Efficient Handling of Sibling Axis in XPath

G. V. Subramanyam

P. Sreenivasa Kumar

Dept of Computer Science and Engg.
Indian Institute of Technology Madras
Chennai - 600 036, India

{gvs, psk}@cs.iitm.ernet.in

ABSTRACT

XML is widely used for representing and exchanging hier-
archical data and queries naturally specify hierarchical pat-
terns to select relevant parts of an XML document. These
patterns have a sequence of selection predicates connected
by operators representing structural relationships (ancestor-
descendant or preceding-following sibling). In this context,
the operation of structural join involves discovering pairs of
nodes that are structurally related from the cross product
of two sets of nodes.

Current XPath processing algorithms focus more on solv-
ing queries containing ancestor-descendant relationship but,
pay little attention to the equally important preceding-follow-
ing sibling relationship. In this paper, we propose a new so-
lution for processing queries containing sibling axis by using
a sibling-list at each level of the XML document tree. We
show that using sibling-lists, the time complexity of the pro-
posed join algorithms is linear in the sum of lengths of input
lists. An extensive experimental evaluation shows that our
join algorithms perform significantly better than the cur-
rently existing sibling join algorithms.

1. INTRODUCTION

XML has emerged as a popular method for representing
semi-structured data and for exchanging data on the web.
With its wide-spread use, large collections of XML data need
to be efficiently stored, managed and queried. XPath [3] has
become a popular language for querying XML data. XPath
provides constructs for specifying ancestor-descendant and
following-sibling and preceding-sibling patterns as structural
predicates in the queries. Recently several algorithms for
efficiently computing these structural relationships in XML
data have been proposed in the database literature and are
generally called as structural join algorithms. A majority
of these algorithms focus on computing ancestor-descendant
relationship and give secondary treatment to the sibling axis

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

of XPath. However, there is a need for development of ef-
ficient algorithms for processing queries containing sibling
axis also. The following query illustrates the use of sibling
axis. The XPath query —

machine//partftype= “T2000”]/following-sibling::part[1]

selects all parts that immediately follow parts of type value
“T2000”. The query comprises of both structural matching
and predicate evaluation (type=“T2000”). The structural
matching addresses both ancestor-descendant relationship
such as “machine//part” and preceding-following relation-
ship such as “part/following-sibling::part”.

Two types of storage models are usually assumed for XML
data, namely relational database storage and native storage.
The approaches that base their implementations on RDBMS
translate XML queries into SQL queries. The translation is
accomplished by providing an extra layer on the top of rela-
tional database system. Where as, in native storage based
systems, XML queries are directly translated into algorithms
that operate on the storage layer. The native XML database
systems [1, 5, 10, 11] focus on evaluating queries that contain
ancestor-descendant relationships i.e., regular path expres-
sions with / or // operators, and are yet to propose tech-
niques for handling sibling axis. The effort of solving sib-
ling axis is largely dealt in the literature that uses relational
databases for storing and querying XML documents . There
are many approaches that shred (decompose) XML docu-
ments into relations [7, 9, 12, 14, 15]. One such approach
is to store XML nodes as tuples in a relation with schema
(start, end, parentld, level)[15]. Similar to this approach,
[14] uses a relation with schema (Id, parentId, endDescld),
in which the attribute Id (n‘* node, when XML nodes are
ordered in document order) and endDescId correspond to
the attributes start and end of the schema given in [15], re-
spectively. In [9], (preorder, postorder, parentId) is used as
schema, where preorder and postorder correspond to start
and end of the schema given in [15], respectively. The stor-
ing of XML data in relational database systems allows us
to maintain indices on certain attribute(s). These indices
help us to expedite query evaluation while joining the rela-
tions. Although it improves the join performance, it makes
multiple scans over the tuples in the relations, resulting in
a non-linear performance.

In this paper, we assume that XML document is stored
as collection of element lists and each node in the list is rep-
resented by the popular node identification scheme (Docld,

(a 1, 50)

) T

(b, 2, 11) (b, 12, 15)
(b,3,4 (d,56) (c1314)

\

(d, 21,22) (e 23,24)

(c, 20, 31)

/\\\

(c, 25, 26)

Figure 1: A Sample XML Document

start, end, parentld, level). In the above scheme, Docld
uniquely identifies a document in the collection®. Since start
value of a node is unique, the parentld of a node is taken as
the start value of its parent. We devised a couple of algo-
rithms that take linear time for processing queries containing
sibling axis, by using non-indexed lists. Our join algorithms
sequentially traverse the element lists and perform the join
by using a sibling-list at each level of the XML document
tree. The XML instance tree that we are considering is the
one induced by the elements in the given element lists. At
any instance, each sibling-list has elements under common
parent.

Experimental results show that our join algorithms are
both CPU and I/O optimal, when compared with the join
algorithms that use B*-tree index on either start or paren-
tId. These later approaches are the only suggested ones in
the literature for handling sibling axis and we compare our
algorithm with these. Our algorithms can be used in both
native XML databases and RDBMS based XML systems
to boost the performance of XML query processing. The
contributions of the paper can be summarized as follows:

e We propose new algorithms, called multi-list-tree
join algorithms, for handling sibling axis in XPath
query processing and report on implementation of these
algorithms.

We refined the approaches suggested in the literature
for handling sibling axis in the context of RDBMS
based XML systems by proposing the use of B¥-tree
index on start or parentld. We call these algorithms
as indexed-loop join algorithms. We find that the
multi-list-tree join algorithms take linear time and
guarantee that each element in the input lists is ac-
cessed once. This is in contrast with the indexed-loop
join algorithms, where it makes multiple scans over the
elements in the lists.

An extensive experimental evaluation of our join algo-
rithms was conducted and results are compared with
the indexed-loop join algorithms. Our comparative
study shows that our join algorithms perform signifi-
cantly better than the indexed-loop join algorithms.

The organization of this paper is as follows. We provide
background material and related work in Section 2. We
discuss indexed-loop join algorithms in Section 3.1; and
provide a discussion on multi-list-tree join algorithms in

1The scope of the paper is limited to single document and
extending the algorithms for multiple documents is rather
straight forward

96

Section 3.3. Section 4 describes performance study and we
conclude in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Query Patterns

Queries in XPath or XQuery [4] use path expressions which
are sequences of location steps to navigate through XML
document tree [9]. Basically, queries specify patterns that
match the relevant twigs in the XML document. As XML
employs tree-structured data model for its representation,
determining structural relationships (the relationship may
be either ancestor-descendant or preceding-following) be-
tween any pair of elements and finding all element pairs
that are structurally related between the two given element
lists plays an important role in solving queries.

2.2 Numbering Scheme

To solve structural relationship between any two elements
a numbering scheme is proposed [1, 6, 15] which is based on
the region encoding of elements. In an XML document,
each element is assigned with a tuple (DocID, start, end,
parentld, level) and between any two elements (say, a and
d), the ancestor-descendant relationship can be determined
as follows: (i) If a.start < d.start and a.end > d.end then
a is an ancestor of d. (ii) In addition to condition (i), if
level(a) = level(d) — 1, then a is a parent of d. Similarly,
preceding-following sibling relationship can be determined
as (i) If a.parentId = b.parentId then b is a sibling of a.
Further, if b.start > a.start then b becomes following-sibling
of a otherwise, b becomes preceding-sibling of a. For each
element, the (start, end) can be assigned by making a depth
first traversal of an XML document tree [1, 15]. If the start
value of a node v is n then its end value can be assigned
with 7 4+ count(subtree(v)) + 1 (+X), where A > 0 provides
space for future insertions within the region encoding (start,
end). The function count returns the number of nodes in
the subtree rooted at node v.

Figure 1 shows a sample XML document tree containing
nodes with start and end values. The root node a is assigned
with (1, 50) and the children are (2, 11), (12, 15), (20, 31)
and so on. The parentld of a node is the start value of its
parent except for the root node, the parentld is assigned to
zero.

2.3 Structural Joins

Structural join is a basic operation that operates on two
element lists and output pairs that are structurally related.
We generalize the definition of structural join to include sib-
ling relationships also.

for each f in the FList {

}
p
}

1:
2
3
4:
5:
6.
7
8
9:

)

Algorithm: Btree-on-start (PList, FList)
//PList: list of Preceding elements indexed using B -tree
//FList: list of Following elements sorted on their start values

p = first node in PList whose p.start > f.parentld,;
while (p.start < f.start){
if (f.parentld == p.parentld){
append (p, f) to the OutputList;

= next element in PList after p;

Figure 2: Btree-on-start algorithm

Definition 1. For any two input element lists - say L; and
Ly, a structural join is to output all pairs (pi, g;), pi € L1
and g; € Lo, such that p; and ¢; are structurally related
(ancestor-descendant or preceding-following).

The evaluation process involves joining the two given in-
put element lists and output all the resultant pairs (p;, g;)
sorted either in ascending order of p;.start or g;.start. The
query processor chooses the order dynamically during the
runtime.

Most of the query processing techniques that apply struc-
tural joins between the element lists assume tree-structured
model of XML data [1, 5, 11, 15]. There are many tech-
niques proposed using the more popular RDBMS [12, 14,
15] having SQL as the querying agent. The motivation be-
hind these techniques is that a large amount of XML data
as of now and in future is expected to be stored in relational
database systems. The XML documents are decomposed
into relational tables having (DocID, start, end, level) as
the schema. Zhang et. al. [15] propose a notion of “con-
tainment” join using multi-predicate merge join (MPMJGN)
that differs from the traditional relational-style merge join
algorithms. Li and Moon [11] propose EE-join and EA-
join algorithms for generating ancestor-descendant pairs by
merging the two given element lists sorted on their (DocID,
start) values. These algorithms make multiple scans over
the elements in input lists during the join. An improved
version of MPMJGN algorithm can be found in [1], where
an ancestor stack is used to guarantee that each element is
accessed once during the process of join. Recently, Bruno et.
al [2] proposed a twig-join algorithm which is a generaliza-
tion of stack-tree-algorithm [1]. It uses path stack for path
expressions queries and twig-stack for tree-pattern queries.

The work more related to our discussion can be referred
in [14], where XML documents are stored in relational ta-
bles; and the given path expressions are translated to SQL
queries. When index is maintained on certain attributes
of the relation, the query processor may choose to perform
indexed-loop joins during the join process. Although the
indexed-1loop joins perform well in most cases, in worst case
it makes multiple scans over the elements in the input lists.

3. STRUCTURAL JOIN ALGORITHMS

97

Here, we explain the structural join algorithms in the con-
text of solving queries containing sibling joins. Initially, we
discuss the join algorithms that are implemented using the
index structures of the relational database systems. Then,
we present the details of our proposed join algorithms for
processing queries containing sibling joins.

Consider a query p/following-sibling::f that returns all
pairs (p, f) such that f is following-sibling of p. Let PList (=
[Py, P2, ...]) be the list of p—elements. These are candidate
preceding nodes. Let FList (= [F1, F2, ...]) be the list of f—
elements. These are candidate following nodes. Each list is
sorted on their (Docld, start) values. These lists are stored
natively in a storage structure indexed using tag name as a
key, which could retrieve appropriate list when the specific
tag appears in the query pattern. An element list can be
stored as a sequence of elements represented as objects with
attributes Docld, start, end, parentld and level. When the
query processor finds a pattern such as p//f or p/following-
sibling::f in a query, it retrieves PList (the list of p nodes)
and FList (the list of f nodes), and then performs the join
by sequentially traversing the lists.

3.1 Relational Implementation

Here we assume that an XML document is decomposed
into relational tables with one table for each distinct tag
that appears in the document. Each node in an element
list is represented as a tuple in the corresponding relational
table with schema (start, end, parentld, level). The table
containing the list of p — nodes is denoted as T}. Queries in
XPath are translated into equivalent SQL queries before ac-
cessing the relations. For example, the query — p/following-
sibling::f, has its equivalent SQL statement as given below:

Qi: SELECT P.* F.*
FROM T, as P, Ty as F
WHERE P.parentld = F.parentld and F.start > P.end;

The tables T}, and Ty in the FROM clause are theta-
joined to output each F in Ty that is following-sibling to
some P in Tj,. The preceding-sibling axis can be evaluated
similarly. The following discussion explains the process of
joining relations efficiently by maintaining indices on certain
attributes of the relations.

for each f in the FList{

1:
2
3
4:
5:
6: }
7 p
8 }

9:

)

Algorithm: Btree-on-parentld (PList, FList)
//PList: list of Preceding elements indexed using B -tree
//FList: list of Following elements sorted on their start values

p = first node in PList whose p.parentld = f.parentld,
while (p.parentld == f.parentld){

if (p.start < f.start){

append (p, f) to the OutputList;

= next element in PList after p;

Figure 3: Btree-on-parentld algorithm

3.1.1 Bt+-Treeindex on start

Consider the query Qi, when no index is maintained on
the attributes of T}, and T, the query processor may choose
to perform nested-loop join (or probably sort-merge join),
which is computationally expensive. If we consider main-
taining index on start attribute, the join performance im-
proves; this is due to the reduction in the number of tuple
accesses.

The algorithm shown in the Figure 2 generates output of
the structural join in the Following order. The two input
lists are joined on the multiple inequality conditions that
characterize the preceding-following relationship based on
(Docld, start, end, parentld, level) node representation. In
relational database context, the tables that participate in
the join use the same node representation as schema.

As the result is output in the Following order, the Follow-
ing list (FList) acts as outer operand joining with the inner
operand, which is Preceding list (PList). For each f in the
FList, a lookup is made in the B*-tree of PList. Similarly,
if the output to be generated is in the Preceding order, then
PList becomes the outer operand. As B*-tree is constructed
taking start of a node as key, all the nodes occurring at the
leaves of the Bt-tree are sorted on start value.

The region encoding of any element — say a, represented
using (start, end, parentld, level), permits us to find all
the descendants with specific tag name — say b, by mak-
ing a range search (i.e., a.start < b; < a.end) on BT-
tree constructed on b list. During the join process, for
any element f in FList, all the elements in the PList, for
which f is the following-sibling, can be found by (i) retriev-
ing a smallest element p (locate using BT -tree) such that
p.start > f.parentId (line 2); and (ii) then making a cursor
move over the leaves of B*-tree, starting at element p, to
output all those pairs (p;, f) to the DutputList, such that
pi.start < f.start and p;.parentId = f.parentId (lines 3-7)

3.1.2 Bt+-Treeindex on Parentld

The underlying relational database system may choose
to maintain Bt-tree index on parentld; this results in the
reduced number of tuple accesses and in turn provides better
performance than the algorithm shown in Figure 2. The
indexed-1loop join algorithm shown in Figure 3 proceeds as
follows: For any element f in FList, all the elements in the

98

PList, for which f is the following-sibling, can be found by (i)
retrieving an element p such that p.parentld = f.parentld
(line 2); and (ii) then making a cursor move over the leaves
of Bt-tree, starting at element p, to output all those pairs
(pi, f) to the DutputList, such that p;.start < f.start and
pi-parentld = f.parentId (lines 3-7).

3.2 Analysisof Indexed-loop Join Algorithms

In traditional relational database indexed-loop joins, one
can not establish a linear time complexity when joining pred-
icate involves multiple attributes. In this Section, we pro-
vide an analysis on the complexities of both indexed-loop
join algorithms — B*-tree index on start and parentId.

3.21 Analysisof Btree-on-start algorithm

During the join process, a node — say f, in the outer
operand, which is typically a FList, is joined with nodes in
the inner operand — PList. Consider the case when no two fs
in the FList have some common sibling nodes from PList,
then the algorithm runs in linear time showing ((|PList|
+ |FList|) i.e., each node in the element lists is accessed
only once.

Consider the case as shown in Figure 4, when F; has to
be joined with P; and P7, a lookup is made in BT -tree of
PList to retrieve all elements E; such that Fi.parentld <
E;.start < Fy.start. In this instance, all the elements from
P1 to Pyo are retrieved; in which only P; and P7 are actu-
ally joined with F; as these are under common parent(root).
Here it is observed that we make unnecessary visit of el-
ements P> to Pg and Ps to Pio. Similarly, the elements
P1 to Pio are visited again while processing the join with
F,. For each child F; of root occurring after node Pio, we
as well make unnecessary visit of elements P> to Pg and
Ps to Pig during the process of join. This illustrates the
worst case behavior of the algorithm and is found to be
O(|PList| x |FList|).

3.2.2 Analysisof Btree-on-parentld algorithm

To avoid the unnecessary visit of the nodes Ps to Pg and
Ps to Pio during the processing of the scenario shown in
Figure 4, we maintain a B*-tree index on the nodes of XML
document taking parentld as key>. During the execution

2Since multiple nodes in XML tree could have same par-

root

Figure 4: Sample scenario for Btree-on-start algo-

rithm root

P1 P2 P3 F1 P4 P5 P6 F2
Figure 5: Sample scenario for Btree-on-parentId al-

gorithm

of the scenario shown in Figure 5, node F: is joined with
nodes Py, Py, and P3 by a making range search on B*-tree
selecting nodes E; such that Fi.parentld = E;.parentld
and E;.start < F).start. Similarly, node F» is joined with
Py, Ps, ..., Ps. Here we observe that nodes P;, P2, and P3
are accessed twice — for both Fi and Fs. If we have some
node F3 lying next to F2 as sibling, then F3 is joined with
all the nodes P1, Py, ..., Pg by revisiting them. This shows
that the elements in the PList are visited multiple number
of times; and the run time complexity becomes (Q(|PList|
x |FList|)

3.3 Multi-List Tree Join

We now describe the multi-list-tree join algorithms
that take time linear to the sum of lengths of input lists.
Just like the algorithm shown in Figure 3, at any instance,
we process only with the set of nodes under common par-
ent. But, the main drawback of the indexed-loop join al-
gorithms is that, for elements in FList, we need to make
multiple accesses of the elements in PList. We address this
drawback and propose a new solution that joins nodes in
the element lists using sibling-lists. A sibling-list, at any in-
stance, has the property that it holds a set of nodes from
PList that are under common parent; and it is maintained
at each level of the XML document tree.

3.3.1 Multi-list-tree-following

The algorithm shown in Figure 6 takes two element lists:
PList and FList, where each list is sorted on their start val-
ues. The output of the join is to generate all pairs (p, f)
such that f is following-sibling of p and produce the result
in Following order.

The description of the algorithm is as follows: p and f act
as cursors for PList and FList respectively. They start at
the beginning of these lists and sequentially traverse until
the end of one the lists is reached. At run time, a sibling-list
is maintained at each level so as to join with the Following
nodes in FList. The sibling-list at level i is referred as it"
sibling-list i.e., SList[i]. Eachsibling-list has an id specifying

ent, we allow duplicate keys when B*-tree is constructed on
parentld

99

Algorithm: Multi-list-tree-Following (PList, FList)
//PList: list of Preceding elements sorted on their start values
//FList: list of Following elements sorted on their start values
//SList: list of elements that are under common parent

1: p = first(PList);

2: f = first(FList);

3: while (not end of PList or FList) do

4 if (p.start < f.start) then

5: if (SList[p.level] # @) then

6: if (SList[p.level].Id == p.parentld) then
7 append p to SList[p.level];

8 else

9 SList[p.level].makeEmpty();

SList[p.level].Id = p.parentld;
11: add p to SList[p.level];
12: end if
13: else
14: SList|p.level].Id = p.parentld;
15: add p to SList[p.level];
16: end if
17 p = next element in PList after p;
18: else
19: if (SList[f.level] # () then
20: if (SList[f.level].Id == f.parentld) then
21: Output f with all elements in SList[f.level];
22: else
23: SList[f.level]. makeEmpty();
24: end if
25: end if
26: f = next element in FList after f;
27 end if
28: end while

Figure 6: Multi-list-tree join algorithm that output
pairs in the Following order

parentld of the nodes in the list at that instance.

During the join, when a node p from PList occurs be-
fore f, we check whether or not the sibling-list at p.level is
empty (line 5). If it is empty, we update the list’s id with
p.parentld and then simply add p to the empty sibling-list,
SList[p.level] (lines 14-16). Otherwise, in line 6, we check if
SList[p.level].id equals to p.parentld; if it is, we append p
to the nodes in SList[p.level] (line 7). If it doesn’t satisfy
this condition, we first empty the list, then update the list’s
id with p.parentld, and then add node p to the empty list
(lines 9-11). We continue the above process with the next
node in PList after p.

If a node f from FList occurs before p, we check whether
SList[f.level].id equals to f.parentId; if it is found to be
equal, we output f with all the elements in the list (line 20-
21). Otherwise, we empty the corresponding list (line 23);
this is because, if f is not a sibling of nodes in SList[f.level],
then it is guaranteed that no node that occurs after f in
FList is a sibling of nodes in SList[f.level]. The procedure
continues with the next node in FList after f.

Example [Multi—list—tree—following Algoﬁthm]

The Figures 7 (b) — (e) show the instances of the lists when
the Multi-list-tree-following procedure works on the
XML dataset shown in Figure 7(a). The result of the al-
gorithm is to output all (p;, f;) pairs such that p; € list
of all p-elements and f; € list of all f-elements and f; is
following-sibling of p;. The input lists are logically merged

root

(b)

@

P, P Fa

P, P, Ps Fs

(d)
© ©

Figure 7: (a) XML dataset, (b)—(e) instances during the evaluation of multi-list-tree join algorithm

in document order and the element with smallest start is
processed first. At each level of the XML document tree, a
sibling-list (SList) is maintained and is initially empty. In
the instance shown in Figure 7(b), we add P; and P> to the
empty SList[2] (sibling-list at level 2, where root is at level
1). We output F;, which is a next element in the merged
list, with elements in SList[2]; this is because F; is sibling
of both Py and P». Similarly in Figure 7(c), P3 and P4 are
added to SList[3] and output with the next element in the
merge list, which is F». In Figure 7(d), as P5 is sibling of
elements in SList[2], we append Ps to its respective sibling
list; and output F3 with Py, Py, and P5. Figure 7(e) shows
the scenario where Pg is not a sibling of elements in SList[3].
In this case, we first empty the list and then add Ps as a
new element to the empty list. Since F4 is sibling of Peg,
we output F4 with Ps. During the process of the join, we
can observe that the elements in the input lists are accessed
once.

3.3.2 Multi-list-tree-preceding

In this section, we provide a discussion on next join algo-
rithm: Multi-list-tree-preceding that takes PList and
FList as input; and outputs all (p, f) pairs such p € PList
and f € FList and p is a preceding-sibling of f. The resultant
pairs are produced in Preceding order.

As with the formal semantics [8] of XPath, each XPath

axis has natural inverses: descendant = ancestor™ ', preced-
1

ing = following ™' and preceding-sibling = following-sibling ™.

Taking advantage of the above property, the algorithm for
preceding-sibling axis can be developed by traversing the in-
put lists sequentially from end of the list to the beginning.
This is similar to joining of nodes in the XML document
tree in reverse document order i.e., the element with largest
start is processed first. The algorithm shown in Figure 6
can be easily extended to process preceding-sibling axis with
out loss of linearity in complexity during run time.

Figure 8 shows the algorithm for solving queries contain-
ing preceding-sibling axis. During the process of join, we
maintain a sibling-list of Following nodes (nodes from FList)
that join with the appropriate nodes in the PList. The
anatomy of the algorithm is as follows: p and f act as cur-
sors that start at the end of the input lists and sequentially
traverse to the beginning of the lists. During the join, when
a node f from FList occurs, we check whether or not the
sibling-list at f.level is empty (line 5). If it is empty, we
update the list’s id with f.parentld, and then add f to the
empty sibling-list, SList[f.level] (lines 14-16). Otherwise, in
line 6, we check if SList[f.level].id equals to f.parentId; if

Algorithm: Multi-list-tree-Preceding (PList, FList)
//PList: list of Preceding elements sorted on their start values
//FList: list of Following elements sorted on their start values
//SList: list of elements that are under common parent

1: p = last(PList);

2: f = last(FList);

3: while (not beginning of PList or FList) do

4 if (f.start > p.start) then

5: if (SList[f.level] # §) then

6: if (SList[f.level].Id == f.parentld) then
7 append f to SList[f.level];

8

9

else

: SList[f.level]. makeEmpty();

10: SList|[f.level].Id = f.parentld;

11: add f to SList[f.level];

12: end if

13: else

14: SList|[f.level].Id = f.parentld;

15: add f to SList|f.level];

16: end if

17: f = next element in FList before f;

18: else

19: if (SList[p.level] # 0) then
20: if (SList[p.level].Id == p.parentld) then
21: Output p with all elements in SList[p.level];
22: else
23: SList[p.level].makeEmpty();
24: end if
25: end if
26: p = next element in PList before p;

27: end if
28: end while

Figure 8: Multi-list-tree join algorithm that output
pairs in the Preceding order

it is, we append f to the nodes in SList[f.level] (line 7). If
it doesn’t satisfy this condition, we first empty the list, then
update the list’s id with f.parentId, and then add node f
to the empty list (lines 9-11). We continue the process with
the next element in FList before f.

If a node p from PList occurs, we check whether or not
SList[p.level].id equals to p.parentId; if it is found to be
equal, we output p with all the elements appeared in the list
(lines 20-21). Otherwise, we empty the corresponding list
(line 23). The procedure continues with the next element in
PList before p.

When the query contains multiple structural joins [13], the
result of one join is passed to the subsequent join. Since the
output of a join must be in the document order, we need to
produce pairs either in Following order or Preceding order

100

20

—
I wmr
[Bepid
16 |- Il s-start

12

Join time (#secs)

4 po-{l - H -] - 1= -
(3.2) (3.3 (4,2 (4,3 (52 (5,3 (6,2 6,3 (7.2 (7,3)
XML datasets with varying (n, m) values

Figure 9: Join time of the query: p/following-
stbling::f when tested on XML datasets of varying
(n, m) values

in the ascending order of start value. But, the algorithm
shown in Figure 8 produces pairs in reverse document order.
The algorithm can be easily modified to produce pairs in
the ascending order of start value. When a pair (p, f) is
produced during the join, instead of appending it to the end
of the OutputList, we insert the pair at the beginning of the
OutputList. So, at any instance, the OutputList is sorted
on the ascending order of the start. Here we note that the
result of a join is not pipelined to the subsequent join until
the last pair is output.

3.3.3 Analysis of Multi-list-tree Join Algorithms

Multi-list-tree join algorithms are easy to analyze. For
some element f € FList, we examine whether the id associ-
ated with SList[f.level] is same as f.parentId. If it satisfies,
we output f with all the elements in the list. Here, we can
observe that the equality check is made only with the id of
the corresponding sibling-list, irrespective of the number of
elements contained in it. As the time for generating out-
put is directly proportional to the output size, we get the
total join time for the algorithm as (Q(|PList| + |FList| +
|Output|) in worst case.

4. PERFORMANCE STUDY

In this section, we explain the comparative study of our
multi-list-tree join algorithms with indexed-loop join
algorithms. Our results demonstrate that our join algo-
rithms out-perform indexed-loop join algorithms.

4.1 XML Datasets

For our experiments, we used synthetic data so as to have
control over the XML tree structure and number of siblings
of each node. The generated datasets confirm to the DTD
that has the following pattern: For every element p or f
in the XML document tree, we have either children of pat-
tern (p”, f)xm or PCDATA, where n refers to number of p
nodes and m refers to number of such (p”, f) patterns. For
example, a pattern with n = 3, m = 2 looks like (p, p, p, f,

2,0, D f)

Join time (#secs)

38 42 52 62 68 75 77
XML datasets with varying sizes (MBs)

Figure 10: Join time of the query: p/following-
sibling::f when tested on XML datasets of varying
sizes with n = 6, m = 3

The datasets are generated by varying (n, m) values. Each
XML data is of size around 30 MB and approximately con-
tains 1 million nodes. We also generated datasets with
constant (n, m) value but varying in size from 38 to 77
MB. We parse the XML documents (using GNOME XML
Parser [16]) and represent each element using the number-
ing scheme (start, end, parentlId, level). The numbers are
assigned using an in-memory stack that grows to the maxi-
mum depth of the XML document tree. A counter is main-
tained and is incremented for each stack operation — push
or pop. When a node is pushed on to the stack, we assign
the current value of the counter to start value of the node.
Similarly, when node is popped out, we assign the current
value of the counter to the end value of the node.

‘We evaluated the join algorithms over the generated XML
datasets of varying (n, m) values and sizes. And the perfor-
mance of the algorithms are compared using a sample query:
p/following-sibling::f. We use a query with single structural
join as the aim of the paper is to demonstrate improved
performance for a single structural join, rather that tackle
a sequence of structural joins. Appropriate join order selec-
tion may be required in the latter case.

4.2 Experimental Testbed

The experiments were conducted using Red Hat v7.3 on
P-IV 1.6GHz processor with 256 MB RAM and 40GB hard
disk having a disk page size of 4KB. The disk is locally
attached to the system and is used to store XML data and
the element lists. All these algorithms are coded in C++
and compiled using GNU C++ compiler.

4.3 Implementation Details

The main objective of our experiments is to characterize
the performance of the join algorithms discussed in this pa-
per. To evaluate our join algorithms, we implemented the
indexed-loop join algorithms using B*-tree index struc-
ture available in Berkeley DB [17]. For each element list,
we maintained two B*-trees: one constructed using start as
key and other using parentld as key. Algorithms that use in-
dex may require making multiple scans over the elements in

101

one of the input lists. Moreover, these algorithms require to
have index over the lists and will not be able to solve queries
containing multiple structural joins. For example, in query
a/b/following-sibling::c, only the elements in b-list, that are
children of elements in a-list, join with the elements in c-
list. As there is no index available on the resultant subset
of elements in b-list, it is not possible to effectively process
subsequent joins.

We implemented the multi-list-tree join algorithms
also by utilizing the B+-tree constructed using start as key;
this is done to have the same overhead incurred by use
of the Berkeley DB in our algorithms as well as in the
indexed-loop join algorithms. During the processing of
following-sibling, we sequentially traverse (using cursors avail-
able in Berkeley DB) the elements at the leaf nodes of the
B*-tree from first to last (last to first while processing the
preceding-sibling axis). Furthermore, multi-list-tree join
algorithms access each element in the element lists only once.

4.4 Experimental Results

This subsection details the experimental evaluation and
performance plots of the join algorithms. We use the fol-
lowing notations to present the join algorithms: B-start
and B+pid refer to indexed-loop join algorithms that op-
erate on BT -tree constructed using start and parentld as a
key, respectively. MLT refers to multi-list-tree join al-
gorithm that process the join using sibling-list at each level
of the XML document tree.

We compare the performance of multi-list-tree join
algorithms with indexed-loop join algorithms by operating
them on different XML datasets: (i) varying (n, m) values
with fixed data size and (ii) varying data sizes with fixed (n,
m) value. The performance plot of join algorithms operat-
ing on varying (n, m) values is shown in Figure 9 and those
operating on varying sizes is shown in Figure 10; the output
cardinality is around 2 to 4 million pairs. In any instance,
the performance of multi-list-tree join algorithms is sig-
nificantly better than that of indexed-1loop join algorithms.
The improvement in the performance is due to its ability to
perform join by making a single scan over elements in the
input lists and never having to buffer disk pages during the
process of join.

From the plots shown in Figure 9 and Figure 10, we can
observe that Btree-on-parentId algorithm performs 2 to 3
times better than Btree-on-start algorithm; this is due to
the lessening of number of element scans made during the
process of join. As indexed-loop join algorithms have to
access each element occurring in the element lists multiple
times, we need to maintain a buffer that temporarily stores
recently visited elements.

‘We ran these experiments several times to report the warm
cache results; and the CPU times plotted are the average of
many runs of these algorithms.

5. CONCLUSIONS

In this paper, we propose structural join algorithms that
solve XPath queries containing sibling joins. We show that
the new join algorithms, called multi-list-tree, take time
linear in the sum of lengths of input lists. Experimental re-
sults show that our join algorithms perform better than the
indexed-loop join algorithms for sibling joins. We notice

that even the Bt-tree based index results in multiple scans
over the element lists. The proposed join algorithms utilize
sibling-lists at each level of the XML document tree; and
also make a single scan over the elements in the input lists.

6.
(1]

3]

[4]

(8]

[0

(10]

(11]

(12]

(13]

(14]

(15]

[16]
[17]

102

REFERENCES

S. Al-khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,
D. Srivastava, and Y. Wu. Structural joins: A
Primitive for Efficient XML Query Processing. In
ICDE, pages 141-152, 2002.

N. Bruno, N. Koudas, and D. Srivatsava. Holistic twig
joins: Optimal XML pattern Matching. In SIGMOD.
pages 310-321, 2002.

A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernandez, M. Kay, J. Robie, and J. Simon. XML
Path Language (XPath) 2.0 Technical Report, W3C
Working Draft. Available at
http://www.w3.orq/TR/XPath20/. 2001.

D. Chamberlin, D. Florescu, J. Robie, J. Simon, and
M. Stefenscu. XQuery: A Query Language for

XML. W38C Working Draft. Available at
http://www.w3.org/TR/XQuery 2001.

S-Y. Chein, Z. Vagena, D. Zhang, V. J. Tsotras, and
C. Zanilo. Efficient Structural Joins on Indexed XML
Documents. In VLDB. pages 263-274, 2002.

P. F. Dietz. Maintaining Order in a Linked List. In
ACM Symposium on Theory of Computing, pages
122-127, 1982.

D. Florescu and D. Kossman. Storing and Querying
XML data using RDBMS. IEEE Data Engineering
Bulletin, 22(3):27-34, 1999.

Georg Gottlob, Christoph Koch, and Reinhard
Pichler. Efficient Algorithms for Processing XPath
Queries. In VLDB, 2002.

T. Grust. Accelerating XPath Location Steps. In
SIGMOD, pages 109-120, 2002.

H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree:
Indexing XML Data for Efficient Structural Joins. In
ICDE, pages 253-264, 2003.

Q. Li and B. Moon. Indexing and Querying XML data
for Regular Path Expressions. In VLDB, pages
361-370, 2001.

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
J. Dewit, and J. F. Naughton. Relational Databases
for Querying XML Documents : Limitations and
Opportunities. In VLDB, pages 302-314, 1999.

G. V. Subramanyam and P. Sreenivasa Kumar.
Efficient Processing of Multiple Structural Join
Queries. In 21°¢ BNCOD, 2004.

I. Tatarinov, S. Viglas, K. Beyer, J.
Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and Querying Ordered XML using a
Relational Database System. In SIGMOD, pages
204-215, 2002.

C. Zhang, J. Naughton, D. Dewit, Q.Luo, and G.
Lohman. On supporting containment queries in
Relational Database Management systems. In
SIGMOD, pages 425-436, 2001.

Available at hitp://www.zmlsoft.ory.

Available at http://www.sleepycat.com.

