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Abstract
In wireless sensor networks, a significant amount of

sensor readings sent from the sensors to the data
processing point(s) may be lost or corrupted. In this
research we propose a power-aware technique, called
WARM (Window Association Rule Mining), to deal with
such a problem. In WARM, to save battery power on
sensors, instead of requesting the sensor nodes (MS), the
readings of which are missing, to resend their last 
readings, an estimation of the missing value(s) is
performed by using the values available at the sensors
relating to the MS through association rule mining.  The
paper then presents the performance studies comparing
WARM with existing techniques using the real traffic
data collected by the Department of Transportation in
Austin, Texas.

1. Introduction 
Recent advances in Micro Electro Mechanical 

Systems based sensor technology, low-power analog and
digital electronics, and low-power Radio Frequency (RF)
design have made possible the development of relatively
inexpensive and low-power wireless microsensors that
can be integrated in a network [7, 9]. The purpose of
such a network is to monitor, combine, analyze and 
probably respond to the data collected by hundreds (or 
even thousands) sensors distributed in the physical world
in a timely manner. The possible applications are
widespread – from battlefield (monitoring the movement
of the enemy troops) to factory floor (monitoring motors,
small robotic devices, etc.) to collecting data from an
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inaccessible terrain.
The continuous flow of data readings from a sensor

farther into the network is called data stream. Under this
model of communication all sensors push their readings
to the other sensors (or sensors’ proxies [12])
immediately after the data is collected or an event is 
detected and a packet is generated. Data streams have 
several important properties – the tuples exist online, i.e. 
they are not permanently stored; the arrival rate is not
strict, i.e., the presence of the needed data for a specific
query cannot be assumed; the streams are potentially 
unbounded in size, i.e., after a certain time, or rather after 
the storage limits are reached, some data must be 
discarded; and the tuples may get lost or corrupted.

In a wireless sensor network, it can be expected that
the sensor readings sent from the sensor farther into the
network (to another sensor or to a sensor’s proxy) may be 
lost, corrupted or late. The reasons include power outage
at the sensor node, sensors timers synchronization,
random occurrences of local interferences (such as mobile
radio devices, microwaves or broken line-of-sight path), a
higher bit error rate of the wireless radio transmissions
compared to the wire communication alternative, a poor
performance of the implemented routing algorithm in
certain situations. In an effort to provide a high quality of
service for a wireless sensor network, a technique to deal
with such undesirable events should be derived.

The objective of this research is to derive a technique
for dealing with the case of missing, corrupted, or late
reading from a particular sensor (i.e. missing tuple in a
data stream) in the presence of other data streams that
are possibly related to the stream with the missing tuple.

A solution that provides a good quality of service
(QoS) of a monitoring application is important. Since the
purpose of a sensor network is to monitor a real time
phenomenon, its QoS can be defined as a function of the
time needed by the queries to produce results based on the
data gathered by the sensors and the accuracy of these
results. There exist some applications for which the
response deadlines for the queries are tight, and the
accuracy of the query results is important. One such
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example is a sensor network monitoring the moving of
enemy planes or missiles. In order to intercept and 
probably destroy them, much smaller latency and error
in determining their position, direction, etc. may be
allowed. For such applications, the time allowed for
waiting all the sensor readings to arrive before executing
a query will be much smaller. As a result a technique for
estimating the late sensor readings, which are considered
missing after a predefined deadline expires, is needed.
Such a technique should provide an acceptable QoS for
the application.

When a tuple is missing, there is no way for a 
continuous query to know this information. An action
that may be taken is that after waiting for some
predefined interval of time, the Data Stream
Management System (DSMS) sends a request to the
sensor with the missing tuple asking it to resend the data
again. However, this approach has two major drawbacks:
increased power consumptions by the sensors (they
should listen for requests and resend data if needed) and
increased latency of the produced result by the query
(time spent for transmitting a request and waiting for a 
response).  In addition, there is no guarantee that the
requested reading will be provided because the sensor
with the missing tuple may be out of power. Even if a 
tuple arrives well before the end of the predefined
interval of time for waiting, it may be corrupted. Asking
the sensor to resend the tuple may not have a significant
impact on the result generation deadlines, but still poses
the problem of increased power consumption.

These problems motivate us to develop an
alternative approach. Instead of sending a request and 
waiting for a response, thus spending additional time and
power, we provide a technique for estimating the
missing or corrupted data. Our goal is to provide good
QoS for applications running in sensor networks, where
QoS is a function of the correctness of the estimated data
and the achieved response time for producing the
estimation, while paying close attention to the power
consumption by the sensors.

The rest of this paper is organized as follows.
Section 2 provides an overview of the related work.
Section 3 presents the proposed Data Stream Association
Rule Mining (DSARM) framework. Section 4 contains
the implementation details of the proposed data model
for storing the sensor data and the proposed algorithms
for updating the data model and for estimating a missing
value. Section 5 presents the performance evaluations of 
the proposed approach by means of simulation. Finally,
the conclusions and future research are provided in
Section 6. 

2. Related Work 
In the presence of data streams the traditional Data 

Base Management Systems (DBMSs) show poor 
performance. The need for a new type of Data Stream

Management Systems (DSMSs) is well justified in [6].
The issues that have to be addressed in such a DSMS
include the architecture of the DSMS, the type of queries
executed on streaming data, the query languages, the
query operators, the query processing algorithms and the
query processing optimizations [3, 6, 12]. However, there
is little research done on estimating missing values in a 
data stream. The general problem of estimating missing
values is well studied in the statistics field [13, 14], but
the derived techniques lack software implementation and
are rarely used in practice [15].

A possible mathematical approach to deal with
missing values is proposed in [16]. The SVDimpute
algorithm uses singular value decomposition for
estimating a missing data in DNA microarrays. The time
complexity of this algorithm is O(n2mi), where n is the 
number of columns (experiments), m is the number of
rows (genes), and i is the number of iterations. Another
technique, called KNNimpute, utilizes the clustering
approach for estimating missing values in DNA
microarrays [16]. The time complexity of the KNNimpute
is O(m2nv), where m is the number of rows (genes), n is 
the number of columns (experiments), and v is the
number of missing values in a DNA microarray. While in
DNA microarray analysis there are no strict time
constraints, in the case of data stream environments for 
monitoring or tracking applications, the response time can
be of much importance. It can be expected that because of 
their time complexity the SVDimpute and KNNimpute
algorithms may not be able to meet the time deadlines
typical to some data stream applications. 

3. The DSARM Framework

ensor nodes server (sensors’ proxy)s

Figure 1. Sample Network

To illustrate the following discussion we have
assumed a sample network (similar to [12]) as shown in
Figure 1. It consists of a set of sensor nodes and a server
(sensors’ proxy). The sensor nodes are installed in the
road system of a city. Each sensor node is equipped with
a motion sensor, radio transmitter, processor, memory,
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and battery. The motion sensors are constantly turned on
and detect passing vehicles over particular locations. The
number of passing vehicles is accumulated for a 
predefined time interval. This number is temporarily
stored in the memory. At a predefined time interval, a 
tuple consisting of the sensor id, time interval, and the
number of vehicles detected for this time interval is 
generated. The processor wakes the radio transmitter up,
and the radio transmitter sends the generated tuple to the
server, assuming the server is within the radius of
influence of each sensor node in the network (i.e.,
single-hop communication). Immediately after the
transmission is completed, the radio unit is turned off. At
the server, the data reported by the sensor nodes is
stored, the estimation of a missing reading is performed
when needed, and the application-specific continuous
queries over the sensor data are run. One example of
such a continuous query is “find the fastest route from
point A to point B with respect to the current traffic 
conditions."

First, let us explain why we think it is reasonable to
expect that there may exist relationships between the
sensors integrated in a sensor network monitoring a real
world phenomenon. Considering our sample network,
several basic rules can be stated. For example, the sum
of all outflow traffic of an intersection is equal to the
sum of the inflow traffic to this intersection. Or it can be
noted that the outflow traffic from an intersection is the
inflow traffic for another intersection. Intuitively, it can
be expected that the impact of the rush-hour traffic may
be almost the same for given sets of city streets – some
highways will experience significant traffic increase,
while for some residential streets, the rush-hour traffic 
will have little or no impact.

To estimate the values of the missing tuples, our 
research first uses association rule data mining to
identify the sensors that are related to the sensors with
the missing tuples.  Our research then uses the current 
readings of the related sensors to calculate the missing
values in the current round.

The definition of the association rule problem and
the association rule mining algorithm, Apriori, which
we modify for our work, are presented in [2]. Here they
are repeated for convenience. Let I = {i1, i2, …. in} be a
set of items. Given a set of sales transactions D, where
each transaction T is a subset of I, find all association 
rules of the form X Y, where X (the antecedent) and Y
(the consequent) are subsets of I and X Y = . An
association rule X Y is said to hold in the transaction
set D with an actual confidence (actConf) if actConf
percent of the transactions that contain X also contain Y , 
and an actual support (actSup) if actSup percent of the
transactions in D contain both X and Y. The task of
mining association rules is to find all the association
rules which satisfy both the user-defined minimum
support (minSup) and minimum confidence (minConf).

For Apriori, in order to find all association rules, first
all frequent itemsets have to be determined. A set
containing k items (called k-itemset) is a k-frequent
itemset if at least minSup percent of the transactions in D 
contain the k-itemset. The sequence of finding all
frequent itemsets is the following:  first find all 1-frequent
itemsets, next use the discovered 1-frequent itemsets to
find all 2-frequent itemsets, and keep generating higher
order k-frequent itemsets by using the set of the already
discovered k-1-frequent itemsets until no new k+1-
frequent itemset can be generated.

A direct application of the Apriori algorithm to the
problem of estimating missing data in a data stream
environment may not be possible. The Apriori algorithm
assumes that the base data that needs to be mined to
generate new knowledge in form of association rules is
static while it is running. This means that the data must be
stored completely before Apriori can be performed. When
new data arrives, it should be added to already stored data
and the updated association rules should be generated
again from scratch. This approach makes two
assumptions: the storage space for data is enough to store 
all the data to be mined, and the response time for
generating all association rules, although important, is not
crucial. In the case of data streams, in which sensors send 
data frequently, both assumptions may not be applicable.
First, all of the received data from the data streams, on 
which a mining technique is to be performed to extract
some new knowledge, cannot be stored at the server for
an infinite period of time – the amount of data is 
potentially unbounded. As a result we must purge the
older data to free some space for the newer data. Second,
the sensor networks are developed to monitor real world
events, and the response time is very important. If we use
the Apriori algorithm for discovering association rules,
every time a missing data is detected in a given round, we
should start generating all frequent itemsets and all
association rules from scratch, which may be 
prohibitively expensive in terms of time.

Another reason that Apriori cannot be applied
directly to data stream mining is the format of the data to
be mined. Apriori was originally derived for mining
basket data which is Boolean by nature. In the case of
data streams of sensor readings the data to be mined is of
quantitative nature.

To adapt the basket association rule mining 
technique to the data stream environment we propose the
Data Stream Association Rule Mining (DSARM)
framework. The proposed modifications are discussed
below.

   Instead of generating all association rules between
sensors, generate all the association rules between 
pairs of sensors only.

Translated into the association rules vocabulary, that
means that the set will contain rules of type A  C and B
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 C, but not rules of type A, B …  C. It can be
proved that in order to generate all possible association
rules between pairs of sensors, it is necessary and
sufficient to generate only the sets of all 1- and 2-
frequent itemsets. It was observed by many researchers
[2, 5] that the bottleneck in mining for association rules
is exactly the task of finding the set of 3+ frequent
itemsets. The first advantage of the proposed
modification is that by generating only the sets of all 1-
and 2-frequent itemsets, the time needed for extraction of
all applicable association rules, as well as the overall
time for estimating the missing value, will be
significantly reduced.

As a result of our proposed modification the rules of
type A, B  C are never generated. If a rule of type A,
B  C exists in reality, the only information that we can 
gather from the possible generation of the A, B  C rule
is that, in some cases, the calculated actSup and/or
actConf for the underlying rules (A  C, B  C) may
be over- or under-estimated. The negative effect of this 
modification to the Apriori algorithm is that we cannot
use the calculated actSup and/or actConf for the
underlying rules to reliably determine the weight with
which every sensor (A and B) will contribute in 
estimating the missing value (for sensor C). For that
reason, as an alternative approach to determine the
weight with which every sensor (A and B) will
contribute in estimating the missing value (for sensor C),
we use the distance between the recorded histories of the 
sensors readings. The distance is defined as the
percentage of the exact matches of the reported states in
the history of the {A, MissingSensor} pair from all
records currently stored for this pair.

The fact that the generation of 1- and 2-frequent
itemsets is necessary and sufficient for generating all 
applicable association rules between pairs of sensors has
another consequence as well. In the Apriori algorithm, if
the number of sensors (or number of items, in the
general case) is denoted by n, then the maximum number
of possibly existing frequent itemsets is calculated by the
formula:

Max_Num_Freq_Itemsets =
n

i 1 i

n

and in case n = 100, this evaluates to 3010 .
On the other hand, by using the modified technique

(generating only 1- and 2- frequent itemsets) the
maximum number of all frequent itemsets is  n2 + n.
The significant reduction in the maximum number of 
possibly existing frequent itemsets makes feasible the
idea of creating and maintaining the data structures that
contain the metadata in the form of counters for all 
possibly existing frequent itemsets. These counters store
the number of observed 1- and 2-itemsets that are 
currently stored at the server. For using the metadata

structures, the cost that has to be paid is the cost of
maintaining them every time a new round of readings
arrives, and the additional memory space. But having up-
to-date data in form of counts for all 1- and 2-itemsets
will significantly reduce the time for generating the
association rules because the number of needed memory
access operations will be reduced substantially (for each
possible frequent itemset we need only one memory read
to calculate its actSup, instead of performing multiple
memory reads in order to count it from scratch). The
second advantage of the proposed modification is that the
use of the data structures containing the metadata about
all possibly existing 1- and 2-frequent itemsets is now
feasible, and this will lead to an additional decrease of
the time needed for generating all applicable association
rules and of the overall time for estimating the missing 
value. As a result of the above stated facts, our next
proposed modification to the Apriori algorithm can be 
stated as follows.

 Use additional data structures that contain the
metadata (in form of counters) about all possibly
existing 1- and 2-frequent itemsets to reduce the
number of memory access operations.

To address the quantitative nature of sensor readings
as opposed to the Boolean nature of the data in the
Apriori algorithm, assume the following data for a pair of
sensors to be stored at the server as shown in Table 1.

Table 1. Sample transactions for a pair of sensors 
Round Number Sensor 1 Sensor 2 

1 Light Light
2 Moderate Heavy
3 Heavy Light
4 Moderate Moderate
5 Light Light

The Apriori algorithm can be modified to operate on
quantitative data instead of Boolean data. For example,
Apriori can be modified to check all the states reported by
any two sensors stored in the data set if they are the same
(round by round), and if it is true for at least the minSup
percentage of the cases stored in the data set, then this
pair of sensors is a 2-frequent itemset. In the above
example there are 2 rounds in which the sensors reported
the same state (actSup = 40%), and if minSup = 30%, then
Sensor 1 and Sensor 2 form a 2-frequent itemset. The 
actConf of a rule
Sensor 1  Sensor 2 is 100%. This result can be
misleading. If we state that there exists a rule
Sensor 1  Sensor 2 with actSup = 40%, actConf = 
100%, that means it is true regardless of the possible state
of the sensors. As can be seen from the sample data
shown in Table 3. this is not correct. The rule Sensor 1 
Sensor 2 holds with actSup = 40%, actConf = 100% only
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with respect to the “Light” state of traffic. For this
reason, our next proposed modification to the Apriori
algorithm can be stated as follows.

 Evaluate frequent itemsets and association rules
between pairs of sensors always with respect to a
particular state of sensors.

To address the issue of mapping potentially
unbounded size of the data generated by sensors to a 
finite storage space, we propose the use of the sliding 
window concept [10]. Implementing this concept, only
the last w rounds of sensor readings will be stored. After 
receiving the first w rounds, every time a new round
arrives at the server, the data that form the oldest round
should be discarded. Our next proposed modification to
the Apriori algorithm can be stated as follows. 

Use the sliding window concept in the data
structures that store the data arriving from the sensors 
and in the additional data structures that store the 
metadata about the 1- and 2-frequent itemsets. 

In summary, the proposed DSARM approach can be
stated in the following way.
Let I = {i1, i2, …. in} be a set of sensors. Let the size of
the sliding window be w rounds.
Given is the set D of last w rounds of reported sensor
states, where each round T consists of reported states for 
the sensors in I. Find all association rules of the form X

Y | s, (pronounced X determines Y w.r.t. s) where s is 
a sensor state out of all possible sensor states, and X and 
Y are subsets of I of size one (i.e. each X and Y is an item
of I) and X Y = .

An association rule X Y | s is said to hold in the
set of the currently stored rounds D with the actual
confidence actConf if actConf percent of the rounds that
report s for X also report s for Y, and with the actual
support actSup if actSup percent of the currently stored
rounds in D report s for both X and Y.

The task of mining association rules then is to find
all the association rules between pairs of sensors w.r.t. 
all possible sensor states which satisfy both the user-
defined minimum support minSup and minimum
confidence minConf.

4. The Proposed Data Model 
The proposed data model for storing the rounds of

sensor readings at the server consists of three major data
structures – the Buffer, the Cube, and the Counter. To
illustrate the use of the proposed data structures and the
operation of the algorithms for updating the data model
when a new round of sensor readings arrives and for 
estimating a missing value, a very basic instance of the 
sample network presented in Section 3 is taken as an
example. The network consists of five sensor nodes (S0,

S1, S2, S3, and S4) that send their readings to a server,
where the proposed data model and corresponding
algorithms are implemented. Each sensor detects the
passing vehicles for a certain period of time
(synchronized for all sensors) and accumulates the 
number of those vehicles in its memory. At the end of the 
time period the sensor node evaluates the collected data 
and generates a tuple consisting of the sensor id, the time
period, and the observed state of the traffic for this time
period. The different states of the observed traffic are
represented as follows: Light = 1, Moderate = 2, Heavy = 
3, Congestion = 4. Next, the sensor node sends the
generated tuple to the server using its radio unit.

Assume the sensors have reported the following
states as shown in Table 2 for the last 5 rounds of sensor
readings, where round number 1 is the oldest round and 
round number 5 is the newest one. Assume minSup = 
25% and minConf = 25%.

Table 2. Sample transactions from 5 sensors
Round

Number
S0 S1 S2 S3 S4

1 1 1 1 2 2
2 2 1 1 2 3
3 4 2 2 2 2
4 1 1 1 1 4
5 1 2 2 2 3

4.1. The Buffer 
The purpose of this data structure is to store the

arriving readings associated with the corresponding
sensors. The Buffer can be implemented as an array of
size n, where n is the number of sensors. A value of ‘-1’
in the Buffer means that there is still no data received for 
this sensor. An example of the state of the Buffer after
receiving round 5 is shown in Figure 2. 

   S0   S1 S2 S3   S4
1 2 2 2 3

Figure 2. The Buffer 

4.2. The Cube 
The purpose of the Cube is to keep track of all

existing 1- and 2-itemsets in each round, which are stored
in the corresponding nodes and slices. When any two 
sensors report the same state in a given round, then they
form a 2-itemset w.r.t. the reported state for this round.
Every sensor reporting a particular state forms a 1-itemset
w.r.t. this state. 

By its nature the Cube is a data cube, implementing
the sliding window concept by storing data for the last w
rounds of readings. The size of the sliding window (i.e.
the depth of the Cube) is a dynamic parameter in our
simulation experiments.  The newest data is stored at the
front of the Cube, and the oldest data is stored at the back 
of the Cube. For the illustrating example, the size of the
sliding window is assumed to be 5 as shown in Figure 3. 
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We refer to the collection of all nodes at the front of the
Cube as slice[0], in the next slice as slice[1], and in the
slice at the back of the Cube as slice[4]. To refer to each 
single node for sensors Si and Sj in a particular slice k of
the Cube we use the format Cube[Si][Sj].slice[k].

The data that we store in each node of the Cube is
generated in the following way. Cube[Si][Sj].slice[0] is
set to be equal to the state reported by Si if this state is
the same as the state reported by Sj (2-itemset) or if i == 
j (1-itemset); otherwise, Cube[Si][Sj].slice[0] is set to -1

Figure 3. The Cube 
4.3. The Counter 

The purpose of this additional data structure is to 
speed up the estimation of a missing value. When
estimating the missing reading from a given sensor (MS),
first we have to check if the sensor is a 1-frequent
itemset for any of the possible states. This is done by 
comparing the actSup of the sensor for all of the possible
states with the user-defined minSup. Next, for all states 
(called eligible states) in which the missing sensor is a 1-
frequent itemset, we have to check if MS constitutes a 2-
frequent itemset with other sensors (Si) that have no
missing value in the current round. This is done by
comparing the actSup of a {Si, MS} 2-itemset w.r.t.
every eligible state with the user-defined minSup. Last,
for all {Si, MS} 2-frequent itemsets (2-itemsets that have 
actSup >= minSup), compare the actConf of the rule Si

MS with the user-defined minConf (for detailed
description of the estimate algorithm, see Section 4.4.3).

To speed up the estimation, instead of going
through all data stored in the Cube and performing
counting for each of the 1- and 2-itemsets, we keep
counters for all possible 1- and 2-itemsets. Each of these
counters stores an integer representing the number of
observed 1- and 2-itemsets w.r.t. a particular state that 
are currently stored at the server. The counters are
updated every time a new round is stored in the Cube.
The Counter data structure is a collection of all the
counters. In this way, to check the actSup for an itemset
in question, only one read, instead of multiple reads, has
to be performed. For checking the actConf of a possible
association rule, only two reads, instead of multiple
reads, have to be performed.

The Counter can be implemented as a 3D array. Its
size is equal to n x n x p, where n is the number of sensors
and p is the number of possible states. Figure 4 shows the
Counter for the illustrating example where p = 4 because
there are four possible states, ‘1’, ‘2’, ‘3’, and ‘4’.

We refer to the collection of all nodes at the front of
the Counter as state[1], in the next state as state[2], and in
the state at the back of the Counter as state[4]. We refer to
each node for sensors Si and Sj in a particular state k of the
Counter as Counter[Si][Sj][k].

Figure 4. The Counter 

4.4. The Proposed Algorithms
Three algorithms are developed to work with the

proposed data model – checkBuffer(), update(), and 
estimateValue(). These algorithms are subject to two
response time constraints. The first time constraint, which
can be thought of as a hard deadline, is that the
consequent execution of checkBuffer(),estimateValue(),
and update() for a given round should be completed
before the data from the next round start to arrive. The
second time constraint, which can be thought of as a soft
deadline, applies to the consequent execution of the
checkBuffer() and estimateValue() algorithms. If there are 
missing values in the current round, their estimation
should be completed as soon as possible. The overall goal
of the proposed data model and algorithms is to provide
an acceptable quality of service (QoS), i.e., to generate a
relatively good estimation of the missing values relatively
fast. On one hand, if we use some average approaches for
estimating the missing values (discussed in Section 5) we
can obtain the estimated values extremely fast, but the
accuracy of the estimation may be poor, thus resulting in
poor QoS. On the other hand, if an alternative approach
for estimating the missing values such as the one we are
proposing is used, even if it provides excellent accuracy
of the estimated values, if it is slow in producing the
estimations, the achieved QoS also will be poor. Indeed,
if the estimation of the missing values completes shortly
before the next round of data starts to arrive, no matter
how accurate the estimation is, the useful life of the
results produced by the continuous queries operating on
the sensor data will be extremely short.

S0

S0 S1 S2 S3 S4

S4

S3

S2

S1

1
2

3
4
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4.4.1. The checkBuffer() Algorithm
The checkBuffer() algorithm is shown in Figure 5.

1. checkBuffer() // This algorithm checks the Buffer at a
// predefined time interval for a presence of missing sensors
// readings in the current round. If missing values were
// found, it invokes the estimateValue()
// algorithm, else it invokes the update() algorithm
2.  boolean missingValue; 
3.  int missingSensorID; 
4.   while(true) // repeat this process indefinitely
5.   while(time window for current session with the

  sensors is still open)
 listen to sensors and record the data received from
 a particular sensor (S0,S1,S2,S3,S4)
 to corresponding field in the Buffer;

6.   end inner while;
// check if there is a missing value after the current session

 // is closed
7.  for(int i = 0; i < numberOfSensors; i++)
8.  if(Buffer[i] == -1)
9.  missingValue = true;
10.  missingSensorID = i; 
11. end if; 
12. end for; 
13. if(missingValue) // there is a missing value
14.  invoke estimateValue(missingSensorID);
15. else
16.  send OK signal to queries;
17.  invoke update();
18. end if; 
19. // upon completion of update() algorithm
20.  set missingValue = false; 
21. set values in the Buffer to -1 // meaning “no new data

  // stored”
22.  end outer while;

Figure 5. The checkBuffer() Algorithm 

4.4.2. The update() Algorithm
The purpose of the update() algorithm is to update

both the Cube and the Counter when a reading without
missing values is received in the Buffer, or in case of 
missing values present in the current round, after their
estimation has been completed.  The data that we store in
each node when updating the Cube is generated as
discussed in Section 4.2. The updating of the Counter is
done in the following way. For every 1- and 2-itemset
discovered in the sensor readings currently stored in the
Buffer, the value in corresponding node in the Counter is 
incremented by one because a new 1- or 2-itemset is
now stored in the Cube. On the other hand, after the
Cube is initially filled, every time the data from a new
round is stored at the front of the Cube, the data for the
oldest round is discarded from the back of the Cube.
When discarding the oldest round, the content of each
discarded node is examined. If the value stored at the
node being discarded is different than -1, i.e., to be 
discarded is an existing 1- or 2-itemset from the Cube,

then the count for this 1- or 2-itemset, which is stored in
the corresponding node in the Counter, should be
decremented by one. The update() algorithm is shown in 
Figure 6 and Figure 7.

1. update()// The purpose of this algorithm is to update the Cube
and the Counter every time a new round (without missing 
values) of sensor readings is stored in the Buffer.
// Start a loop that traverses sensor readings in the Buffer 
2.for (int j = 0; j < bufferSize; j++)
// first update 1-itemsets 
3.  if(Buffer[j] == ‘x’)  // x represents a possible sensor state 
4. Cube[Sj][Sj].refresh(‘1’); // the refresh(state) method 
 // is presented in Figure 7.
5.   end if; 
// Start another loop to generate 2-itemsets between the
// sensor readings in the particular round,
// also traverses the Buffer.
6.for (int k = j+1; k < bufferSize; k++)
// If both sensors report the same event (denoted in our example
// by (‘1’ || ‘2’ || ‘3’ || ‘4’)) 
// set Cube[Sj][Sk].slice[0] = ‘1’ || ‘2’ || ‘3’ || ‘4’ 
7.  if(Buffer[j] == Buffer[k] == ’x’)
8. Cube[Sj][Sk].refresh (‘x’);
9. Cube[Sj][Sk].refresh (‘x’);
10. else //these two sensors do not constitute 2-itemset
11. Cube[Sj][Sk].refresh(‘-1’); //’ -1’  meaning no
//  relation between this pair of sensor w.r.t. a
// particular state is detected for the current round
12. Cube[Sj][Sk].refresh(‘-1’);
13. end if; 
14. end inner for;
15.end outer for;

 Figure 6. The update() Algorithm

1. refresh(possibleState)// This method is invoked by the
update() algorithm. The purpose of the refresh(state) method 
// is to add new nodes at the front of the Cube every time an
// update of the data model is performed and to discard the
// oldest nodes (at the back of the Cube). The refresh(state)
// method also maintains the counts of the observed 1- and 2-
// itemsets currently stored in the Cube by updating the Counter. 
2.Insert a new node at the front of the Cube with the data field
value set to possibleState;
3.if (the value stored in the inserted new node is not == -1)
// i.e. the inserted node contains information about a 1- or 2- 
// itemset that was detected in the current round of readings
// stored in the Buffer

  increment the value stored in the corresponding node in
  the Counter by 1; 

 end if;
// implement the sliding window concept
4.discard the node at the back of the Cube; 
5.if (the value stored in the discarded node is not == -1)
// i.e. the discarded node contains information about a 1- or 2-
itemset which no longer will be stored in the Cube

  decrement the value stored in the corresponding node in
  the Counter by 1; 

6. end if;
Figure 7.  The refresh(state) Method
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4.4.3.The estimateValue(missingSensorID) Algorithm
The purpose of the estimateValue(missingSensorID)

algorithm is to estimate a missing sensor reading given
its sensor ID by accessing both the Counter and the 
Cube. The algorithm is shown in Figures 8 (a-d).

The estimateValue(missingSensorID) algorithm
proceeds in the following manner. First, the actSup for
MS for every possible state is obtained from the Counter 
and is compared with the minSup (Step 3). If for a given
state the actSup is equal to or greater than the minSup,
then this state is declared to be an eligible state. Only for
eligible states, MS can be a consequent of an association
rule between a pair of sensors. For every discovered
eligible state a temporary data structure is generated,
called StateSet (Step 4). Every StateSet is associated
with a particular eligible state. Next, in every StateSet,
by examining the content of the Buffer, distributed are
the sensor IDs of the sensors that report the same state in 
the current round as the eligible state, with which the
particular StateSet is associated (Steps 7 to 11). As a
next step, the algorithm checks every sensor Si in a 
particular StateSet (for every StateSet) if it can produce
an association rule of the type Si MS w.r.t. an eligible
state. This is done in two steps. First, the algorithm
checks if the 2-itemset {Si , MS} is a 2-frequent itemset
w.r.t. an eligible state (Steps 14 to 16). This is done by
obtaining the actSup for this 2-itemset (by using the
count for this 2-itemset stored in the Counter) and
comparing it with the minSup. If this 2-itemset is not a 2-
frequent itemset (i.e. actSup < minSup), Si is deleted
from the particular StateSet. Else, the actConf of the
possible rule Si MS w.r.t. an eligible state is obtained
(using the data stored in the Counter) and compared with
the minConf (Steps 17 to 19). If actConf is equal to or 
greater than the minConf, this sensor is declared to be an
eligible sensor, and will participate in the estimation of
the missing value for the MS. Otherwise, this sensor is 
discarded from the StateSet. At this point all association
rules between pairs of sensors (where the consequent is
the MS) w.r.t. all eligible states are generated. The
eligible states for the MS are known, and all the
antecedents (i.e. the eligible sensors) are collected in the
corresponding StateSets. It should be noted that this was
achieved without accessing the Cube, thus reducing the
number of memory accesses significantly. To determine
the weighted contribution of each eligible sensor towards 
the missing value being estimated, the distance between
the histories (reported states stored in the Cube) of this
eligible sensor and the MS is calculated (Steps 26 to 34).
The weighted contribution of each eligible sensor
towards a given state is accumulated in a variable
associated with this state (Step 35). The estimated
missing value is calculated as shown in Step 39. The
estimated value is stored in the Buffer (Step 40), and the
Buffer is checked for other missing values (Steps 41 to
46). If other missing values are found in the Buffer, the

estimateValue() algorithm is called again; otherwise an
OK signal is sent to the application queries, and the
update() algorithm is invoked.

1. estimateValue(missingSensorID)
// This algorithm is invoked by the checkBuffer() algorithm
// when a missing value is detected. The purpose of this
// algorithm is to estimate the missing value(s), to store it
// in the Buffer, and when the estimation is completed, to call
// the update() algorithm.
// Determine all eligible states for MS and create StateSets
// for them
2. for(all possible states)
//check if the actSup for this state is >= minSup
3.  if((Counter[MS][MS][state] / slid_win_size) >= minSup)
4. create a StateSet [e] = ,

//e is the name of the eligible state, in our
//example, e can be = 1, 2, 3, or 4

5. end if; 
6. end for; 
// Distribute the sensors without missing values (Si) to the
// corresponding StateSets based on their current reading
// in the Buffer
7. for(i = 0; i < bufferSize; i++)
//get the reading for Buffer[i]
8. .if(reported reading for this sensor == any existing e)
9. add the sensor id to StateSet [e]
10.end if; 
11.end for; 

Figure 8.a The estimateValue() Algorithm:
Determining the eligible states for the MS and 

distributing the sensors to corresponding StateSets

// Clean the StateSets from sensors that do not constitute
// association rules of type Si  MS | e, for any e
12.for(every StateSet)
13.  for(every sensor Si in this set)
// Check if Si constitutes a 2-frequent itemset with MS by
//checking if actSup of {Si , MS}| e is >= minSup. If not, a rule
//Si  MS | e, for any e, cannot be generated, then drop this
//sensor from the StateSet
14.   if((Counter[Si][MS][state] / slid_win_size) < minSup)
15.  discard Si from the StateSet; 
16. end if; 
// Check if Si can produce a rule of type Si  MS | e by
// checking if the actConf of such rule,
// (calculated as actSup of {Si, MS}| e divided by the
// actSup{Si}| e ) is greater than or equal to
// minConf. If not, a rule Si  MS | e, for any e,
// cannot be generated, then drop this sensor from 
// the StateSet
17. if((Counter[Si][MS][state] / Counter[Si][ Si][state]) <

minConf)
18.   discard Si from the StateSet;
19. end if; 
20. end for; 
21.end for; 

Figure 8.b The estimateValue() Algorithm:
Determining the eligible sensors for the MS
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// Calculate the weighted contribution of each eligible sensor,
// with which it will participate in the estimated value of 
// the missing sensor reading, by calculating the distance
// between the histories of Si and MS. Create variables to hold
// the accumulated weighted contribution for each eligible state.
22.eligibleStateValue[e] = 0;// where e is any eligible state
// Create a variable that will hold the total of all weighted
// contributions of the eligible sensors
23.totWeightCont = 0; 
24.for(every e)
25.  for(every eligible sensor in StateSet [e])
// Calculate the distance between the histories of Si and MS
26.  distance = 0;
27. fingerMS = Cube[MS][MS].slice[0];
28. fingerSi = Cube[Si][Si].slice[0];
29.  while(fingerMS != null) //traverse the DLLs
// The distance is measured as the number of exact matches of
// the sensor readings for the pair of sensors 
30.  if(fingerMS == fingerSi)
31.  distance ++;
32. end if; 
33.  end while;
// Calculate the weighted contribution from this sensor
34.   wCont = distance / sliding window size; 
35.   eligibleStateValue[e] = eligibleStateValue[e] + wCont;
36.   totWeightCont = totWeightCont + wCont; 
37. end for; 
38.end for; 
// Now we can calculate the missing value
39 .missVal =

// Record the estimated value in the Buffer 
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__
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40. Buffer[missingSensorID] = missVal;

Figure 8.c The estimateValue() Algorithm:
Calculating the value for the MS using the eligible

sensors

// Check for other missing values in the Buffer
41.for(int i = 0; i < numberOfSensors; i++)
42.  if(Buffer[i] == -1)
43.  missingValue = true;
44.  missingSensorID = i; 
45.   end if; 
46. end for; 
47. if(missingValue) // There is a missing value
48.  invoke estimateValue(missingSensorID);
49. else 
50.   send OK signal to queries;
51.   invoke update(); // To update the Cube and the Counter 
52. end if; 

Figure 8.d The estimateValue() Algorithm:
Checking for other missing values in the Buffer and

calling the appropriate algorithms.

5. Simulation Experiments 
The performance of our proposed approach

(WARM) is studied by means of simulation. Several
different simulation experiments are conducted in order to
evaluate the behavior of WARM and to compare WARM
with some existing techniques.

Our simulation model consists of 108 sensor nodes,
combining a vibration detector and a RF transmitter. All 
sensor nodes report to a single server. The sensors are
deployed on city streets and collect and store the number
of the vehicles detected for a given time interval. The
actual vehicle counts taken as sensor readings that are 
used as input for our simulation experiments are traffic
data provided by [1]. The data was collected in year 2000 
at various locations throughout the city of Austin, Texas.
The data represents the current location, the time interval,
and the number of vehicles detected during this interval.
From this set we generated four different input data sets 
corresponding to the different numbers of the possible
sensor states used for the simulation experiments.

The dynamic parameters in the simulation
experiments include the size of sliding window (winSize),
which is the depth of the Cube, taking values 6, 18, 30,
and 42 rounds; the minimum support and the minimum
confidence (MSMC), taking values 0, 1, 4, 7, and 10%;
the number of possible sensor states (numStates), taking
values 10, 20, 40, and 80; and the error rate of a single-
hop wireless link (errRate), which represent the
probability that a sensor reading sent to the server by a RF 
transmission is lost or corrupted, taking values 10-3, 10-2 ,
10-1 [4]. The size of the sliding window, the MSMC, and
the number of possible sensor states are studied because
of the following reasons. All the three parameters affect
the accuracy of the estimation and the percentage of cases
in which the estimateValue() algorithm cannot produce an
estimation. In addition, the first and third parameters
affect the memory size WARM would need, while the
first and second parameters affect the time that WARM
would take to generate the estimation.

The static parameters in the simulation experiments
are adopted from the literature.  They include the main
memory access time - 60 nsec per word [11]; the sensor
battery power - 560 mAh [8]; the current consumption in
transmit mode – 25mA, in receive mode – 17mA, and in
idle mode – 10mA [8]; and the transmit data rate 0.4kbit/s
[8].

5.1. Evaluation of Estimation Accuracy 
The evaluation of the achieved accuracy of an

estimation of the missing values is done by using the
average root mean square error (RMSE).
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where Xai and Xei are the actual value and the estimated
value, respectively; #estimations is the number of
estimations performed in a simulation run and numStates
is the number of subsets, in which the actual readings are
distributed.

The expression
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standard error and is an estimate of the standard 
deviation under the assumption that the errors in the
estimated values (i.e. Xai - Xei) are normally distributed. 
Thus, the RMSE allows the construction of confidence
intervals describing the performance of different
candidate missing value estimators. The smaller the
RMSE (the standard deviation), the better the estimator.
The calculated RMSE for each different set of input data
(e.g. Set10 means that the sensor readings are split into
10 subsets) is divided by the number of subsets and the
result is the average standard deviation in each case.
This is done to keep the measure comparable across
experiments.

This experiment is conducted for four different
approaches for estimating the missing value:

The Previous Value (PV) approach: using the
previous value of the sensor with the missing
value in the current round as an estimate;
The Average Round (AR) approach: using the
average of the available sensor readings in the
current round as an estimate of the missing
value;
The Average Window Size (AWS) approach:
using the average of all the readings stored in 
the Cube for the sensor with the missing value
in the current round as an estimate; 
The combined (WARM) approach: using the
estimateValue() algorithm when it can estimate
the missing value and the AWS approach when
the estimateValue() algorithm cannot estimate
the missing value.
The resulting RMSEs for the different

approaches are presented in Figure 9. It can be seen from
Figure 9 that out of the three alternative approaches (PV,
AR, AWS), the best estimator in the case of our sample
application is the approach which calculates the missing
value as an average of all the readings stored in the Cube
for the sensor with the missing value (the AWS
approach). For that reason the AWS approach was
chosen to be used to estimate the missing value for the 
cases in which the estimateValue() algorithm cannot
produce an estimation. The best accuracy of estimation
using the WARM approach for the given input data is
achieved for winSize = 42, MSMC = 1%, and numStates
= 40. For these values of the dynamic parameters, the set 
of discovered related sensors to the sensor with the
missing value is the most representative of the true

relations between the locations in the real-world road
system. This means that the number of the discovered
truly existing relations between pairs of sensors is 
maximized, while the number of fake relations between
the sensors that were able to pass the MSMC test in the
estimateValue() algorithm is minimized.

Figure 9. RMSE for PV, AR, AWS, and WARM

5.2. Evaluation of Main Memory Access Time per
round (TMMAT)

As an approximation of the response times for
performing an update and for estimating the missing
value(s) we use the total time needed for performing
memory accesses for each of the algorithms. The
TMMAT is defined as the time for performing all main
memory accesses required for update and estimate calls,
per round of sensor readings. The probability of having k
(k between 0 and 108) missing sensor readings in a round
(out of 108 sensors total) is given by the Poisson
distribution for each value of errRate. The TMMAT (in 
milliseconds) for WARM for the values of the dynamic
parameters with which the best accuracy of the estimation
is achieved, and as a function of the quality of the
wireless link (errRate) is shown in Figure 10. As can be
seen from Figure 10 even for the worst quality of the 
wireless communication link (10% of the sensor readings
are lost or corruptted), and the maximum percentage of
missing readings possibly occurring in a round (100% of
all possible cases are considered), the TMMAT for the
WARM approach is less than 35 milliseconds.

The TMMAT is an approximation of the response
time - the time elapsed from receiving the readings from
the sensors to the moment at which all the missing values
in this round are estimated and the data model (the Cube
and the Counter) is updated with the data in the 
completed round. The results shown in Figure 10 lead us
to believe that the response time of WARM will provide
an acceptable QoS (a function of the achieved accuracy of
the estimated values and the response time) for a wide
range of monitoring applications.
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Figure 10. TMMAT (in miliseconds) per round of 
sensor readings for different error rates of the single-
hop wireless link for WARM

5.3. Evaluation of Memory Space 
The results of the simulation experiments show that

the implementation of the WARM approach is feasible -
the needed memory space (  9MB) for 108 sensors,
winSize equal to 42 rounds and numStates equal to 80, is 
less than the RAM memory provided in a contemporary
computer.

5.4. Evaluation of Overall Power Consumption
The overall power consumption (OPC) amounts at

the sensor nodes for WARM and for an alternative
approach called MultiSend are compared. Under the 
MultiSend approach no estimation of the missing
value(s) at the server is performed. In the case of a 
missing reading from a sensor, the sensor is explicitly
pulled by the server to resend its reading. The
comparison is done for different error rates of the single-
hop wireless link between the sensor nodes and the
server. For both approaches, the amount of power
consumed (measured the mAh) by all sensor nodes for
processing a round of readings is calculated. Then the
maximum number of rounds that can be processed under
the two different approaches using the same initial
amount of battery power distributed at the sensor nodes
is calculated. The experimental results for the OPC for
the WARM and MultiSend approaches show that for the
chosen values of the parameters, the number of rounds
which the network can process using the WARM
approach is 2.5 times bigger than the case when using
the MultiSend approach. The main reason for this
difference is the fact that for the MultiSend based
approaches all the sensors in the network should spend
an additional RF power waiting for a possible request
from the server to resubmit their readings again.

5.5. Evaluation of the Percentage of Cases in 
Which a Missing Value Cannot be Estimated by 
the estimateValue() Algorithm Alone (PCE)

There is a possibility that the estimateValue()
algorithm alone will not be able to estimate a missing
value. This is due to the following reasons: 1) the sensor 
with the missing value (MS) does not have the actual
support greater than the minimum support for any state, 
i.e., MS is not a 1-frequent itemset; 2) the MS is a 1-
frequent itemset, i.e., its actual support is greater than the
minimum support for at least one of the states, but no 2-
frequent itemset consisting of the MS and any of the other
sensors can be generated (the actual support of such 2-
frequent itemset is less than the minimum support); and 3)
the MS constitutes one or more 2-frequent itemsets with 
other sensors (Sj), but no association rule of the type Sj

MS can be generated because the actual confidence of 
such association rule is less than the minimum confidence
for all Sj.

The PCE is computed for each simulation run using
the formula:
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where #casesValueCannotBeEstimated is the number of
cases that a missing value cannot be estimated using the
estimateValue() algorithm alone, and 
totalNumberOfAttemptsToEstimate is the total number of 
attempts to estimate a missing value in a given simulation
run.

The effect of the sliding window size (winSize) and
the MSMC parameters can be explained in the following
way. A change of winSize and/or MSMC may lead to a 
change in the required number of occurrences (RNO) in
which a pair of sensors must report the same state in order
to pass the MSMC test. The reason for this is that the
actual support (which should be greater than or equal to 
minSup in order to pass the MSMC test) for a pair of
sensors is calculated as the ratio of the number of 
occurrences in which a pair of sensors reports the same
state and the window size, i.e., actSup =
(reqNumOccurr/winSize)*100%. When increasing the
window size in order to achieve the same actSup (needed
to pass the MSMC test), the RNO may increase as well.
On the other hand, a change of MSMC sometimes leads
to a change to the RNO as well.

The experiment results show that for an increase of
the winSize that does not lead to an increase of the RNO,
there is a decrease in the PCE. This result should be
expected since increasing the window size is equivalent to
having a longer history of sensor readings stored in the
data model. On the contrary, when an increase of the
window size leads to an increase of the RNO, then there
is an increase in the PCE. This is because fewer pairs of
sensors will be able to pass the MSMC test, regardless of 
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the fact that there is longer history stored in the data
model.

Increasing the MSMC value leads to an increase in 
the PCE in general. The reason for this is that by
increasing the MSMC value we pose stricter 
requirements to pairs of sensors in the MSMC test. In
some cases, the PCE remains the same, regardless of the 
increase of the MSMC value. This can be explained by
the fact that even we increase the MSMC value, the
RNO in which a pair of sensors must report the same
state remains unchanged.

Another dynamic parameter that affects the PCE is
the number of possible sensor states. The experiment
results show that by increasing the number of states the
PCE also increases. The reason for this behavior is the
fact that by increasing the number of states (i.e.
decreasing the range for each subset of possible sensor
states), we get a smaller number of the sensor readings
that will be assigned to a particular subset. Having the
sensor readings distributed among more subsets' results
in discovering fewer relations between subsets,  and
consequently, between pairs of sensors.

6. Conclusions and Future Research 
This research has proposed an approach called

WARM (Window Association Rule Mining) for
estimating missing values in related data streams.
WARM uses association rule mining in order to
determine the sensor nodes that are related to the sensor
with the missing reading. The readings of of the related
sensors in the current round participate in estimating the
missing value. When a missing value cannot be 
estimated by using association rule mining, it is
estimated using the average of all available readings for 
the sensor with the missing value.

Performance evaluations by means of simulation
were conducted to compare WARM and alternative
approaches in terms of estimation accuracy, memory
access time for estimation, sensors power consumption,
memory space required, and percentage of cases in
which a missing value cannot be estimated using
association rule mining alone.  The test data is the real 
traffic data collected by the Department of
Transportation in Austin, Texas [1]. The simulation
results show that although WARM requires more
memory space and take longer to produce an estimation
than the considered alternative approaches, it achieves 
better accuracy of the estimated value than the 
alternative approaches do. The memory space needed by 
WARM is feasible for a contemporary computer, and the 
time needed for producing the estimation of a missing
value by WARM is acceptable for many applications. 

For future research, the DSARM framework should
be enriched so that it will support mining for association
rules of type Si | stateA  MS | stateB in order to reduce
the percentage of cases in which a missing value cannot

be estimated by the estimateValue() algorithm and to 
achieve a better accuracy of the estimated value. A weight
assignment strategy assigning more weight to the events
that happened sooner to the present moment than to the
events that happened further in the past should be
investigated. Also, the case of multiple sensor failure of 
co-related sensors should be considered.
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