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ABSTRACT

Equations play a prominent role in developing theories and
formulating problems. Most scientists find it easier to work
with equations, rather than text documents or keywords.
The problem of processing large number of equations, facil-
itation of search on equations and indexing equations is not
trivial. In this paper, we develop a framework to manage,
store and process equations. We define various equation sim-
ilarity measures, propose various search and indexing tech-
niques. A toolkit has been built to process equations and
enable users to browse and search equations [9].

Keywords: information retrieval, equation search, simi-
larity, indexing.

1. INTRODUCTION

Most of the data mining [5] work has concentrated on ma-
nipulating numerical/categorical data through techniques
such as association rules, clustering and classification. Re-
cently, there has been some work on extracting well-defined
structures from free text or unstructured documents using
HMM models [1]. But the role of text mining is much more
higher than this. One of the major challenges in AI is com-
prehending text and few approaches towards this deal with
text summarization, content management, and natural lan-
guage processing [7]. Moreover, text databases are rapidly
growing due to the increasing amount of information avail-
able in electronic forms (email, CD-ROMs and WWW)[5].
But with very large number of focused and subject-oriented
documents such as arXiv dataset, though semi-structured, it
should be possible to perform advanced data mining tasks.
The existing services like search engines and indexing tech-
niques on scientific literature employ popular text mining

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

and text categorization techniques on text documents. But
in case of scientific documents, equations form the core of
content. It is well known that ‘Mathematics is the language
of Physics’. Equations in a document represent this lan-
guage of Mathematics and there have been no attempts to
exploit this language. For example, the possibility that the
documents which contain the equation e = mc? are related
to each other is quite high compared to the possibility of
documents having the words ‘energy’, ‘mass’ and ‘velocity’
to be related to each other. This is so, because the language
of English is more ambiguous than the language of Mathe-
matics. Moreover, words have different meanings in differ-
ent contexts, whereas an equation holds for a single concept.
Though an equation could be used in other areas, its mean-
ing of concept is still preserved. Similarly, algorithms/data
structures form the core of computer science papers, chem-
ical formulae form the core of chemistry literature and so
on.

For a physicist, it is easier to remember the equation
rather than the words to describe that equation. Some
times, equations are remembered vaguely and with what-
ever the user remembers, getting all the equations that are
similar is a non-trivial task. There are various aspects of
an equation. An equation has a set of tokens, it follows a
language and there is a structure present within it. More-
over, the tokens (operators and operands) have semantic
meanings. This makes the task of finding similar equations
from the traces of a users’ remembrance very challenging.
It is quite obvious that such a tool is a necessity which
when coupled with the good text search engine, can help
in rich semantic searching among the scientific documents.
This motivates us to develop a framework for the equations
present in physics documents. There has been no formal
work on extracting and processing equations from these raw
scientific text documents, to the best of our knowledge.

The main contributions of the paper are:

e Development of an equation extraction and storage
system.

e Formalization of Equation Similarity and Equation Con-
tainment.

e Facilitating equation search and indexing.
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The rest of the paper is organized as follows: Related work
is discussed in section 2. Section 3 discusses the issues in
building the system. Section 4 describes the equation pro-
cessing techniques, equation annotation and some experi-
mental results. Section 5 develops and evaluates equation
similarity, section 6 illustrates the search utility for equa-
tions. Section 7 discusses the indexing of equations and
Section 8 presents conclusions and future work.

2. RELATED WORK

There has been a similar attempt made in the direction
of managing equations. The website eqndb.com [4] provides
facilities for searching equations based on the name of the
equation, names of the terms present in the equation (like
force, mass) and displays the equations in the form of im-
ages. The equation database is manually built and it is
understood that each equation is annotated with its respec-
tive name and a database of all the terms is maintained.
These equations are not obtained automatically from the
documents. Whereas in our approach, we aim to automate
the process of equation extraction for semi-structured doc-
uments like latex.

Another related (but not similar) work on indexing and
searching equations [3] proposes indexes and search tech-
niques on MathML documents. This requires a set of wrap-
per modules that can convert equations found in text doc-
uments into MathML documents. Developing a wrapper
module is a non-trivial task. The equation grammar is com-
plicated and various authors have different styles of writing.
For example, consider the following two equations:

mimso
F=Gx
42
mass1masss
F = G X T
distance

The above equations represent the gravitational force equa-
tion. In one of the equation, the tokens are single characters
with subscripts, while in the other the tokens are a sequence
of characters. To deal with such discrepancies, either there
should be human-assistance or some meta-dictionary that
stores all the possible strings representing a particular phys-
ical quantity, variable etc. The problem of converting these
tagged-equation text into MathML documents is a tough
one.

Since, currently most of the research literature is in the
form of latex files (in the text format), we define the prob-
lem of extracting equations from these files (which are free-
running text files), managing them, and supporting search
and indexing facilities over the set of equations extracted.
We are addressing the problem of building a human-assisted
semi-automatic system that extracts and searches equations
from the latex files, and then displays results in an appro-
priate fashion.

3. EQUATION EXTRACTION AND PROCESS-
ING SYSTEM

The various issues in extracting and processing equations
are:

Extraction (Data Cleaning): Equations are to be ex-
tracted from the repository of latex or xml documents. Only
a few formats such as Latex or xml have explicit equations.
On the contrary, it is difficult to extract equations from pdf,
word files etc. This is a huge data cleaning task, wherein
problems like missing labels, unmatched parenthesis, incom-
plete equations, and 'typedef’ commands of latex make it
very difficult to extract equations. Extraction is possible if
we have latex or XML documents of the research papers i.e.
text versions of the documents.

Equation Quality: Most of the times, we encounter triv-
ial equations like n = 1, x = 2 and these equations are
sensitive to the context in which they are used. These of
equations do not have much relevance, but they occur in
large numbers. There is a need to identify such equations
based on the quality/relevance. The problem is to quan-
tify the quality /relevance. One possible approach would be
to generate an exhaustive grammar for these kinds of equa-
tions.

Indexing: The names of the equations and the related
keywords of an equation help the process of indexing them
by categorizing them based on the keywords. Equation clas-
sification/categorization is yet another problem that needs
to be addressed here. In this paper, we propose a prelimi-
nary indexing structure on the equations based on the tokens
present.

Equation Similarity: Equations have to be specified
and transformed into a standard form. Searching mecha-
nisms for equations are developed based on the structure,
labels and mathematical expressions. A few similarity met-
rics are developed and used for the equation search.

Searching: Given a repository of “cleaned” equations in
a standardized form, with a good storage and retrieval mech-
anism, a search engine can be developed. The search per-
formed will extract all ‘similar’ equations. Equations that
match the criteria are displayed along with the links to the
documents in which they occur.

Experimental results: We addressed the problems men-
tioned above and have conducted experiments. The results
of each of the problem is given within the corresponding
section.

4. EQUATIONPROCESSING TECHNIQUES

The architecture of an equation management system which
automatically extracts and stores the equations, and pro-
vides features like searching and indexing is shown in figure
1.

In figure 1, the oval shaped components are the implemented
modules. The rectangular components deal with some database
or file, where the output of one/more modules is stored. The
modules are coded in Perl language, known for its support
for string/text operations. The programs are executed in
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Linux environment. A web-based search engine has been
implemented, using Perl for CGI Programming. The out-
put of the equation search engine is displayed in various
formats: HTML, Latex and pdf. A complete working web-
interface [9] for this system has been built. The techniques
applied to process equations are described in the following
subsections.

4.1 Dataset description

The arXiv dataset obtained from arxiv.org (kddcup 2003
dataset) is a repository of Physics papers in the topic of High
Energy Particle Theory. There are 28,553 Latex documents,
written over a period of 11 years (1992-2002). Each docu-
ment is uniquely identified as yymm < id > (yy-year, mm-
month). Latex is a tag-based type-setting system. Tags are
provided to mark the beginning and ending of various parts
of the document and type-setting styles. These tags help in
extracting different components of the documents. For ex-
ample: an equation has \begin{equation}, \end{equation},
$ ... $ tags to mark the beginning and ending of the equa-
tion.

Latex files are highly susceptible to noisy, missing and in-
consistent equation syntax due to various styles of writing.
Equations are part of the research documents and are writ-

ten as continuous text, but to use them effectively the equa-
tion needs to be structured. As expressed in [6], it can
be seen that equation-data cleaning is a much more compli-
cated and a necessary task.

An equation is a mathematical expression which follows rules
of maths. Therefore, we can structure an equation using
rules of grammar and standardize them by representing equa-
tions as prefix or postfix expression trees which include sym-
bols like parenthesis. These trees capture the precedence
order of the mathematical operators and implicit embed-
ding of operators between the variables, which is essential
to identify their structure. These trees/expressions can then
be appropriately represented as an XML document using an
XML Schema or DTD.

There has been considerable work that has gone into auto-
matic text segmentation of postal address and bibliographic
references [1]. This kind of text segmentation does not help
in equation tokenization as we have no preset idea about the
equation expression.

4.2 Issues in Cleaning Equations

Equation Identification: Extracting equations when
they are specified using standard equation tags is easy to
address. But when user-defined tags/macros surface in an
equations, the processing is very complex and also a number
of tedious and time consuming details need to be tackled.
From the raw latex files, tags like “equation”, “eqnarray”
and “$$” format have to be checked in every line of the file.
But in certain cases, $$ format is used to italicize text or to
just write the variables. Therefore, equations are checked
for the presence of some comparison operators (that is, =,
#, <, >, %, >, =, <, =, €) to mark them as equations.

Identifying equations which have user-defined tags, re-
quires standardization of equations. In latex, commands
like ’\newcommand’, *\def’, ’\let’ etc. are used to define
macros/user-defined tags. A sample set of user definitions
is given below (from paper “9202058”):

\newcommand{\EN}{\end{equation}}
\newcommand{\ENN}{\end{eqnarray}}
\newcommand{\ep}{\epsilon}
\newcommand{\LM}{\Lambda}
\newcommand{\EQ}{\begin{equation}}
\newcommand{\EQN}{\begin{eqnarray}}
\newcommand{\mat}[2] {\1left (\begin{array}{#1}#2
\end{array}\right)}

Consider the above typedefs and note that the user-defined
tags EN, ENN, ep, EQ, EQN just need to be substituted
with their definition wherever they occur. But notice the
‘\mat’ tag wherein, there are some arguments that are passed
to the macro. In such cases, the arguments passed should
be identified and replaced accordingly. Often, there is no
standard format followed by the authors. The arguments
are sometimes enclosed in {,} brackets and sometimes they
are not. Identifying the parameters for these macros is not
trivial. To address this issue, a thorough checking of how
the command ’latex’ (in Linux) compiles these kind of latex
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commands is done. All such macro definitions are stored in
a hash, where the key of each hash is the new user-defined
tag. The value of each key is the macro definition of the
corresponding new user tag. A hash file is built by scan-
ning the whole document once and the occurrences of the
new user-tags are substituted with their complete definition.
This constitutes our Equation Standardization module.
Given below is an equation from the document “9202058”
with user-defined tags.

\EQ

\LM_{1}=\mat{c|c}{\ep_{1} & 0 \\ \hline
0&O0

\
} 2
\quad
\LM_{2}=\ep \mat{clc}{1_{N} & O \\ \hline
0 & {N\over 2}1_{2}} ,

\quad
\LM_{3}=\mat{c|c}{0 & \xi \\ \hline

\eta & \ep_{2} 1},
\label{eq:para}
\EN

and $\ep_{1}\in s1(W)$,

After standardization, the above equation is transformed
into:

\begin{equation}

\Lambda_{1}=\1left (\begin{array}{clc}\epsilon_{1}
& 0 \\ \hline O & O \end{array}\right),

\quad

\Lambda_{2}=\epsilon \left(\begin{array}{clc}
1_{N} & 0 \\ \hline 0 & {N\over 2}1_{2}
\end{array}\right),

\quad

\Lambda_{3}=\1left (\begin{array}{clc}0 & \xi \\
\hline \eta & \epsilon_{2} \end{array}\right),

\label{eq:para}

\end{equation}

and $\epsilon_{1}\in s1(N)$,

Equation Elementization: Identifying variables, con-
stants, operators and latex labels within the equations is
the next step towards structuring the equations. Some of
the tokens are latex tags (which start with a \). An exhaus-
tive list of all the latex tags is built. The tokens are checked
from this list. When tokenizing, we even consider implicit
operands like x (multiplication operator). For example, 3g
is actually 3 x g. If a token is not present in the list, the
equation is marked as ‘erroneous’ and is eliminated.

Incomplete file problem: A small percentage of la-
tex files were incomplete. Within these files, there have
been some inclusions of other files using the latex command
input’.  The files mentioned in \input{file.tex} were not
available. These files usually contain the user-definition of
macros thus making it difficult to standardize equations.
One possible way to overcome the problem of missing macro-
definitions is to predict what the new labels would mean, by
learning from the rest of the documents. We have eliminated
all such files, which have incomplete macro definitions.

Duplicate Equation Removal: After completion of the
previous three steps, a complete list of equations has been
obtained. This list of equations could have repetitions. The
reason being that an equation could have occurred in more
than one document. It is better not to store those duplicated
equations in the database. A duplication removal mod-
ule has been built which removes duplicate equations. The
module takes a standardized equation and removes any tag
that is used for graphical representation (i.e., extra spaces,
vertical spaces etc.) For this task, a “near”-complete list of
all graphical tags present in Latex has been compiled and us-
ing this list those tags are removed from the equations. After
doing so, the equation is again tokenized and the tokens are
matched in the same order as they occur, with the tokens of
another equation. Consider two equations E; and E» which
need to be checked if they are the same or not. Each equa-
tion is represented as an ordered sequence of tokens, ordered
based on the occurrence, E1 = [tki1 thkiz tkii...tkin,] and
E; = [tka1 thkos tkoi...tkan,]. A counter error is main-
tained. For every token tki; in Ei, the position j of first
occurrence in F> (in the unchecked sequence) is noted. The
error is set to |i — j|. So, if the tokens tki; and tks; are
the same for ¢ = j (i.e., tokens at the same position in both
equations), then the error is not incremented. But if there
is a difference in position, the difference of ¢ and j is added
to error. At the end of checking, if error is 0, then the two
equations match perfectly. Therefore only one copy of the
equation is maintained. For each equation, a list of docu-
ments in which this equation occurs, is maintained.

Storing Equations: Each equation along with the as-
sociated list of documents is stored in mysql database in
the form of < egqid, eqn, < list of docs >>. By stor-
ing the document list, we obtain the chronological order in
which the equation has appeared in various documents, as
the documents have time tags.

4.3 Experimental Results

The dataset on which the experiments were conducted is
the arxiv dataset. The description of the dataset is given at
the begining of this section.

Equation Extraction: Out of the 28,553 documents, 28,402
latex documents were complete(without any missing or er-
roneous syntax) and we could extract equations from them.
153 documents were eliminated due to the Incomplete file
problem, mentioned in the section 4.2. The total number
of equations extracted from these files are 3,794,389. To
measure the accuracy of our equation extraction, two per-
sons went through the pdf versions of a few latex files and
counted the number of equations. The number of equations
that they have observed is 719. The equation extraction
module detected 727 equations. The number of equations
extracted is more than the actual number of equations, be-
cause the module identifies a few kinds of variables as equa-
tions. In the latex file, some variables were represented as
$ \tilde z; $. In such equations, there was a comparison
operator present (\tilde) and were thus identified as equa-
tion. In file “9209051”, the number of extracted equations
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FileName | Actual No. | Extracted No.
9201072 41 40
9204035 350 358
9205043 23 23
9207029 119 127
9208009 114 114
9209051 72 61

Table 1: Equation Extraction Accuracy
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Figure 2: Screenshot of equation extraction
(SMILES System)

is less than the number of actual equations due the usage of
a non-standard latex tag by the author to define equations.
The file-wise statistics are given in table 1.

Duplicate Equation Removal: Due to lack of time, we
could not perform the duplicate removal module on the com-
plete equation list(3,794,389). We took a sample of around
100 documents chosen randomly, extracted equations. The
number of equations extracted is 14402, of which the num-
ber of unique equations extracted is 11,671. The percentage
of equations repeating is 18.9%. We performed the same on
another sample of documents, of which the number of equa-
tions extracted is 11,365, the number of unique equations
identified is 7,202 and the reduction rate is 36.63%.

S. EQUATION SIMILARITY

A search module should give “expected” accurate results
with a reasonable response time. With the equations and
their related information in place, we now formally define
the concepts of similarity and containment of equations.
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Figure 3: Screenshot of search result (SMiIiLES Sys-
tem)

The mechanism for identifying equations that are “very sim-
ilar” to or “nearly contained” in an equation forms the core
of the search module. The work is similar to that of [2],
where “resemblance” and “containment” of web documents
are handled. In [2], each document A is viewed as a set
of unique shingles represented as S(A). The resemblance
r of two documents A and B is calculated as the number
of common shingles between the two documents divided by
the total number of unique shingles. The containment of A
in B is defined as the number of common shingles divided
by the number of shingles in document A.

In case of equations, there are different types of similar-
ity measures. Equations could be compared based on their
structure or on the variables/constants that are contained
in the equation. Before discussing the similarity measures,
the notation used in defining similarity is as follows:

E;, the i-th equation in the database, is represented as a
set of tokens {tk;;}. A token is defined as the basic unit of
an equation. The basic units of an equation are operators,
constants and variables. Tokens could be a single character
(like f,m) or a character string (like \lambda, \mu).
Identifying isomorphic equations: Consider the equa-
tion: (a * b) + (c * d). This equation has seven more vari-
ants(due to change in order) but the equation is still the
same, semantically. The variants are: (c * d) + (a * b),
(bxa)+(dxc), (dxc)+ (bxa), (bxa)+(cxd), (axb)+(dxc),
(d*c)+ (a*b) and (c*d)+(b*a). The prefix trees for all the
above equations are different. Two trees are shown in fig-
ure 4. The non-leaf nodes are numbered and their numbers
shown to their right in the figure.

Given a set of such equations, the problem is to find “sim-
ilar” equations when there are such interchanges in subex-
pressions of the equation. This can be solved by arrang-
ing the nodes having commutative operators in the prefix
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Figure 4: Expression trees for two equations

trees lexicographically. A prefix expression of any equation
is represented as an m-ary prefix tree. Each node of n-ary
tree is labeled with the subexpression formed with itself and
its children nodes. The leaf nodes will be labeled with the
variable/constant names. A sample prefix tree is shown in
figure 4. Two child nodes are ordered according to the lexi-
cographical order of their label names (i.e., subexpressions).
For example, let us consider the second tree in the figure
4. The ordering of the whole tree is a bottom-up approach.
Consider the leaf nodes d, ¢, b, a. At node 5, lexically d > ¢,
thus the nodes are interchanged. Similarly at node 6, b and
a are interchanged. Now at nodes 5 and 6 the subexpres-
sions are ¢ * d and a * b. Thus, at node 4, the child nodes
5 and 6 are interchanged (lexicographically, a * b < ¢ * d).
The final tree is now transformed to the first tree. Although
the two prefix trees are different, we obtained a unique tree
for both such isomorphic variants. Note that this holds for
commutative operators only. We keep the order as it is for
non-commutative operators.

5.1 Equation Similarity Measures

Equation similarity measures form the basis of searching.
The user submits a query equation @ to find out all the sim-
ilar equations. Depending on the similarity measure used,
the results will vary. The query @ is compared with all the
equations in the database based on the metric chosen.

e Exact Similarity: Given a query equation @ and an
equation E from database, the task is to find out if
both the equations are exactly similar or not. For-
mally, let ng and ng be the number of tokens in the
equations @) and F respectively. Let the sequence of
the tokens be represented as Tg = [Tgk], for k =
1...nq, similarly for E. Let n = max(ng, ng). The
exact similarity measure between the equations @ and
E, sexact(Q, E) is defined as:

vt | Toe N'T.
s_exact(@, E) = 21| Tak Bk |

ko [ {Tor} U {Tws} | (1)

The s_ezact is a number between 0 and 1. s_exact(Q, E) =

1, when the equations match. The numerator is the
comparison of the tokens at the corresponding posi-
tions in both the equations. At each position, only
one token is present, thus {Tgx} is a single member
set. The intersection between {Tgr} and {Tgr} gives
¢ if they do not match, else gives the same element.
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When both the equations match, the numerator and
the denominator will be the same.The denominator
checks if both the equations have the same number of
tokens. If they have the same tokens, the union of
both the equations will be the same as the equations’
token set.

The above metric is similar to that of Ordered Similar-
ity (OS) measures based on the rank of presentation in
the documents proposed in [8]. The OS measure cap-
tures the decreasing similarity measure with relative
difference in the order of two sequences.

A typical string matching technique is sufficient, where
each equation is now treated as a single string and
compared. But it is rare that two equations are written
exactly the same way at various occurrences of the
equations. The equations when displayed in pdf are
the same, but their latex definitions turn out to be
different because of graphic-specific tags. Additional
tags are used to improve visual display of equation
like \vspace, \addtodisplayspace etc. Moreover, apart
from these graphical tags, two different tags mean the
same symbol like \leq and \le (<). The equations thus
need to be transformed, by removing all graphical tags
and synonymous tags.

Partial Similarity: Yet another type of similarity
which is of interest is partial similarity. We would like
to obtain equations which are “roughly” similar to the
query equation. In this measure, the order in which
the tokens occur is no longer considered, but only the
common existence of tokens is checked. The definition
of the measure is:

spart(Q,E) = % @

The s_part varies from 0 to 1, and is 1, when both the
equations have the same tokens.

Expression Similarity: Apart from the token-matching

variations described earlier, it would be semantically
meaningful if the similarity is defined on the subex-
pressions of the equations. An equation E has a se-
quence of tokens represented as [Tkg] and the length
of the sequence being n. A subexpression is defined
as a subsequence of tokens of length three in the form
of [ tk; thkit1 tkiqo ], for i=1 to n — 2. For example,
consider the equation a = b+ ¢ *d, the complete set of
all the subexpressions is {a = b, = b+,b+c¢, +c*, c*xd}.
The set of subexpressions of an equation E is repre-
sented as SEg. Expression similarity of equations is
defined as:

|SEq N SEE|

sexpr(Q,E) = |SEo USEx| 3)



A more robust technique for expression similarity is
based on the pre(post)fix order of the equation expres-
sion trees. For an equation, the prefix is computed and
is stored in the form of abstract syntax trees.

e Variable Name Similarity: Given a set of equations
and a set of variables V = {v;}, the task is to find
those equations in which these variables are present.
This similarity is defined as:

|Tke N V|

swar(E,V) = v

(4)
5.2 An example

Let us consider the following equations in the equation
database:

F=ma (5)

W =myg (6)

P =mgh (7)
1 9

K= 5 mY (8)

P =mv (9)

S =ut+ %at2 (10)

Now we test the above similarity metrics for the results. In
the table 2, for every similarity metric and given query, the
corresponding similarity values are calculated.

S (G [©® [ 0 [ ® [© [0 | Query
Metric

sexact | 3/7 | 3/7| 4/6 |1/15| 1 |2/18 | P=mv
spart | 1/3 | 1/5|2/11 | 3/13 | 3/9 | 6/12 | v=u+at
s_expr | 1/7 | 1/3 1 0 1/3 0 P =mgh
swar | 1/2] 1 1 1/2 | 1/2 0 {m, g}

Table 2: Equation Similarity Measures

In the table 2, no equation has a value of 0 for s_exact
measure with the query P = mw, because every equation
has the symbol = in the second position. Note that equation
P = mu has s_exact value of 2/3 because p,=,x and m
match. It is the same with the partial similarity too. In
the expression similarity, the measure is 0, since there are
no common expressions(subsequence of 3). In the variable
similarity, the measure of equation 10 is 0 since neither m
nor g are present. Please note that in the calculation of the
above measures, implicit operators like x are also considered
as tokens.

Structural similarity: The structure of the equation is
represented as an abstract syntax tree. Under this similar-
ity measure, two equations are termed ‘similar’ when the

trees match in terms of number of child nodes etc. but the
names of the variables or the labels of the leaf nodes are
not taken into account. Trees of two equations could match
structurally even if the token labels do not match. If this
technique is applied to the above equations, given F' = ma
as the query equation, the result would be equations 5, 6
and 9.

5.3 Issues

e Tokenizing operators and constants is comparatively
easy compared to variable names. The variable names
can be just anything, either a single character or a
word. For operators and constants, Latex has tags
to represent them. But consider the two equations
F = ma, Force = mass X acc. Both the equations
mean the same, but the variable names differ. There
is a need for a subject dictionary to be built which
could help in the extraction of the variable names.

e For equations involving complex functions, integration
and differentiation, it will be difficult to represent them
in post-fix or pre-fix expressions. For such operations
on many variables, the operator precedences need to
be mentioned. The nodes in the prefix-trees for such
operators might have variable number of child nodes.

6. EQUATION SEARCH

There are two kinds of search queries that a user can give:

1. Tokens/labels as the query: The user would just give
the terms that need to be present in the equation. For
these kind of queries, the equations are checked if they
contain the terms and the results are ordered in de-
scending number of matches. If the user wants to find
out all the equations that contain the term accelera-
tion due to gravity g, a regular lexical token matching
is sufficient to obtain equations which have similar la-
bels. The result in the above example case would be
equations 6 and 7. The underlying assumption is that
the alphabets/symbols associated with universal con-
stants remain the same in whichever equation they are
used. The variable names could change but not the
universal constants. Hence a subject dictionary needs
to be built which stores information about the univer-
sal constants, their labels along with regular/common
labels used to represent regular terms in the subject.

Token based search: In this search technique, the
set of tokens from the search equation along with the
number of times it occurs in that equation are ex-
tracted and stored in a hash. Then the search equa-
tion is compared with all the equations present in the
database. The similarity measure based on the fre-
quency of matching token is computed for every equa-
tion it (the search equation) is compared with. The
similarity measure is determined by the summation of
the frequency for each matched token. Let the search
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equation be S and the equation being compared be E,

then,
>

tEtokens(S)

s_token(S,E) = match(t, E,S)

if frequency(t,E) < frequency(t,S) then,
match(t,E, S) = frequency(t, E)/ frequency(t, S)
otherwise, match is calculated as,

match(t, E,S) = frequency(t, S)/frequency(t, E)

When the frequency of a token in an equation is more
than the frequency in the search equation indicates
some dissimilarity between equations, thus the mea-
sure should be less in such cases. The maximum simi-
larity value of the above measure is |tokens(S)|, when
the equation to be compared has the same number of
tokens with the same frequencies as in the search equa-
tion. The s_token similarity measure is slight modifi-
cation of the measure s_part, where in s_token, the fre-
quency of each token is taken into consideration. After
obtaining the similarity measures for all the equations,
the results are displayed in descending order of simi-
larity values.

. Search by samples: The user gives an equation as the
sample equation, and expects similar equations to be
displayed. The similarity technique discussed in the
above point are of boolean type, i.e., (1) whether an
equation has the same structure as the other one or
not, and (2) whether the equation has the same labels
contained within it. It is the case of exact matching of
tokens/structure.

An enhancement to the above kind of search would be
obtaining a measure, which is a real number. There
could be equations which would be a sub-expression of
a larger equation. One of the methods that we imple-
mented is ‘subexpression matching’, wherein we obtain
all the possible subexpressions in the sample equation.
A subexpression is defined as the expression that con-
tains an operand, an operator and an operand, i.e.,
x + 3, y * z etc. This differs slightly from the ex-
pression similarity that we defined earlier. For the
equation a = b+ ¢ * d, according to the definition ex-
pression in the section 5, there are 5 expressions. But
here as we restricted the expression that it should have
an operand, operator and operand, the subexpressions
here are {a = b,b + ¢,c * d}. The expressions {= b+}
etc. violate the restriction.

Consider the equation:

dimMy, =39 —3+s. (11)
The sub-expressions in this equation are: 3g—3, 3+s.
Note that 3g+s will not be considered a subexpression,
because only the adjacent operands and operators are
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considered. These subexpressions are now matched
with all the other equations in the database. The re-
sults are as follows in sorted order:

dimMy s =39 —3+s.
> (ni—1)=3g-3.
i=1
[(O:...0.) =

39g—-3
/l/oi”.../oﬁf) 11 /uaG/ﬁaa)g.
Mg a=1

The next improvement is to increase the length of the subex-
pression. Increasing the length makes the search more tight.
This is because the basic unit of search is the subexpression
and when the subexpression is large there will be very few
results compared to a subexpression of smaller length.
Another similarity technique that could be employed, is to
use the concept of ’Approximate Tree Matching’. The work
done in [10] addresses the problem of matching trees ap-
proximately, based on the similarity of the tokens and edit
distances. The distance between two such structures will be
the dissimilarity between the two equations.

7. EQUATION INDEXING

The search techniques mentioned in the previous section,
scan the whole equation database to search the equations
similar to the search equation. This naive scanning of the
equation database makes it infeasible to search the whole
database of equations. We propose a simple indexing tech-
nique based on the tokens present in the equation. A token
as defined in the previous sections is either an operator, con-
stant or variable (single characters).

In token based index, we first obtain all the unique to-
kens occuring in all the equations. The number comes to
around 111 as it includes standard latex tokens and small
and capital letter alphabets . For each token, we obtain the
list of equation ids in which this token occurs. Along with
the equation id we store the frequency of the token in that
equation. This index is analogous to the inverted index used
in text retrieval. Having built this index, we now modify the
search techniques based on this index.

For each equation, we obtain the list of tokens that occur
in the equation.

In the token based search mentioned in section 6, the user
either gives an equation (the tokens appearing in the equa-
tion are taken as the set of search tokens) or a few tokens
as the input query and equations that are similar based on
the tokens are to be obtained.

For improving the performance of the token based search
(section 6), we use the token-based index. When a user gives
a query , i.e. an equation , we extract the tokens from it
along with the number of times they appear. Then for each
token, we obtain the list of equation ids in which this token
occurs and obtaining the frequency of the token in these
equations is a one-step procedure, and compute the similar-



ity measure as explained in the Naive token based search.
In the following subsection, we show the improvement in the
search time by using this token-based index.

7.1 Experimental results

We have experimented and compared the performance of
naive token-based search with the index-based search tech-
nique. We have chosen a few equations randomly with vary-
ing number of tokens in each equation. We gave these equa-
tions as input to both the search techniques. We found
that the index-based search definitely out-performs the naive
technique. This is so because, in the index-based technique,
whatever tokens occur in the equations, we retrieve only
those equations that have atleast one of these tokens. This
reduces the search space thus enhancing the search perfor-
mance. The results are given in the figure 5.

In the subexpression matching technique, we observed
that the search was taking a very long time. Most of the
time was utilized in obtaining the subexpressions. We made
a slight modification to the search technique by storing all
the subexpressions of an equation. This has made the search
much faster than the naive subexpression matching. The
graph in figure 6 depicts the same
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Figure 5: Comparison between the naive and index
based Token Search

The time taken by various equations is slightly varying (as
in figure 5 and 6) because of various factors. The equations
we used to test are of different sizes (the number of tokens
ranging from 5 to 25 ).Moreover, it even depends on the
other load on the system due to other processes.

8.  CONCLUSIONS

Equations are critical mathematical expressions that lay
foundation to the development of science and make way
for its transition to technology. Researchers in science and
mathematics need to understand, communicate and contrast
equations on a day to day basis.

In this paper, we develop a framework for extracting,
cleaning, standardizing, loading and processing a set of equa-
tions from Latex papers. This is a non-trivial task which re-
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Figure 6: Comparison between the naive and index
based Operand Operator search

quires crucial solutions to each of the above tasks in process-
ing equations. A system for searching and browsing equa-
tions has been built. Some of the issues tackled are: dupli-
cation equation removal and equation similarity measures .
There is lot of scope for future work in terms of indexing
equations, approximate/fuzzy search for equations and finer
annotation of equations using machine learning techniques.
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