (e,t,7) € S
A3 7. (et —w,R) €S' A n=n—n)
vV (@ (et —w,n) €S A n="n)}

9)

A sliding window is expressed by setting the multi-
plicity n of a record e valid at a time instant ¢ to the
difference of the multiplicities 7 and n. Here, n and 7
refer to the multiplicity of the record e at time ¢ and
t—w, respectively. If no record e exists at time instant
t—win S, n is set to A.

2. Fized Window: In the case of a fixed window wy,, the
time domain T is divided into sections of size w € T'.
At first, we determine all starting points ts € T of
a record. Then, we determine the start of the next
section ¢ - w which is larger but temporally closest to
ts. The validity of each record is set to the start of the
next section.

wh(SY = {(e,;t,n) | 3 . (e,t,7) € S
A 3ieNg. (i (e>i=cow>t))
A3 7. (e(i-w) —1,7) €S" A n=n—n)
V(@ (e, G-w)—1,7) €S A n=n)}

(10)

In contrast to the definition of the sliding window, we

consider the multiplicity at time instant (i-w)—1 which

corresponds to the multiplicity of the record e at the

last point in time belonging to the previous section.

The parameter i is chosen such that the start of the

section 7 -w is the timely closest start of a section with
respect to t.

The schema of the resulting logical stream after a window
operator is identical to that of the logical input stream.

3.3 Logical Query Plans

A query formulated in some query language is generally
translated into a semantically equivalent algebraic expres-
sion. Such an algebraic expression consists of a composition
of logical operators. For our logical operator algebra this can
be achieved similarly to traditional databases where SQL is
translated into a logical operator plan in the extended rela-
tional algebra.

Example: The left drawing in Figure 2 depicts the logical
query plan that results from mapping the query presented in
Section 2.2 to the operators in our logical operator algebra.
At first, the validity of the stream elements is set to 15
minutes, then a map to the attributes speed and sectionID
is performed. Afterwards, the average speed is computed
and all streams are merged, followed by a filter operation
that selects all stream elements with an average speed lower
than 15 m/s. Finally, a projection delivers the IDs of the
qualifying sections.

vijay
75

© - ©@
@ - @
@ - ®
OREO
@,

B

1 S20

b) Optimized query plan

a) Initial query plan

Figure 2: Query plans composed of our operations

4. PHYSICAL OPERATOR ALGEBRA

From an implementation point of view, it is not sufficient
to process logical streams directly because this would cause a
significant computational overhead. Since a physical stream
has a much compacter representation of the same temporal
information, we decided to implement the physical opera-
tor algebra in PIPES, our infrastructure for data stream
processing.

To the best of our knowledge, there is no other approach
to stream processing which uses time intervals to express
the validity of stream elements. There are other approaches
[3, 14] that are based on a quite similar temporal semantics.
But they substantially differ in their implementation as they
employ so-called positive-negative elements. This however
has certain drawbacks as outlined in the following. When
positive-negative elements are used, a window operator is re-
quired that explicitly controls element expiration. If a data
source emits a new element, the window operator generates
a positive element by decorating the new element with a
4+’ which is sent through the query plan afterwards. The
window operator stores all incoming elements and creates a
negative element if the validity of an element in its buffer
expires according to the window. The negative element,
i. e. the element decorated with a ’-’, is pushed through the
query plan and processed. This implies that operators have
to distinguish between positive and negative incoming ele-
ments. Furthermore, this approach doubles the number of
elements being processed, since for each stream element in
a raw input stream, two stream elements in a physical input
stream are generated. These deficiencies are entirely avoided
in our interval-based approach.

In the following, we describe how we transform a logical
stream into a physical stream. This makes our transforma-
tions complete as a logical stream can be transformed into a
physical one and vice versa (see Section 3.1.1). This fact is
important for query optimization because it offers a seamless
switching between logical and physical query plans.

76

4.1 Transformation: Logical to Physical Stream

Let S' € S! be a logical stream. We transform a logical
stream into a physical stream by two steps:

1. We introduce time intervals by mapping each logical
stream element (e, ,n) € S' to a triple (e, [t,t+1),n) €
Q0 x I x N. This does not effect our semantics at all,
since the time interval [¢,¢ + 1) solely covers a single
point in time, namely t. We denote this operation by
1:S' = p(Q xIxN).

2. Then, we merge value-equivalent elements with adja-
cent time intervals in order to build larger time in-
tervals. This operation termed Coalesce is commonly
used in temporal databases [22].

Let M, M’ be in p(Q x I x N). We define a relation
M > M’ that indicates if M can be coalesced to M’
with:
MM & (3m:=(elts,te),n) € M,
= (& [ts,te),n) € M. e = &
Ate=1ts A (AM" € p(Q xTxN).
M" = (M — {m,m}) U{(e,[ts,), 1)}
AM'>M)) v M=M

where M — {m,m}:= (M \ {m,m}) U

({(e, [ts,te),n — 1), (&, [ts, te),n — 1)} \ Q x T x {0}).

When coalesce merges two triples in M, these elements
are removed from M and the new triple containing the
merged time intervals is inserted. Furthermore, the
multiplicities have to be adopted.

This definition of coalescing is non-deterministic if
M contains several elements whose start timestamp
matches with the end timestamp of an other value-
equivalent element. Therefore, coalescing ¢ : (2 xIx
N) — p(Q x I x N) produces a set.

C(M) = {M' € p(AxIxN) | MM A
(Vv M" € p(QxIxN). (M' £ M") v (M =M"))}
(11)

For a given logical stream S, we obtain a corresponding
physical stream S? € SP by ordering the elements of a mul-
tiset M € ¢(¢(S")) according to <, ;, while listing the dupli-
cates as separate stream elements. As we will see in Section
5.2, our notion of stream equivalence is independent from
the set chosen from ¢(¢(S")).

The schema of the physical stream can be derived from the
logical stream by keeping the record schema and decorating
it with the common temporal schema of a physical stream,
namely the start and end timestamp attributes.

4.2 Operator Implementation

For each operation of the logical algebra, PIPES provides
at least one implementation based on physical streams, i.e.,
a physical operator takes one or multiple physical streams
as input and produces one or multiple physical streams as
output. These physical stream-to-stream operators are im-
plemented in a data-driven manner assuming that stream
elements are pushed through the query plan. This implies
that a physical operator has to process the incoming ele-
ments directly without choosing the input from which the
next element should be consumed.

vijay
76

Another important requirement for the implementation of
physical operators over data streams is that these operators
must be non-blocking. This is due to the potentially infinite
length of the input streams and the request for early re-
sults. Our physical operator algebra meets this requirement
by employing time intervals and introducing the window op-
erator. This technique unblocks blocking operators, e. g. the
difference, while guaranteeing deterministic semantics.

4.2.1 Operator Classification

The operators of our physical operator algebra can be
classified in two categories:

e Stateless operators: A stateless operator is able to
produce its results immediately without accessing any
kind of internal data structure. Typical stateless oper-
ators are: filter, map, group and window. For instance,
the filter operation evaluates a user-defined predicate
for each incoming element. If the filter predicate is sat-
isfied, the element is appended to the output stream,
otherwise it is dropped. Another example is the group
operation that invokes a grouping function on each in-
coming element. The result determines the physical
output stream to which the element is appended to.
The implementation of stateless operators is straight-
forward and fulfills the requirements of data-driven
query processing.

e Stateful operators: A stateful operator requires some

kind of internal data structure for maintaining its
state. Such a data structure has to support operations
for efficient insertion, retrieval and reorganization. We
identify the following physical operators in our algebra
as stateful: Cartesian product/join, duplicate elimina-
tion, difference, union and aggregation.
The implementation of a stateful operator has to guar-
antee the ordering of physical streams (see Section
4.2.2). Moreover, it should be non-blocking while lim-
iting memory usage. Most importantly, the imple-
mentation should produce deterministic results (see
Section 4.2.3).

4.2.2 Ordering Invariant

A physical operator has to ensure that each of its phys-
ical output streams is ordered by < . (see Section 2.4),
i.e., the stream elements in an output stream have to be
in an ascending order, lexicographically by their start and
end timestamps. This invariant of our implementation is
assumed to hold for all input as well as output streams of a
physical operator. This may cause delays in the result pro-
duction of an operator. In a union for instance, the results
have to be ordered, e.g. by maintaining an internal heap.
This also explains why we consider the union operation as
stateful.

This order invariant seems to be very expensive to sat-
isfy. However, it is commonly assumed in stream processing
that raw input streams arrive temporally ordered [4, 13] or
mechanisms exist that ensure such a temporal ordering [24].
Moreover, our efficient algorithms for the reorganization of
the internal data structures of stateful operators rely on this
ordering invariant.

s

4.2.3 Reorganization

Local reorganizations are necessary to restrict the mem-
ory usage of stateful physical operators. Such reorganiza-
tions are input-triggered, i. e., each time a physical operator
processes an incoming element, a reorganization step is per-
formed. In this reorganization step, all expired elements are
removed from the internal data structures.

Let ST,...,S% € S be physical streams, n € N. For
an arbitrary stateful operator with physical input streams
SY,...,SP, the reorganization is performed as follows: We
store the start timestamps ts; for j € {1,...,n} of the last
incoming element of each physical input stream S;’. Then,
all elements (e, [ts,tc)) can be safely removed from the in-
ternal data structures whose end timestamp t. is smaller
than min{ts; | j € {1,...,n}} or equal. This condition
ensures that only expired elements are removed from inter-
nal data structures. The correctness results from the or-
dering invariant because if a new element (¢, [ts,%.)) of an
input stream SJP arrives, all other elements of this stream
processed before must have had a start timestamp that is
equal or smaller than ts. Furthermore, a result of a stateful
operator is only produced when the time intervals of the in-
volved elements overlap. For example, in a binary join two
stream elements (e, [ts, te)) € ST and (€, [ts,1.)) € S§ qualify
if the join predicate holds for their records, e and €, and the
time intervals, [ts,t.) and [fs,fe) overlap. The result con-
tains the concatenation of the records and the intersection
of the time intervals (see Definition 3.2.3). Hence, the reor-
ganization condition specified above solely allows to remove
an element from an internal data structure if it is guaran-
teed that there will be no future stream elements whose time
interval will overlap with this element.

From this top-level point of view, it seems to be suffi-

cient to require that a physical stream is in ascending order
by the start timestamps of its elements. This is because
the reorganization condition does not make use of the sec-
ondary order by end timestamps. However, we maintain
the lexicographical order of physical streams since it gen-
erally leads to early results. Our stateful operators addi-
tionally link the elements in their internal data structures
according to the lexicographical order <;, :,. This helps to
efficiently run the reorganization phase by simply following
these links. The reorganization phase can be stopped if a
linked element is accessed whose end timestamp is larger
than min{ts, | j € {1,...,n}}. Keeping this implemen-
tation detail in mind, the secondary order helps to purge
expired elements earlier.
We made an interesting observation during our implemen-
tation work. When operations get unblocked by using win-
dows, many stateful physical operators produce their results
during the reorganization phase. Hence, expired elements
are not only removed from the internal data structures but
they are also appended to the physical output stream.

Input-triggered reorganization is only feasible if each phys-
ical input stream continuously delivers elements, which is a
general assumption in stream processing. However, if one in-
put stream totally fails, the minimum of all start timestamps
min{ts;, | j € {1,...,n}} cannot be computed and, conse-
quently, no elements can be removed from internal data
structures. This kind of blocking has to be avoided, e. g. by

vijay
77

introducing appropriate timeouts [24]. A similar problem
arises if the delays between subsequent elements within a
physical stream are relatively long. In this case, the re-
organization phase is triggered seldom, which may lead to
an increased memory usage of the internal data structures.
Hence, there is a latency-memory tradeoff for stateful oper-
ators.

4.2.4 Aggregation

We want to sketch the implementation of the aggrega-

tion as a non-trivial stateful operator. Let S = (M, <¢, +.)
be the physical input stream of the aggregation operator.
Since we implemented an incremental aggregation [15], we
need a binary aggregation function f: QU {L} x M — Q
that is applied successively to the current aggregation value
5 € QU{L} and an incoming element s = (e, [ts,tc)) € M
(see Figure 3). L is solely used to initialize the aggregate.
We first probe the internal data structure for elements whose
time interval overlaps with [ts,t.). For the case of a partial
overlap we split the element into maximum subintervals with
either no or full overlap, while keeping the aggregation value
for each of them. Then, we update the aggregation value of
all overlapping elements § by invoking f on (8, s). For each
maximum subinterval r of [ts,te) for which no intersection
is found in the internal data structure, we finally insert an
element consisting of an initialized aggregation value f(L,s)
and the time interval r.
Thereafter, we perform the reorganization phase by remov-
ing all elements from the internal data structure whose end
timestamp is smaller than ¢s or equal. Those can efficiently
be determined by additionally linking the elements in the
internal data structure according to <, , which corre-
sponds to an ordering by end timestamps in this case. As
each expired element contains the final aggregation value
for the associated time interval, we append it to the physi-
cal output stream. Consequently, the aggregation operator
produces its results during the reorganization phase.

Example: Let us consider our running example, where

we compute the average speeds of vehicles. The physical
query plan is obtained by replacing all logical operations in
the logical query plan (see Section 3.3) by their correspond-
ing physical counterparts.
The listing below shows the elements within the status of
the aggregation operator stopped before performing the re-
organization phase triggered by the third incoming element
for the example given in Section 2.6.

((18.280), [03/11/1993 05:00:08, 03/11/1993 05:01:32))
((19.805), [03/11/1993 05:01:32, 03/11/1993 05:02:16))
((19.766), [03/11/1993 05:02:16, 03/11/1993 05:15:08))
((20.510), [03/11/1993 05:15:08, 03/11/1993 05:16:32))
((19.690), [03/11/1993 05:16:32, 03/11/1993 05:17:16))

Because the start timestamp 05:02:16 of the third element
is greater than the end timestamp 05:01:32, the reorganiza-
tion phase produces the first element of our listing as result
and removes it from the status.

4.2.5 Coalesce and Split

The coalesce operator merges value-equivalent stream ele-
ments with adjacent time intervals, while the split operator
inverts this operation by splitting a stream element into sev-
eral value-equivalent elements with adjacent time intervals.

78

incoming element reorganization

)

©
internal

a structure
internal
ta structure

O

v dat:
4

Vda
4

1 2 3 t 5 Y 2 t t,

a) before aggregation step b) after aggregation step

5

Figure 3: Aggregation operator

Note that both operations have no impact on the semantics
of a query, since the records are valid at the same points in
time and their multiplicities remain unchanged.

However, these operators can effectively be used to con-
trol stream rates as well as element expiration adaptively.
The latter has direct impact on the memory usage of inter-
nal data structures of stateful operators (see Section 4.2.3).
Furthermore, earlier element expiration leads to earlier re-
sults because most stateful operators produce their results
during the reorganization phase. Consequently, the coalesce
and split operators can be used for physical optimization.
Coalesce generally decreases stream rates at the expense of
a delayed element expiration in internal data structures. In
contrast, split usually leads to earlier results and a reduced
memory consumption in internal data structures at the ex-
pense of higher stream rates, which may cause an increase in
the size of intermediate buffers. Hence, coalesce and split of-
fer a way to adaptively control the tradeoff between schedul-
ing costs and memory usage.

These operators are novel in the stream context and their
effect on the runtime behavior of a DSMS will be investi-
gated more detailed in our ongoing work.

4.3 PIPES

PIPES (Public Infrastructure for Processing and Explor-
ing Streams) [17] is an infrastructure with fundamental
building blocks that allow the construction of a fully func-
tional DSMS tailored to a specific application scenario. The
core of PIPES is a powerful and generic physical operator
algebra whose semantics and implementation concepts have
been presented in this paper. In addition, PIPES provides
the necessary runtime components such as the scheduler,
memory manager, and query optimizer to execute physical
operator plans.

Since PIPES seamlessly extends the Java library XXL [5]
towards continuous data-driven query processing over au-
tonomous data sources, it has full access to XXL’s query
processing frameworks such as the extended relational al-
gebra, connectivity to remote data sources or index struc-
tures. Therefore, PIPES inherently offers to run queries over
streams and relations [3].

5. QUERY OPTIMIZATION

The foundation for a logical as well as physical query opti-
mization is a precisely defined semantics. Therefore, we for-
mally presented a sound logical operator algebra over data
streams (see Section 3) that is expressive enough to support
state-of-the-art continuous query processing.

vijay
78

t
S,..S, —t—+ R,.R
OPT Op
T
’ , t ’ ’
S,..S, ——— R,..R,

Figure 4: Snapshot reducibility

It remains to provide an equivalence relation that defines
when two logical query plans are equivalent. Based on this
definition, we also derive an equivalence relation for physical
streams in this section.

5.1 Snapshot-Reducibility

In order to define snapshot-reducibility, we first introduce
the timeslice operation that generates snapshots from a log-
ical stream.

Definition 5. (Timeslice) The timeslice operator is a map
T : (S' x T) — p(Q x N) given by
(8" :={(e,n) € A x N | (e,t,n) € §'} (12)
For a given logical stream S' and a specified point in time
t, the timeslice operation returns a non-temporal multiset
of all records in S' that are valid at time instant t. Note
that the argument timestamp is given as subscript. The
corresponding schema results from a projection to the record
schema and the multiplicity attribute.

Definition 6. (Snapshot-Reducibility) A logical stream op-
erator opr is snapshot-reducible to its non-temporal coun-
terpart op over multisets, if for any point in time ¢t € T" and
for all logical input streams S%,..., S, € S', the snapshot
at t of the results of applying opr to S%,...,S% is equal
to the results of applying op to the snapshot Ri,..., R, of
St 5L at time t.

For example, the duplicate elimination over logical streams
is snapshot-reducible to the duplicate elimination over mul-
tisets. Figure 4 gives a commuting diagram that illustrates
snapshot-reducibility.

Snapshot-reducibility is a well-known concept from the
temporal database community [22, 7] and guarantees that
the semantics of a non-temporal operator is preserved in
its more complex, temporal counterpart. If we assume the
record schema of a logical or physical stream to be relational,
we can show via snapshot-reducibility that our operators
extend the well-understood semantics of the extended rela-
tional algebra. In addition, we introduced novel temporal
operators, like the window operator, in order to provide an
adequate basis for temporal continuous query formulation
and execution over data streams.

Applying snapshot-reducibility, we can also prove that
our semantics covers the relational approach proposed by
Arasu et al. [3], while maintaining the advantages of our
implementation described in Section 4.

79

5.2 Stream Equivalences

Based on the timeslice operator, we define the following
equivalence relations for schema-compliant logical and phys-
ical streams, respectively:

Definition 7. (Logical stream equivalence) We define two
logical streams St, S € S! to be equal iff all snapshots of
them are equal.

St

= ShiaViteT m(Sh) = 7(Sh) (13)

Definition 8. (Physical stream equivalence) Let ST = (M,
<iot.), SY = (M2, <i,:.) €SP be two physical streams. We
denote two physical streams as snapshot-equivalent iff their

corresponding logical streams are equal.

SP SY e (M) 7(M>)

“

= (14)
Note that snapshot-equivalence over physical streams ab-
stracts from their ordering.

We denote two query plans over the same set of input
streams as equivalent if each output stream of the first query
plan is stream-equivalent and schema-compliant to exactly
one output stream of the second query plan, and vice versa.

5.3 Transformation Rules

Based on the previous equivalence relations that rely
on snapshot equivalence over multisets, we can derive a
plethora of transformation rules to optimize algebraic ex-
pression, i.e. logical query plans. Due to the fact that we
defined most of our operations, except group and window,
in compliance with [23], the huge set of conventional and
temporal transformation rules for snapshot-equivalence over
multisets listed in [23] also holds in the stream context. This
includes common transformation rules such as join reorder-
ing or predicate pushdown, and additional temporal trans-
formation rules for duplicate elimination, coalescing etc.

Example: Figure 2 (b) depicts a possible algebraic opti-
mization of the query plan in our example query by pushing
the selection down the union operator. There, we apply a
generalized variant of the following transformation rule for
two logical streams S}, S%:

C’p(Si Ut Sé) = Up(Si) Ut Up(Sé)

The physical union operation is a stateful operator that
internally reorders the incoming elements to ensure the or-
dering invariant of the physical output stream. Therefore,
this transformation rule generally reduces the memory us-
age of the union operator.

The transformation rules for aggregation specified in [23]
are only applicable if we combine our group, aggregation
and union operator such that we compute the aggregate for
each group and merge the results of the aggregation op-
erators. However, we decided to split the group and ag-
gregation operations because in the context of continuous
stream processing, a group operation that splits an input
stream into multiple output streams (see Section 3.2.6) may
be beneficial for subquery sharing.

These transformation rules are only a first step in static
and dynamic query optimization over data streams and re-
lations. Due to continuous queries, DSMS generally run a

vijay
79

large number of queries in parallel. So, it is not sufficient to
apply transformation rules solely for a single query plan. In-
stead, the complete query graph should be optimized. This
includes the sharing of preferably large subqueries as well
as the need for a dynamic re-optimization of subgraphs dur-
ing runtime. Currently, we are investigating to what extent
research results from multi-query optimization [20, 19, 18]
can be applied to optimize multiple continuous queries over
streams.

5.3.1 Window Transformation Rules

The window operator is typically placed near the sources
in a query plan because it sets the validity of the stream
elements (see Section 2.6). Stateful operators (see Section
4.2.1) use the end timestamps of stream elements for reor-
ganization. For that reason, the window operator has to be
placed previous to the first stateful operator in a query plan
which means that it is not commutative with stateful opera-
tors. However, we can derive some transformation rules for
stateless operations. A stateless operator is commutative
with the window operator, if it does not consider the end
timestamp. Then, the following transformation rules hold
for a logical stream S' € S

Up(ww(sl)) = Ww(Up(Sl))
pr(ww(SY) = wulur(Sh)
Y (wn(S)) = (Wulr(1£(5), 1)), ..., wu(m(v(S"), k)))

The group operation (see Section 3.2.6) produces a tuple of k
logical streams since it splits the logical input stream S' into
k groups according to a user-defined function. Therefore,
the window operator w,, has to be applied to each logical
output stream.

6. RELATED WORK

Our work is closely related to multiset (bag) semantics
and algebraic equivalences for the relational algebra [11,
12] as well as their temporal extensions [22, 23]. It basi-
cally transfers the approach of [23] to continuous queries
over data streams. Thereby, we abstract from relational
schemes, introduce windowing constructs and provide ad-
equate non-blocking operator implementations. This leads
to a snapshot-equivalent output to the operations presented
in [23] and therefore, a plethora of transformation rules is
applicable for optimizing continuous queries over streams.
Whereas Slivinskas et al. specify their operations from an
implementation point of view with the A-calculus, we present
a suitable temporal logical operator algebra as well, which
defines the semantics of the operations in a more intuitive
way while abstracting from a particular implementation.
In the context of continuous queries over streams, there
has also been considerable research. Tribeca [25] intro-
duces fixed and moving window queries over single network
streams. TelegraphCQ [9] relies on a declarative language to
express a sequence of windows over a stream, whereas Gigas-
cope [10] and [27] try to unblock operations by using stream
constraints instead of windows. Aurora [8, 1] builds a query
graph of stream operators parameterized by functions and
predicates while abstracting from a certain query language,
which is similar to our approach. Contrary to PIPES, the
operations in Aurora are defined in a procedural manner and

80

allow out-of-order elements in streams as well as certain ac-
tions which may cause a nondeterministic semantics due to
scheduling dependencies. The Tapestry system [26] trans-
forms a continuous query into an incremental query that
is run periodically. Tapestry ensures snapshot-reducibility
but does not support any kind of window queries. [2, 3]
propose an abstract semantics for a concrete query language
over streams and relations supporting only sliding windows.
From a semantical point of view, our approach is at least as
expressive as [2] due to snapshot-reducibility, whereas our
implementation significantly benefits from our stream-to-
stream operators incorporating time intervals. This avoids
the drawback of higher stream rates that arise due to send-
ing positive and negative tuples through a query plan, in
order to incrementally maintain the internal relations in the
STREAM system correctly. [14] also prefer the positive-
negative tuple approach and focus on particular operator
implementations.

In a broader context, our approach is related to sequence
databases [21] since raw input streams are a temporally
ordered sequence of records. Note that the semantics of
sequence languages includes one-time, but not continuous
queries. The chronicle data model [16] provides operators
over relations and chronicles, which can be considered as a
raw input stream, but focuses on the space complexity of an
incremental maintenance of materialized views over chron-
icles. It does not include continuous queries or aspects of
data-driven processing. We also refer the interested reader
to [3, 13] for a broader overview on data stream processing.

7. CONCLUSIONS

Due to lack of a formal specification of the semantics of
continuous queries over data streams, we first proposed a
sound temporal logical operator algebra by exploiting and
extending the well-known semantics of the extended rela-
tional algebra as well as existing work in temporal data-
bases. Second, we described the main implementation issues
of our physical operator algebra that relies on efficient, non-
blocking, data-driven, stream-to-stream implementations of
the logical operations. To the best of our knowledge this
approach is unique as it assigns stream elements with time
intervals modeling their validity independent from the gran-
ularity of time. Due to snapshot-reducibility our approach is
logically compliant to related approaches [3], while it does
not suffer from higher stream rates arising from positive-
negative elements used in related approaches to indicate el-
ement expiration. We explained why the physical operations
produce sound results in terms of a snapshot-equivalent out-
put to the logical operations. We further showed how to
effectively reorganize stateful operators based on the time
intervals of incoming elements and the ordering invariant
assumed for streams. Third, we derived appropriate stream
equivalences based on snapshot-multiset equivalence which
allows us to apply most conventional as well as temporal
transformation rules. To support sliding and fixed window
queries, we furthermore introduced a novel window opera-
tor by defining its semantics, describing its implementation
and extending the set of transformation rules. Moreover,
we motivated a novel kind of physical optimization in the
stream context by proposing two physical operators, coa-
lesce and split, which can effectively be used to adaptively

vijay
80

influence the runtime behavior of a DSMS with regard to
stream rates, memory consumption as well as early results.
Consequently, our work forms a solid foundation for query
formulation and optimization in continuous query processing
over data streams, while it relies on the common, well-known
steps from query formulation to query execution established
in DBMS.

We already proved the feasibility of our approach during
the development of PIPES [17], our infrastructure for con-
tinuous query processing over heterogeneous data sources,
where the temporal semantics proposed in this paper was
implemented.

Acknowledgments

This project has been supported by the German Research
Society (DFG) under grant no. SE 553/4-1. In addition, we
are grateful to Michael Cammert and Christoph Heinz for
the helpful discussions on the semantics of stream opera-
tions.

8. REFERENCES

[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. B.
Zdonik. Aurora: A New Model and Architecture for Data
Stream Management. VLDB Journal, 12(2):120-139, 2003.

[2] A. Arasu, S. Babu, and J. Widom. An Abstract Semantics
and Concrete Language for Continuous Queries over
Streams and Relations. In Proc. of the Intl. Conf. on Data
Base Programming Languages (DBPL), 2003.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Continuous

Query Language: Semantic Foundations and Query

Execution. Technical report, Stanford University, 2003.

B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and Issues in Data Stream Systems. In

Symp. on Principles of Database Systems (PODS), pages

1-16, 2002.

[5] J. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Kramer,

T. Schéfer, M. Schneider, and B. Seeger. XXL - A Library
Approach to Supporting Efficient Implementations of
Advanced Database Queries. In Proc. of the Conf. on Very
Large Databases (VLDB), pages 39-48, 2001.

[6] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass,
and X. S. Wang. A Glossary of Time Granularity Concepts.
In Temporal Databases: Research and Practice, pages
406-413. Lecture Notes in Computer Science, 1997.

[7] M. H. Bohlen, R. Busatto, and C. S. Jensen. Point-Versus
Interval-Based Temporal Data Models. In Proc. of the
IEEE Conference on Data Engineering (ICDE), pages
192-200, 1998.

[8] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,

S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. B.
Zdonik. Monitoring Streams: A New Class of Data
Management Applications. In Proc. of the Conf. on Very
Large Databases (VLDB), pages 215-226, 2002.

[9] S. Chandrasekaran, O. Cooper, and A. D. et al.
TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. In Proc. of the Conf. on Innovative Data
Systems Research (CIDR), 2003.

[10] C. D. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A Stream Database for
Network Applications. In Proc. of the ACM SIGMOD,
pages 647-651, 2003.

[11] U. Dayal, N. Goodman, and R. H. Katz. An Extended
Relational Algebra with Control Over Duplicate
Elimination. In Proc. of the ACM SIGMOD, pages
117-123, 1982.

4

[12] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
System Implementation. Prentice Hall, 2000.

[13] L. Golab and M. T. Ozsu. Issues in Data Stream
Management. SIGMOD Record, 32(2):5-14, 2003.

[14] M. Hammad, W. Aref, M. Franklin, M. Mokbel, and
A. Elmagarmid. Efficient Execution of Sliding Window
Queries over Data Streams. Technical report, Purdue
University, 2003.

[15] J. M. Hellerstein, P. J. Haas, and H. Wang. Online
Aggregation. In Proc. of the ACM SIGMOD, pages
171-182, 1997.

[16] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View
Maintenance Issues for the Chronicle Data Model. In Proc.
of the ACM SIGMOD, pages 113-124, 1995.

[17] J. Kramer and B. Seeger. PIPES - A Public Infrastructure
for Processing and Exploring Streams. In Proc. of the ACM
SIGMOD, pages 925-926, 2004.

[18] T. Y. C. Leung and R. R. Muntz. Stream Processing:
Temporal Query Processing and Optimization. In Temporal
Databases: Theory, Design, and Implementation, pages
329-355. Benjamin/Cummings, 1993.

[19] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and Extensible Algorithms for Multi Query Optimization.
In Proc. of the ACM SIGMOD, pages 249-260, 2000.

[20] T. K. Sellis. Multiple-Query Optimization. ACM
Transactions on Database Systems (TODS), 13(1):23-52,
1988.

[21] P. Seshadri, M. Livny, and R. Ramakrishnan. The Design
and Implementation of a Sequence Database System. In
Proc. of the Conf. on Very Large Databases (VLDB),
pages 99-110, 1996.

[22] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Query
Plans for Conventional and Temporal Queries Involving
Duplicates and Ordering. In Proc. of the IEEE Conference
on Data Engineering (ICDE), pages 547-558, 2000.

[23] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. A
Foundation for Conventional and Temporal Query
Optimization Addressing Duplicates and Ordering. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 13(1):21-49, 2001.

[24] U. Srivastava and J. Widom. Flexible Time Management in
Data Stream Systems. In Symp. on Principles of Database
Systems (PODS), pages 263-274, 2004.

[25] M. Sullivan and A. Heybey. Tribeca: A System for
Managing Large Databases of Network Traffic. In In Proc.
of the USENIX Annual Technical Conference, pages 13-24,
1998.

[26] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous Queries over Append-Only Databases. In Proc.
of the ACM SIGMOD, pages 321-330, 1992.

[27] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting Punctuation Semantics in Continuous Data
Streams. Transactions on Knowledge and Data
Engineering, 15(3):555-568, 2001.

[28] S. D. Viglas and J. F. Naughton. Rate-based Query
Optimization for Streaming Information Sources. In Proc.
of the ACM SIGMOD, pages 3748, 2002.

[29] H. Wang, C. Zaniolo, and C. Luo. ATLAS: A Small but
Complete SQL Extension for Data Mining and Data
Streams. In Proc. of the Conf. on Very Large Databases
(VLDB), pages 1113-1116, 2003.

[30] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman.
Dynamic Plan Migration for Continuous Queries Over Data
Streams. In Proc. of the ACM SIGMOD, pages 431-442,
2004.

81

vijay
81

APPENDIX
A. DERIVED OPERATIONS

In this appendix, we shortly adapt some common but
more complex operations known from traditional DBMS to-
wards continuous query processing. We do not consider the
following operations logically as basic operations, since they
can be derived from the basic ones defined in Section 3.2.
Let St, S be logical streams.

A.1 Theta-Join

A theta join is a map >dp r: S' X P X Fypqp — S’ Let p be
a filter predicate that selects the qualifying join results from
the Cartesian product. Let f be a mapping function that
creates the resulting join tuples. We define a theta-join as:

b, (S1,S2) = py(op(St x S5)) (15)
A.2 Semi-Join

A semi-join is a special join operation that returns all
elements of S¢ that join with an element of S5 according to
a join predicate p. For that reason, the mapping function
f in the join definition is replaced by a projection on the
schema, of S.

Xp(S1,52) = 1 sy oy 8(S2) (16)

A.3 Intersection

The intersection, N : S! x ' — §!, of two logical streams
St and SY can be expressed with the help of the difference
operation.

N(S1, S5) = Si — (St — S3) (17)
A.4 Max-Union

The max-union operation, Umaqaq : S! x St — S sets the
multiplicity of an element to its maximum multiplicity in
one of the logical input streams S%, S5 € S'.

Unmaz (51, 85) := {(e,t,n) | (3 n1. (e,t,n1) € S}
A I na. (e,t,n2) € S5 A n=max{ni,n2})
V (3 n;. (e,t,ny) € S5 A B . (e t,ni) € Sh, (18)
An=mn;for j,k € {1,2} A j#k)}
= (S1 = 82) U (S5 — S1) U+ (S1N S3)

This definition complies with the one proposed by [23].
A.5 Strict Difference

Due to multiset semantics we also want to introduce a
strict difference operation which differs from the difference
presented in Subsection 3.2.5 by eliminating duplicates in
the result:

—strict(S1,58) == Si — (S§ x= S5) (19)

The semi-join X— determines all elements in S! that are
equal to an element in Sb.

However, from a implementation point of view it may not
be sufficient to compose these operations of the basic ones.
For instance, the join can be implemented much more effec-
tively and efficiently from scratch. For that reason, PIPES
provides specific implementations in addition.

82

vijay
82

