
TAP: A Platform for Enabling Enterprises to Develop Business

Specific Text Analytic Applications

Neeraj Agrawal
IBM India Research Lab
nagrawal@in.ibm.com

Scott Holmes
IBM Almaden Research Lab

holmes@us.ibm.com

Sachindra Joshi
IBM India Research Lab

jsachind@in.ibm.com

Sumit Negi
IBM India Resarch Lab
sumitneg@in.ibm.com

Abstract

Many enterprises are beginning to exploit the vast amount
of data available on the Web, to streamline their business
processes and gain advantage over their competitors. How-
ever, building text analytic applications that provide such
vital business information, is very hard. Further, there are
several functionalities that are common across many text
analytic applications. In this paper, we provide a platform
called TAP (Text Analytic Platform), that provides several
tools and services that are used commonly across many text
analytic applications. TAP could be used by business enter-
prises to build text analytic applications rapidly. It uses
WebFountain to gather the application-specific data and
provide other tools that help in developing and deploying
application-specific miners.

Keywords

1. INTRODUCTION
The immense popularity of the Web has transformed the

Internet into the largest global information infrastructure.
Its existence has enabled ordinary citizens to become not
only consumers of information but also its disseminators.
This wealth of information has opened up new avenues for
business. Today, many enterprises are beginning to exploit
this vast amount of information to streamline their busi-
ness processes and to gain advantage over their competitors.
This has led to the development of business applications that
mine the unstructured text of Web pages and extract rele-
vant information that could lead to a better understanding
of the factors affecting their business. However, building
text analytic applications that provide such vital informa-
tion, is hard.

There are several components that are common to many

text analytic applications. These components can be ab-
stracted out to build a platform that enables rapid devel-
opment of text analytic business applications. Figure 1, de-
picts the key building blocks that make up a general text
analytic application. All text analytic applications contain
a data gathering module, a repository to store data, an in-
dexer, a set of base-level miners also called annotators, and
an environment for the execution of miners. For scalability
reasons, these building blocks can exist on a distributed en-
vironment and communicate with each other using service-
level protocols such as SOAP [5] and Vinci [1]. In this paper,
we provide a platform called TAP (Text Analytic Platform),
that could be used by businesses to build large-scale text
analytic applications rapidly. TAP provides tools for data
gathering, data storing and developing text analytic appli-
cations.

Data gathering is an important task for text-analytic ap-
plications. Search engines have been by far the most popular
way of gathering topic-specific information. Search engines
provide a query interface, that given a set of keywords, re-
turns a ranked list of documents containing the key words.
Though this method is very simplistic, it lacks the desired
flexibility, power and semantic richness for a meaningful con-
sumption of the information present on the Web. As an ex-
ample, it is difficult for a business to automatically extract
information from the Web that may act as a trigger event for
the sale of their products. An Example of such trigger event
could be indications of revenue growth of a company that
could be a potential customer. To detect such trigger events
automatically, one needs to gather all relevant documents.
Most text-analytic applications need an application-specific
document set. However, there is no simple and easy way
of obtaining such a document set using the search engine
interface. Thus there is a need for a more powerful way of
gathering the set of relevant documents. TAP uses an al-
ternative approach for building an application-specific (on
topic) store. We argue that for building a relevant on-topic
store for an application, certain types of entity identification
and annotations needs to be done apriori. Such annotations
could then be used to build on-topic store. Further, several
pre-processing tasks such as language identification, removal
of pornographic pages and duplicate pages need to be done.
We call the modules that perform such general text analyt-
ics and annotations as base level miners. Performing such

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

103

Figure 1: Basic Building Blocks of Text Analytic Applications

base level mining operations and annotations at the Web
scale requires tremendous amount of resources.

TAP is built on top of WebFountain [4] that gathers doc-
uments from the Web, and then runs them through the base
level miners. WebFountain is a platform for very large-scale
text analytics applications. WebFountain itself could also
be seen as a text analytic business application that can be
used to provide semantically rich application-specific data
to different businesses. It consists of a distributed crawler,
store, indexer and several base-level miners.

TAP comprises of the WebFountain(WF) cluster, WF Web
services, WF gateway and WF Appliance. It provides tools
to build an application-specific store, a set of base level min-
ers and, an environment for developing text analytic appli-
cations. The proposed platform is flexible, powerful and
extensible.

Gruhl et.al. [4] describe in detail the different components
used in performing large scale mining and addresses scalabil-
ity issues. Thus the focus of the paper is on “an architecture
for large scale text analytics”. On the other hand this pa-
per describes an approach that builds on top of the mined
data provided from the WebFountain cluster. Our proposed
technique is useful for companies who want to leverage this
mined data for building their own high-level text analytic
applications.

The rest of the paper is organized as follows. In Section 2,
we briefly describe the building blocks of the WebFountain
cluster. In Section 3, we first present an overview of TAP
and then describe WF Web services and WF gateway in
detail. In Section 4, we provide details of WF Appliance.
We describe an example text analytic business application in
Section 5, and discuss how our framework could be used to
build it rapidly. Finally, in Section 6, we give our conclusion
and some future work.

2. BACKGROUND
Our proposed framework uses WebFountain to gather ap-

plication specific data. In this section, we present brief de-
scription of the different components of WebFountain.

WebFountain is designed as a loosely coupled, share-nothing

parallel cluster of Intel-based Linux servers. As discussed
in Section 1, WebFountain itself can be viewed as a text-
analytic business application. Figure 2 depicts the key build-
ing blocks and overall architecture of WebFountain. Below,
we briefly describe different components of WebFountain.
Readers are referred to [4] for further details.

Data Gatherer: The data gathering component is re-
sponsible for collecting unstructured, semi-structured, and
structured data from various sources, such as the World
Wide Web, corporate intra-nets, news feeds, and, bulletin
boards. The WebFountain crawler is distributed, meaning
that performance can be scaled linearly by adding machines
and continuous, meaning that once started, the crawler im-
plements a strategy to maintain a fresh copy of every doc-
ument by re-crawling the Web. In addition to crawling the
Web and corporate intra-nets, the data gathering compo-
nent is also responsible for acquiring other sources, such as
bulletin boards, news feeds, and third-party-purchased data
sources.

Store: In WebFountain storage model, all data in the sys-
tem is represented as one or more entities, which are typed
set of keys with associated typed values. The task of the
WebFountain Store component is to manage entities repre-
sented as frames in XML files. The store provides functions
to store, modify and access these entities. Every entity in
the system has a 16-byte universal entity identifier called a
UEID, which is hashed to determine storage locations, pro-
viding uniform distribution across all the devices.

Indexer: The WebFountain indexer is used to index not
only text tokens from processed entities, but also conceptual
tokens generated by annotators. The WebFountain indexer
supports a number of indices, each supporting one or more
different query types. Boolean, range, regular expression,
and spherical queries are typical. The indexing approach
is scalable and not limited by main memory as they adopt
a sort-merge approach in which sorted runs are written to
disk in one phase and final files are generated in a merge
phase. The indexer supports the WebFountain Query Lan-
guage (WFQL), the language that allows processes within
the system to specify declarative combinations of result sets

104

Figure 2: Architecture of WebFountain Cluster

from different parts of the system.
Base Level Miners: Miners are special-purpose pro-

grams that extract information from entities in storage and
add new key-value pairs to the entities. These are also
known as annotators. The basic purpose of miners is to
remove noise such as duplicate and pornographic pages and
to identify entities such as company and people names, lo-
cations and dates that could be used to build application-
specific data store. Miners read certain key-value pairs of an
entity, process them and store back new key-value pairs. As
an example, the porn miner reads the dotages content of a
page and writes back a key named isPorn that captures the
information about whether the given page is pornographic
or not. Output of a miner can be used by some other higher
level miner. Language detector, porn detector, company spot-
ter and location spotter are some of the examples for base
level miners.

Communication Layer: WebFountain uses service ori-
ented architecture for each of its component. It uses a
lightweight, high-speed Simple Object Access Protocol (SOAP)
derivative called Vinci [1]. Vinci is an architecture for build-
ing distributed systems using a light weight, point to point
XML-like RPC protocol. Vinci is based on non-validated
XML document exchange in order to allow for loose con-
nections between distributed components. It dispenses with
much of the overhead associated with security, verification,
and correctness checking associated with communication be-
tween untrusted parties. It is therefore suited for fast and
scalable intra-net application. The components of Web-
Fountain cluster use Vinci and provide their capabilities to
other components in form of Vinci services.

3. OVERVIEW OF TAP

3.1 Overview
TAP provides a platform for rapid development of text an-

alytic applications. It consists of the WebFountain cluster,
WF gateway, WF Web services and, WF appliance. TAP
uses the pre-annotated data of the WebFountain cluster to
build application-specific data store. It also provides tools
and services needed for rapid development of text analytic
applications. Figure 3 describes the different components
and their interactions. WF gateway is the entry point for
the outside world to the WebFountain cluster. WF Web
services run on the WF gateway and provide access to the
resources of the WebFountain cluster. WF Appliance uses
the WF gateway to build an application-specific store and
provides several tools and services that help in development
of text analytic solutions . WF Web services and WF gate-
way enables TAP to access the pre-annotated data stored in
the WebFountain cluster. In the following subsections, we
present details about WF Web services and WF gateway.
We provide details about WF Appliance in Section 4.

3.2 WebFountain Web Services
As described in Section 2, WebFountain uses a proprietary

XML based communication protocol called Vinci. It is op-
timized for high performance and lacks data validity and
security. Vinci could be used for inter-component communi-
cation if all the communicating components exist in a trust-
ing environment such as in an intra net. The level of trust
that is assumed in an intranet setting can not be assumed
when the communicating components belong to different en-
vironments. In order to provide a secure access to the mined

105

Figure 3: Overview of TAP

data on WF cluster, Vinci services provided by the differ-
ent components of WebFountain are exposed to the out side
world using the Web service [2] approach. Web services are
programmatic interfaces used for application-to-application
communication through the Web. They establish a mes-
saging channel that shuttles XML messages back and forth.
WebFountain Web services are wrapper classes that take
SOAP messages as an input from the external world and
invoke corresponding Vinci services. WebFountain Web ser-
vices can be categorized in two different classes depending
on the access rights required to use them.

• Read Web Services: These Web services can only
read data from the WebFountain cluster and do not
modify them. We have the following set of read Web
services.

– Resource discovery Web service: Application de-
veloper can view the details of all authorized re-
sources on the WebFountain system, such as stores,
keys and indices, using Resource discovery Web
service. The users can specify a service name, or
can invoke this Web service without any parame-
ters in which case details about all the authorized
services are given.

– GetEnumeration Web service: With the GetEnu-
meration Web Service, a client can query the Web-
Fountain platform. The user specifies a valid WFQL
query for creating a result enumeration. Enumer-
ations are defined as unordered streams of UEIDs
traversable by an iterator.

– GetKeys Web services: With the GetKeys Web
service, a client can retrieve the key-value pairs

for a given set of documents from a store. The
user specifies a valid store name, a list of UEIDs,
and the key names for which to obtain the values.

• Modify Web Services: These Web services can cre-
ate, drop and modify instances of components. We
have the following set of modify Web services.

– Create store Web service: With the Create store
Web service, a client can create an empty store.
At the store creation time a user specifies a store
name of the store to create and type of documents
that will be stored into the store.

– Build index Web service Using the Build index
Web service, a client can index a store with a
given set of keys and index configuration options.
The user specifies a valid store name, the keys in
the store that are to be indexed, and an index
service name.

– Drop store Web service: Using the Drop store
Web service, a client can drop and clean (deal-
locate) a store and its associated index service or
services. The user is required to specify a valid
store name for dropping.

– Drop index Web service: This Web service can
be used to drop an index.

– Write to store Web service: Write to store Web
service could be used to populate an already cre-
ated store. A user needs to specify a valid store
name, the entities that are to be added to the
store along with any keys that need to be dropped
prior to adding the new keys.

106

3.3 WebFountain Gateway
The WebFountain gateway provides access to the mined

data stored in the WebFountain cluster to application devel-
opers. Read Web Services given in Section 3.2, are deployed
on the WebFountain gateway. This set of Web services pro-
vides only querying and reading mechanism on the Web-
Fountain cluster, to the application developers. WebFoun-
tain gateway also ensures quality of service and provides
security mechanisms. Following subsections present details
on these modules.

3.3.1 Security
The Security Administration component is intended to

be a facility for both, the WF Gateway as well as WF-
Appliance. It manages users and their access rights to var-
ious resources. The resources on the WebFountain cluster
can be categorized into stores, indices, keys (or annotations
), and web services. There could be multiple stores, each
containing its own set of keys and indices on the WebFoun-
tain cluster. WF Web services are also treated as resources.
This enables selective access to the capabilities of WebFoun-
tain components by the different users.

With different users querying the WebFountain cluster for
building an application-specific data store, it is essential to
have a secured and authorized access framework in place.
The security in our system is at two levels viz., (1) authenti-
cation: wherein a user supplies a user-id and password, and
once authentication succeeds, (2) authorization: to check
whether this user is authorized to access the data and an-
notations, or the invoked web services. Since users and the
WebFountain cluster could be remotely located, the commu-
nication between them is over an encrypted channel which
is SSL based. An Appliance or WF GateWay administrator
can administer control to the resources at different levels:

• Store level access policy: Store level access policy
could be used to allow or disallow the read and write
operations on a store. A user may also be granted
permission on whether he is allowed to index a store
or not.

• Index access policy: At the index level a user may
be granted permission on whether he is allowed to
query the index or not.

• Key level access policy: Apart from the store level
access policy, the access can also be controlled at a
much finer level i.e., at the key level. Each key, for a
particular store, has a set of access policies associated
with it. These include permissions to read the value of
that key, write or overwrite (if the key already exists),
or drop the key using the WebService layer. The au-
thorization at key level is granted only if the user has
the required permissions for the corresponding store.

• Web service level access policy: As mentioned
earlier, a WF Appliance and the WF Gateway expose
a set of Web Services. Using the WebService access
policy level an Administrator can grant authorization
to users for invoking any subset of the services.

The Security Administration component allows an admin-
istrator to manage user accounts. Other components like

logging and billing also call upon the services of the Secu-
rity Administration component for their tasks.

3.3.2 QOS Controller
An application using WebFountain infrastructure can put

significant load on the WebFountain cluster. Unlike search
engine clients, a WebFountain application may consume all
the documents that satisfy a particular query. Number of
documents satisfying a typical application query may be as
large as tens of million. Transferring such a large amount
of data will utilize a lot of resources of the cluster and may
affect quality of service to other applications. WF Gateway
has a mechanism to control the cluster resource utilization
by an application. This mechanism takes four parameters
into consideration

• Quality of Service Agreement: Each application
is assigned a number between 0 and 100 depending
on the contract. Higher numbers signify commitment
towards superior quality of service.

• Query Complexity: The complexity of a query is
approximated by the number of OR and AND oper-
ators present in the query. Typically, higher number
of query terms consume more resources of the cluster.
An upper limit to the number of AND and OR terms
present in a query is set for each user, depending on
his agreement.

• Current Load: It is desirable that all applications
slow down their access to the WebFountain cluster
in the event of high load on the system. QOS Con-
troller monitors the response time of various services
and quantifies the load on the system as a number be-
tween 0 and 100. The number 100 suggests that the
cluster is idle and 0 signifies a very high load state.

• Application Load: We assume that response time
to a query is proportional to the load caused by the
query. Therefore, longer the time it takes for the clus-
ter to respond, more the application is penalized. QOS
Controller keeps an average of the time taken by the
requests from each application. Average for the next
request is calculated as half of the sum of the time
taken in current request and previous average.

The system tries to keep gaps of certain time interval be-
tween two subsequent requests by the application, in order
to control the speed of access. The duration of this inter-
val is calculated as a function of the average time taken by
the application requests, cluster load and, the QOS agree-
ment with the client. The function is given by the following
equation:

f(load) = 2(50−load)/X (1)

interval = avg ∗ f(QoS) ∗ f(currLoad) (2)

Load is assumed to be between zero and hundred. Func-
tion f takes the value 1 when load is 50. It increases with
the decrease in the load value. X is a constant which defines
the sensitivity of the load function. For every deviation in
the value of load by X causes load factor to double. QoS

107

controller ensures that time difference between end of the
last request and new request is at least equal to the inter-
val. Otherwise it blocks the application request for some
time to ensure minimum interval.

4. WF APPLIANCE

4.1 Overview
The WF Appliance contains a scaled down version of the

WebFountain cluster. It hosts a local WF store and indexer.
The Appliance provides a rich set of user interface to use
and administer the different WF components such as store
and indexer. WF Appliance also hosts a wide variety of a
generic set of tools that enables customers to rapidly develop
and deploy business specific text-analytics solutions. The
tools are designed considering the different stages involved
during the development of most of the text mining solutions.
In general, text mining solutions comprise of the following
stages:

• Domain specific data gathering

• Domain specific mining

• Querying, retrieving and visualizing

WF Appliance provides tools to support all of the above
mentioned stages. In the following subsections, we describe
these tools in detail.

4.2 Domain Specific Data Gathering
Gathering of domain specific data is one of the most diffi-

cult and time consuming step in building any text analytic
solutions. WF appliance provides two different tools that
could be used to build domain specific stores rapidly. Be-
low, we provide details of these tools.

4.2.1 On-topic store builder
Goal of a text analytic applications is to extract and ana-

lyze the information available on the Web. The first task of
any text analytic application is to build a data set from the
Web. It is important to not contain irrelevant documents in
the data set as they can introduce noise in the results. The
set of irrelevant documents also take extra space and waste
computing resources. Data set being analyzed by the appli-
cation should also ave all the relevant pages present on the
Web. Otherwise the results obtained would be incomplete.
This suggests that it is important to have a high precision
and recall of the relevant documents in a data store. Gath-
ering the data set is one of the biggest hurdle in building
a large scale web data mining application. Focused crawl-
ing [3] has been proposed as a solution to the problem of
getting relevant documents from the Web. However, it is
difficult to have a high coverage and relevancy through fo-
cused crawling because of the following reasons.

• A good set of seed URLs is required for the crawler
to reach most of the relevant pages on the Web. It
is very difficult to identify such seed URLs for each
topic. Further, there is no way of finding out if the
seeds URLs indeed cover the set of relevant documents
on the Web.

• Focused crawlers have to rank the URLs without look-
ing at its content. Hence, it is likely to make mistakes
more often. Focused crawler may miss important doc-
uments, if they are conservative in crawling links. On
the other hand if they follow every possible link they
may get lots of irrelevant documents.

As described in Section 1, WebFountain cluster could be
used for building the on-topic store. The WebFountain clus-
ter uses a query language Web Fountain Query Language
(WFQL). In next subsection we give a brief description of
WFQL.

4.2.2 Web Fountain Query Language
Web Fountain Query Language (WFQL) is a powerful

query language. Due to space constraints, we do not dis-
cuss the syntax of WFQL, but only describe some features
and functionality that are relevant here. For more details,
please refer to the Web Fountain Architecture[4]. Following
are the three main features of WFQL:

• Key word based search: returns documents with
the given keys words. It has support for proximity as
well as phrase search.

• Regular expressions search: can be done on the
keys that have been indexed using WILD CARD mode.
It provides capability of searching on regular expres-
sions. As an example, to obtain all the pages that
contain the word “computers” in their URL, a regular
expression query, “*/computers/*” could be used.

• Integer and boolean search: A store may con-
tain keys that have integer or boolean values. Inte-
ger and boolean search could be used to query such
types of keys. As an example a query “(OutLinks >
100) and (isPorn = false)” would return all the pages
that contain more than 100 out-going links and are not
pornographic pages.

These constrains can be nested inside each other to form
more complex queries. For example, a query that returns
all documents that have ”on demand” and ”ibm” within
a window of 10 words and ”URL like *ibm.com” could be
constructed by using key word based proximity search and
regular expression search. We call a WFQL query as an
on-topic query if it covers a topic well. For example, an on-
topic query on automobile sector contains terms like speed,
acceleration, fuel efficiency, price etc(better example). A
typical on-topic query may contain hundreds of terms. We
found that it is easier to come up with search terms than to
identify the good seed URLs.

WF Appliance provides a tool called on-topic store builder
(OTSB) through which one can build ”on-topic store” with
high coverage and precision using the WebFountain plat-
form. Following are the steps for building an on-topic store.

1. On-topic query building: An ”on-topic query” can
be constructed using a simple user interface. The user
interface offers the full richness of WFQL without re-
quiring users to be familiar with it.

2. On-topic store building: Once the on-topic query
has been built, user can see the sample documents.

108

We plan to integrate a summarizer which would get
the first few thousands documents and help the user
to understand the kind of documents query returns.
This would help user to refine their on-topic query for
better coverage and relevancy to the topic.

3. Refreshing on-topic store: Once an on-topic store
build is complete, OTSB periodically refreshes the store
at the WF Appliance end by getting newly crawled
pages at the WebFountain cluster. This is achieved by
adding a condition ”crawldate > ’lastrun date’” in the
WFQL.

4.2.3 Support for Heterogeneous Data Sources
Enterprises contain tremendous amount of structured data

that is produced and consumed during different business
processes. This data is stored in different databases and
can be used in many text analytic applications. As an ex-
ample, an application that gathers weather information for
different locations of a company, would need information on
addresses of all the offices of the company. This could be
provided from a database table. Keeping in mind such appli-
cations, that may require inputs from structured data, WF
Appliance provides the functionality of ingesting the data
contained in database tables into a store.

Several database implementations such as DB2, Oracle
and Microsoft SQL server are popular in industry. Instead
of providing an ingesting mechanism for individual database
implementations separately, WF Appliance leverages upon
the XML export capability of databases and provides a ser-
vice called XML Ingester. XML Ingester service takes a
set of XML documents and the associated XML schema to
convert the XML data into the WF document format and
then pushes it into a WF store. The XML documents could
be generated by XML export mechanism built in databases.
XML schema file defines the different data fields that are
to be ingested along with their types in WF store. As an
example, an XML document may contain three data fields
corresponding to day, month, and,year. For the text ana-
lytic application, application developer may want to view
these three fields aggregated in a single field and store them
in WF store with date type format. Such conversions are
achieved by an XML schema file provided by the applica-
tion developer during the ingestion process.

4.3 Domain Specific Mining

4.3.1 Overview
WF Appliance provides a component called MDE (Miner

Deployment and Execution Environment) that provides sup-
port for the development and the execution of domain spe-
cific miners on the data. Figure 4 depicts the different sub-
components in MDE, and their interactions. MDE provides
the following functionalities:

• Guidelines for developing the Miners

• Deploying the miners

• Defining the flow of miners.

• Executing the predefined flow of miners.

In the following subsections, we provide details on these
functionalities.

4.3.2 Guidelines for Developing Miners
Miners are special-purpose programs that extract infor-

mation from already stored key-value pairs of an entity and
add new key-value pairs to the same or other entities. Note
that the content of a document is also stored as a key-value
pair. The WF infrastructure is fairly simple from a miner’s
perspective. Web pages are stored in an application-specific
store along with other meta data in the form of key-value
pairs. Enumeration (list of UEIDs) iterators provide several
ways to selectively step through the data in a store. Miners
read key-value pairs from a store using standard read APIs
and extract pertinent information. It then writes back the
mined data to the store using the standard write APIs.

4.3.3 Deploying the Miners
Deployment of a miner involves uploading the miner bi-

nary and an XML descriptor file. The XML descriptor file
contains the specification of input and output of the miner
in terms of the key-value pairs read and written from and
to the store. It also contains the different options supported
by the miner. Both, the binary version of the miner and its
descriptor file can be zipped together and uploaded to the
appliance for its deployment by a Web based user interface.

4.3.4 Defining the Flow of Miners
Most text analytic applications can be viewed as a set of

miners run in sequence where output of a lower level miner
acts as an input to another higher level miner. As an exam-
ple, an application that finds CEOs of companies automati-
cally from a set of pages, would execute a miner that identi-
fies company names and another miner that identifies person
names, followed by a miner that given a set of pages with
identified company and person names, would find the rela-
tionship. Therfore, from the application development point
of view, chaining of miners is an important task. MDE pro-
vides support for chaining of a set of deployed miners into
a single execution unit called a mining flow. During the
creation of a mining flow, the user can configure each indi-
vidual miner in the flow. This makes the task of application
development simple. Once a mining flow is defined the user
can save this flow under a given name for future reuse.

4.3.5 Executing the flow of miners
A user can choose any of the predefined mining flows and

execute it on a chosen store. MDE provides a flow execution
environment called foreman that executes each miner in the
mining flow as a child process. It monitors and restarts
the individual miners if they crash and thus provides failure
recovery. It also keep statistics on performance and error
rates. Each page is passed through the chain of miners,
before being written back to the store, so that the overhead
of store communication is reduced.

4.4 Querying, Retrieving and Visualizing
In general, text analytic applications require ability of in-

dexing and querying the rich annotations identified by it.
One of the most preferred way of consuming this informa-
tion is by retrieving a set of documents based on user queries.
As described in Section 4.1, WF Appliance provides a pow-
erful indexer that can be used to index the annotations. For
retrieving a set of documents, queries can be formed using

109

Figure 4: Miner Deployment and Execution Environment

WFQL. The set of relevant documents can be obtained by
executing the given WFQL on the WF indexer. WFQL is a
very rich and non-trivial query language. Users may find it
difficult and cumbersome to create queries in WFQL. There-
fore, WF Appliance provides a simple user interface for the
creation of queries. It also provide a query translator service
that converts a user query into the corresponding WFQL.

Typically, the set of returned documents in response to a
query could be very large. Therfore, several ranking algo-
rithms have been developed that order the returned set of
documents such that the most relevant document appears
on the top. WF Appliance provides a service called search
service that given a WFQL query, uses the WF indexer to
obtain the set of documents. It further uses the tf-idf algo-
rithm to rank the returned set of documents. Other ranking
algorithms could be plugged in the search service.

In many situations, putting the annotated data in databases
or in OLAP servers and then performing the slicing and dic-
ing operations on the mined data could provide valuable in-
sight. Instead of providing a functionality of exporting the
data contained in WF store to individual database imple-
mentations, WF Appliance provides a functionality called
XML export to export the data contained in WF store to
XML format. The XML can then be ingested in databases
using some other third party tools. WF Appliance provides
a user interface that guides an appliance user step by step
to obtain an XML dump of selected portion of a store into
XML files.

5. AN EXAMPLE APPLICATION
In this section, we describe the development and deploy-

ment of a sample text analytics application on TAP. The
sample text analytic application that we consider here an-
swers following types of questions:

• What are the competitors of a given company?

• Who all are the customers of a given company?

• What is the relationship of a given person with a given
company?

We present the development of this application in three
steps.

Step 1
In this step, the application gathers the relevant data set
from the Web. It uses OTSB provided in WF Appliance
for this purpose. Lets assume, that WebFounatin cluster
has a base level miner called company spotter that identifies
company names in documents. The application developer
can formulate a query using the OTSB user interface, that
returns all the documents containing at least one company
name in it. The built on-topic store contains all the pages
that have at least one company name in it. Note that it
would have been very difficult to build such store without
the WebFountain platform.

Step 2
In this step we perform domain specific mining. It is evident
that, to build this application one needs to build at least 2
miners. One, that spots person names in a document and
another called relationship miner that finds relationships be-
tween entities present in a document. Here entities could be
either person names or company names.

The relationship miner could further be comprised of sev-
eral lower level miners such as sentence boundary detector
miner, and coreference miner. After developing all the re-
quired miners, MDE could be used to build a mining flow
that contains a chaining of the miners. The mining flow can
then be executed using MDE.

Step 3
In this step, we provide different ways of consuming the
extracted information. The tagged annotations could be
indexed and then search service could be used to answer
specific queries. One does not even need to build a user in-
terface for this functionality. The search UI provided in WF
Appliance along with the WFQL translation service could
be reused for this purpose. Alternatively, the annotations
could be exported to a database or OLAP server using XML
export functionality.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a platform called TAP, that

110

could be used by enterprises, to build text analytic ap-
plications. TAP uses WebFountain cluster to gather the
application-specific data. It uses WF Web services and WF
gateway for building on-topic store securely and efficiently.
TAP also contains WF Appliance, which provides several
tools and services that could be used for the rapid develop-
ment of text analytic applications. We also provided an ex-
ample text analytic application and describe how TAP could
be used to build such an application rapidly. In our future
work, we will look at further functionalities that could be
helpful for extracting semantically rich information and vi-
sualization of data. We also plan to include the functionality
of more complex conditional chaining of miners for building
higher level miners.

7. ADDITIONAL AUTHORS
Ajay Dhawale (email:adhawale@in.ibm.com), Ana Lelescu

(email:lelescu@us.ibm.com), Hongcheng Mi (email:hcmi@us.ibm.com),
Manish Sethi (email:manishsethi@in.ibm.com), and Amit
Tuli (email:tamit@in.ibm.com),

8. REFERENCES
[1] R. Agrawal, R. J. B. Jr., D. Gruhl, and

S. Papadimitriou. Vinci: A service-oriented architecture
for rapid development of web applications. In 10th
World-Wide Web Conference (WWW10), pages
355–365, May 2001.

[2] B. Booth, H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris, and D. Orchard. Web Services
Architecture. http://www.w3.org/TR/ws-arch/,
February 2004.

[3] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
crawling: A new approach to topic-specific web
resource discovery, May 1999.

[4] D. Gruhl, L. Chavet, D. Gibson, P. Pattanayak,
A. Tomkins, and J. Zien. How to build a webfountain:
an architecture for very large-scale text analytics. In
IBM Systems Journal. IBM, March 2004.

[5] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
and H. F. Nielsen. Simple Object Access Protocol
(Version 1.2). http://www.w3.org/TR/soap12/, June
2003.

111

