Indexing Large Moving Objects
from Past to Future with PCFI*-Index

Zhao-Hong Liu Xiao-Li Liu
GIS Research Center Adult Education College
ChongQing Univ. of Posts & CQUPT

Tele. ChongQing, 400065
China (86)-23-62461581 (86)-23-62460400

macromliu@hotmail.com amuletlizi@yahoo.com

ABSTRACT

Ideally, moving object databases should handle the past, current
and future positions of moving objects efficiently. However,
existing indexes such as SEB-Tree, SETI-Tree, 2+3R-Tree, 2-
3RT-Tree and etc. can only provide the capability for past and
current query, and the others such as TPR-Tree, and TPR*-Tree
can only provide the capability for current and future query. None
of them can provide a strategy for indexing the past, current and
also the future information of moving objects. In this paper, we
present the Past-Current-Future’-Index (PCFI'-Index) which
indexes the past, current & future information of the moving
objects. The PCFI'-Index builds upon the PCFI-Index which was
based on SETI-tree and TPR*-tree. The PCFI'-Index consists of
two parts, in memory part with the name frontline, and disk based
part. The whole region is partitioned into none-overlapping cells,
and a spatial access method is used to index these cells. A set of
main-memory TPR*-tree is used to index the moving objects that
belong to the cells (one cell, one TPR*-tree). Considering the
large update operation triggered by moving objects, the current
data file which contains the moving objects’ current information
is organized as a hash index file. By keeping the restriction in
SETI-Index, one page only contains the segments from one cell.
Another sparse R*-tree is used to index the lifetimes of the pages.
The performance analysis proves that the PCFI"-Index can handle
most of the queries efficiently and provides a uniform solution for
the trajectory, time-slice, internal and moving queries, and has a
better performance than the SETI-Index, TPR*-Index, and PCFI-
Index.

1. INTRODUCTION

Spatio-temporal databases deal with large numbers of moving
objects that change their location and/or shape continuously. For
example: a spatio-temporal database is a collection of moving
objects in the D-dimensional space. The moving objects get their
own positions via location detection techniques such as GPS,
TDOA, A-GPS, Hybrid-LDT. Then, the positions are reported to

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

ChongQing, 40065, China ChongQing, 400065, China

Jun-Wei Ge Hae-Young Bae
GIS Research Center Dept. of Computer
CQUPT, INHA University

Inchon, 402-751, Korea
(82)-32-860-8712

hybae@inha.ac.kr

(86)-23-62461548
gejw@cqupt.edu.cn

the tracking server using the underlying communication network,
e.g., via wireless networks, GPRS, CDMA, and are stored in the
database. With the continuously report, the tracking server keeps a
large volume of historical trajectories reported by moving objects.
In addition, the server stores additional information to help
predict the future positions of moving objects. Typical queries
that are supported by such a server include time slice queries e.g.,
“Find all objects that cross a certain area at time 7’ and window
queries “Find all objects that cross a certain area in the time
interval [t1, t2]”. Time slice queries and window queries may ask
about the past, current, or future positions. Some queries are
concerned only with the past, e.g., trajectory queries “What was
the maximum speed of a certain object in the last hour?” Other
queries are concerned only with the future, e.g., moving window
queries “Find the objects that intersect a moving area in a certain
time interval”. Numerous researchers have studies the
development of spatio-temporal access methods as an auxiliary
structure to support spatio-temporal queries. They can be
classified into two categories: one is indexing the past and current
which can answer the queries involving past and current positions,
the other one is indexing the current and future which can answer
the queries involving current and future well. But none of them
can support the queries involved from past to future. '

In this paper, we present a new approach, named PCFI'-index,
which based on the SETI-tree and TPR*-tree to support the
queries with the time vary from past to future. It is a extension of
the PCFI-index.

Section 2 gives an introduction to the query types and the spatial
temporal access methods proposed in past researches. Section 3
outlines our approach, the idea, the solution and the algorithm.
Performance evaluations are done in Section 4, and conclusion
and future work comes in Section 5.

! This research was supported by MIC (Ministry of Information
and Communication), Korea, under the ITRC (Information
Technology Research Center) support program supervised by
the IITA (Institute of Information technology Assessment) and
Sino-Korea GIS Research Center, China.

The author’s full address: Sino-Korea ChongQing GIS Research
Center, ChongQing University of Posts and Telecommuni-
cations(CQUPT), ChongQing, 400065, P.R.China

131

2. PROBLEM DEFINITION AND
RELATED WORKS
2.1 Spatio-temporal Data Model (Trajectory)

Most conventional models for data representations are static in
nature, but trajectory data for moving objects is continuously
changing as the object moves. Representing the location of the
object at all times is a challenge. A commonly used model for
representing trajectory data approximates the motion of an object
as a straight line segment between two consecutive updates [16].
In this paper, we also use this model for representing trajectories.
The position and velocity of a moving object is sampled at
discrete times, and a series of straight lines connecting successive
positions is used to represent the movement of the object. In this
paper, this line is referred to as a segment, and the sequence of the
connected segments for a single moving object is referred to as a
trajectory. Furthermore, to simplify the complexity, we will
assume that an object moves in a two-dimensional space.

Stated more formally, a trajectory is represented as tr;(tid, u0, ul,
u2...un...), where tid is a unique trajectory id, and <u0, ul,
u2...un..>is a sequence of points reflecting the positions of
the moving object. Each point ui is a three-tuple wi(xi, yi, ti),
where x; and y; represents the spatial position of the object along
the x and y dimension respectively at time ti. The only restriction
on the sequence is that u; < u;,; to ensure that the time parameter
in the trajectory sequence is monotonically increasing.

A trajectory segment is represented as si(tid, sid;, u;.;, u;), where
sid; is a unique segment number for this segment of the trajectory
(trivially one can set sid; to 1), and u;; and u; are the two update
end-points. The model can be easily extended to associate
additional variables with each segment or update point; for
example, in a trajectory data set of moving vehicles, each update
point may have an additional reading recording the engine
temperature at the time of the update.

2.2 Query Types

Based upon time, queries on moving data can be broadly
classified into three categories: queries that ask questions about
the historical positions of moving objects, queries that ask
questions about the current positions of moving objects, and
queries that ask questions about the future positions of moving
objects. The second and third category of queries can be answered
by storing current position, speed and the direction of the moving
objects [5, 6] such as approaches in TPR-Tree[2], TPR*-Tree[11].
For the first category of queries, Pfoser et al. [19] further
classified historical queries into two different sub-classes:
coordinate-based queries and trajectory based queries.
Coordinate-based queries include (a) time-interval, which select
all objects within a given area and given time period, (b) time-
slice, which select all the objects present in a given area at a time
instant, and (c) nearest neighbor queries. Trajectory-based queries
involve information about a trajectory such as topology and
velocity. In the real world, the queries can belong to one of these
categories, or combinations of the first and second category, or
second and third category, or all of the three.

In this paper, we focus on coordinate-based queries in general,
time-interval and time-slice queries in particular.

2.3 Related Works

2.3.1 Indexing the past and current positions

There has been a lot of work in this area. In some indexes such as
MR-tree[13], HR-tree, HR+-tree[37], MV3R-tree[10], the
temporal dimension is distinguished from the spatial dimensions.
The goal is to keep all spatial data that are alive at one time
instance together in one index structure (e.g., the R-tree). The
ultimate goal is to build a separate R-tree for each time instance.
This approach requires excessive storage. Some other indexes
such as TB-tree[20], 2+3 R-tree[21], 2-3 TR-tree[1], SEB-tree[22]
and SETI-tree[3] focus on trajectory-oriented queries, and can be
classified into trajectory-oriented access methods.

The SETI-tree (Scalable and Efficient Trajectory Index) also has
considered the scalability, focusing on indexing large moving
objects. The SETI-index partitions the spatial dimensions into
static, non-overlapping partitions. The main observation is that
the change of the spatial dimension is limited while the temporal
dimension is continuously evolving. Thus, the spatial dimensions
are partitioned statically. Within each partition the trajectory
segments are indexed using an R-tree. Line segments of the same
trajectory stored in the same partition. Thus, trajectory
preservation is achieved by minimizing the effect of the spatial
dimensions in the R-tree. A segment that crosses the boundary of
two spatial partitions is clipped at the boundary and is stored
twice in both partitions. Each trajectory segment is a tuple in the
data file with the restriction that one data page only contains
trajectory segments that belongs to only one cell. Another sparse
R*-tree is used to indexing the lifetime and every data page (one
data page, one entry in the sparse R*-tree). A main-memory
structure named frontline is used to maintain the last update
location for all moving objects. It is organized with a hash
structured index on the unique id of moving objects, and can be
implemented with the persistent index such as hash or B*-index.

Front Line Front Line at

atTime T=— =— = Time T+dT
G et S TP

D s >

Mowvement of
Front Line _~
/

Figure 1. Movement of the front-line structure

132

There are some shortcomings of the SETI-index: 1) it cannot
efficiently answer queries over current question since the frontline
is implement using a hash or B'-tree (eg: currently, how many
moving object is hold in the selected area?); 2) it can not answer
any query which ask questions about the future since no velocity
information is stored in the front line; 3) this index suffers from
several problems including: simulating the sparse R*-tree by
existing dense R*-Tree is a little complex. A new sparse R*-tree
should be implemented instead of simulating to fulfill the
condition: one entry for one data page in sparse R*-tree.

2.3.2 Indexing the Current and Future Positions
(NOW and the Future)

To predict the future positions of moving objects, we need to store
extra information (e.g., the velocity and the destination). By
introducing parametric bounding rectangles in R-tree, the TPR-
tree and TPR*-tree[11] provides the capability to answer the
queries which ask about current positions or future positions.

A moving object o is represented with (i) an MBR o that denotes
its extent at reference time 0, and (ii)) a velocity bounding
rectangle (VBR) oy={0yi-,0v1+,0v2.,0v2+} Where oyi. (Ovyir)
describes the velocity of the lower (upper) boundary of oy along
the i-th dimension (1 1 2). Figure 2a shows the MBRs and
VBRs of 4 objects a,b,c,d. The arrows (numbers) denote the
directions (values) of their velocities. A non-leaf entry is also
represented with an MBR and a VBR. Specifically, the MBR
(VBR) tightly bounds the MBRs (VBRs) of the entries in its child
node. In Figure 2a, the objects are clustered into two leaf nodes
N1, N2, whose VBRs are N1y={-2,1,-2,1} and N2y={-2,0,-1,2}
(their directions are indicated using white arrows).

Figure 2b shows the MBRs at timestamp 1 (notice that each edge
moves according to its velocity). The MBR of a non-leaf entry
always encloses those of the objects in its subtree, but it is not
necessarily tight.

y axis ¥ axis
¢ 1
L N2
1
8- 4 ?2 N2 8 |_d-
s -1gad’
gl N1

M1 =
T " |
i) %- 1 1 2 il bl | ¢
.)IA :|91 —25;1‘; I E‘
. 1-57 ‘#’ .
[X axis o g—.

ol h W AW 2 W & o A
(a) MBRs & VBRs at time 0 (b} MBRs at time 1

Figure 2. Entry Representation in a TPR*-tree

The TPR*-tree uses the structure and assumptions with the TPR-
tree, only a new set of insertion and deletion algorithms that aim
at minimizing a certain cost function is adopted.

The TPR-tree or TPR*-tree can answer the queries which ask the
current or future questions. But they can not answer the queries
which ask the historical questions since they do not store the
trajectory.

3. PCFI'-INDEX

3.1 Main Idea

In the PCFI-Index, there is only one TPR*-tree in the frontline
which will be a bottleneck while processing large update
operation on TPR*-tree since the whole TPR*-tree will be locked
in some special update operation. In the PCFI'-Index, the space
dimension is partitioned into cells as in the SETI-tree, and there is
one TPR*-Tree for one cell to index the moving objects’ current
positions and velocities, and a spare R*-tree is used to index the
past positions of moving object trajectories. Considering the huge
update operations on TPR*-tree of large population, the current
data file is organized as main memory hash index file.

3.2 Index Structure
The PCFI-index consists of two parts: one located in memory, the
other one located on disk.

N\
SAM

|R™-tres, Grid, rowgh Ghid._.}

IRREH RRERE IRARH ERRR IRRRS BERE|)

Alowap
-
o

. A

-
K

L—-{ H

aumuo4
Ry

88|14 |ejodwe |

istorical

A XA A LA Data File
LN A, A

R Bl .
Full Filled Pages Parily Filled Pages{on Disk)

Figure 3. Data Structure of the PCFI"-Index

The in-memory component is called frontline. It consists of a
current data file, a spatial index (SAM) to index the non-
overlapped partitions, and a set of TPR*-trees to index the records
in the current data file.

The current data file is located in the temporal space without time-
consuming log, and initialized when it is the first invocation of
the spatio-temporal table’s open method after system up. A hash
index file organization method used in the current data with UID
as the hash key. It can provide fast retrieval of records from the
data file. Since there is a set of TPR*-tree, an additional pointer
(slot id in SAM leaf page, or TPR*-tree ID, or pointer to the entry
in TRP*-tree) can add to the tuple together with a latch for
concurrency control.

The SAM is used to index the non-overlapping partitions. Many
spatial access methods can be used to implement the partition
strategy. For example, the R-tree, R*-tree can be used when we
partition the area into irregular shapes; the Grid-file, rough Grid
file and quadtree can be used when we partition the area into
regular rectangles. Partitioning the area into irregular cells raises
another issue: how to send the partition information to the index
manager? We can use a spatial table to store the partition data,

133

and pass the table ID and field description when other modules
invoke the index’s open method. If the irregular partition is used,
the index file can be used (the cell’s spatial description resident in
the leaf page) to reduce the disk I/O cost of the partition
information.

For the TPR*-tree, a leaf node entry consists of the MBR and
VBR of a moving object and a pointer (Record Identifier, RID) to
the moving object in the current position data file; and the entry in
an internal node is a pair of a pointer (Page Identifier, PID) to a
subtree and a rectangle (MBR and VBR) that bounds the positions
and velocities of all moving objects in subtree. Like the current
data file, the TPR*-tree is also located in the temporal space and
initialized when the table’s open method is first invoked after start
up. Each tuple in the current data file (hash index file) has an
entry in the TPR*-tree. Considering the frequent update on TPR*-
tree, the localized bottom-up update or generalized bottom-up
update strategy[24] can be used but the epsilon adjustment is not
applied on the root page of TPR*-tree with the pointer in the
current data file tuple is entry of TPR*-tree leaf page. To simplify
the data structure, we can just use the TPR*-tree id or entry in
SAM leaf page in the tuple. The TPR*-trees resident in memory,
the cache conscious R-tree: CR-Tree [25] can be used to improve
the search speed.

The sparse R*-Tree is located on disk. For partitioning, the 1
dimensional, 2 dimensional, or 3 dimensional sparse R*-tree can
be used. A historical data page’s lifetime (starttime, endtime) is
mapped to one-dimensional line (starttime, endtime), we call this
the lifetime dimension. The first is the same as the SETI-tree--
just one dimension sparse R*-tree is used. If we use a regular
partition method such as grid, the Hilbert curve or Z-order curve
can be used to translate the 2-dimensional area into 1-dimensional,
thus the 2-dimensional sparse R*-tree can be used. If we use
irregular partition method, the 2-D space dimension and the
lifetime dimension consists of the 3-D spare R*-tree.

When a new page is allocate for the historical data file, an entry is
inserted in the sparse R*-tree with an empty endtime in the
lifetime. When a data page is fully filled by the subsequence
segments, the corresponding entry in sparse R*-tree will be
updated to set the endtime. If the 3-dimensional R*-tree is used,
the entries in leaf pages will contain the historical data file’s
PagelD, partition’s spatial description, page’s life time; for the
rest two solutions leaf page’s entry will consist of a pointer to a
tuple in historical data file’s page, lifetime, and cellid (restriction:
one page only contains the segments belong to one cell). Entries
in internal nodes are pairs of pointers to a subtree and a lifetime
that bounds the lifetime of all segments or other bounding lifetime
in that subtree. The cellid in leaf page is used to reduce disk read
cost of the candidate page when historical slice query is processed.

3.3 Insert Algorithm

Figure 4 illustrates the insert procedure in PCFI-index. The key to
the performance of the insert algorithm in PCFI is the use of the
hash index file, which maintains the last updated location of all
moving objects. It is a cache of the last positions of all objects and
is updated with the new location of the moving object.

For simplify, the following method will use the 3-D sparse R*-
tree to index the historical data file’s page life, and the SAM leaf
page’s PID and entry id in the current data file tuple.

134

Insert Module

Uprale

Not Found

Compose Segment

»
Update/Insert Insert into
Sparse R*- Historical
Treg.-_lqdex Data File

Figure 4. Schematic Diagram of the Insert Procedure in
PCFI -index.

Since there is a set of TPR*-trees, a moving object will move out
the original TPR*-trees, we call it tree roaming. When an update
(this moving object has been stored in the current data file) is
received, if the new location resides inside the current TPR*-tree,
a new segment is composed and inserted into the historical data
file; otherwise, a split operation is performed, and two segments
are inserted into historical data file’s different pages. The
corresponding entry in old TPR*-tree will be removed, and
inserted into another TPR*-tree. If necessary, the sparse R*-tree is
also updated when the insertion of a new trajectory into the data
file results in fully filling the data page used in the insertion
operation.

3.4 Delete, Update Algorithm

There are three types of deletions. Two of them are: whole
trajectory deletion and a particular trajectory segment deletion.
The algorithms for these two deletions are similar to the original
SETT’s deletion algorithm. The third is caused when a moving
object triggers a tracking termination requirement. A deletion
operation on TPR*-tree is performed, following a tuple deletion in
the current data file.

3.5 Query Procedure

Figure 5 shows the steps in the query algorithm. The input to the
search algorithm for a time-interval query can be considered as a
three dimensional query box, which consists of a temporal
predicate range and a spatial predicate box.

The search algorithm executes the following steps:

1. Compare with the Current time: In this step, the temporal
predicate range is compared with the current time. There are three
cases:

Case 1: if the temporal predicate range falls completely in past,
step 2.1 to 2.4 is performed;

Case 2: if the temporal predicate range falls completely in now
or future, step 3 is performed.

Case 3: if the temporal predicate range covers past, now and
future, we separate it into two parts: one corresponds to the
past for which the procedures in Case 1 are adopted; the
other corresponds to the current and future for which the
procedures in Case 2 are adopted.

2 Search for historical segments
2.1. Search candidate pages:

Case 1: if 1-D sparse R*-tree is used, the spatial partitions that
overlap with the spatial predicate box are computed via
SAM, and a list of pair (cellid, full_ overlap_or_ not) is
produced. Next the 1D sparse R*-tree is searched with the
temporal predicate range. Each entry in the sparse R*-tree
leaf page is checked to check whether the cell id falls into
the cell list without fetching the corresponding data page
into memory. If the cell is fully overlapped by the query
region, all the segments belonging to this cell can be putted
to the result segment list directly without refinement, or,
the page id is putted to candidate pages list.

Case 2: if 2-D sparse R*-tree is used, first, the 2-D area (query
area) is mapped to one dimension, then a 2-D filter is
constructed by the one dimension mapped from the query
area and the lifetime dimension. The sparse R*-tree is
searched with this 2-D filter, and a list of candidate pages
produced.

Case 3: if 3-D sparse R*-tee is used, a 3-D search box is
composed by the life time dimension and the 2-D search
area, and then applied to the sparse R*-tee, thus, the
candidate page list is produced.

2.2. Refinement Step: This procedure is the same as the

original SETI-tree. A list of segments that overlap with the query
box and time period is produced in this step.

2.3. Duplicate Elimination: This procedure is the same as the
original SETI-tree. It produces a list of trajectory ids or a list of
segments.

3. Spatial & Temporal Filtering: This procedure is the same as
the query algorithm of original TPR-tree.

¥

Past
a8 eBmpare Wi NOW or Future
urrent Timg

Input Query

Search -
- ; List of
5 \Candidate Pages TPR*Tree 3
5] patial & i
] l List of Pages empaoral Filtering 5
B on every @
@ Refinament
id Ste
3 P tree Bt
5 lr utpu
@ ’ egments
™ Duplicate

limination Time t's Position/

list of Moving
Quiput l ltem with it's
Trajectory 1Ds/ pasition

Segments

Figure 5. Schematic Diagram of the Query Algorithm
in PCFI'-index

For the slice query, the temporal predicate range consists of
only a single value, the query can be answered with the sparse R*-
tree (past time) or frontline (TPR-tree, current of future).

For the window query, there are three cases: 1) if both of [Ts,
Te] are located in the past, the query can be answered via sparse
R*-tee; 2) if both of [Ts,Te] are located in the present or future,
we can process the query via frontline part; 3) if the Ts is located
in the past and Te is located in the future, the [Ts, now) part is
answered via sparse R*-tee part, and the [now, Te] part is
answered via frontline part.

For the moving query, it is similar to the window query, except
the query range should be divided into two parts according to the
current time if the time range contains current time.

4. EXPERIMENT EVALUATION

In this section we present the experimental results evaluating the
behavior of PCFI'-Tree and two other trajectory indexing
structures: the SETI-index and the TPR*-tree.

4.1 Experimental Setup and Workload

Generation

The development platform is a dual Intel Pentium III Xeon
600MHz HP server that is configured with 512 MB of main
memory, and a 16GB Seagate 10000 RPM Ultra SCSI 2 disk,
running Windows 2000 advanced server English version.

The index method is implemented in the GEOMania Millennium
Server (GMS)[26], which is a spatial DBMS implemented at
database lab., Inha Univ. This system uses Storm/NT as its storage
manager, and all indexing techniques that we examine in this
section are implemented in Storm/NT. Storm/NT currently
supports 2D R*-trees. SETI is implemented using the existing 2D
R*-trees. The spatial extent is partitioned using a fixed uniform
rectangular grid, and the SAM is hard coded cache conscious R*-
Tee. The sparse R*-tree is implemented as 3-D R*-tree. We
implemented TPR*-tree with the node size equal to Xeon’s cache
size (16KB) as an additional indexing mechanism in Storm/NT.
The current data file (hash index file) is implemented with the
chunk size of 16KB and the pointers are TPR*-tree’s IDs. In all
our experiments, we use a buffer pool of 128MB. The disk page
size used in all the experiments is 8KB. A value in the time
dimension is represented using 14 bytes, and a value in the spatial
dimension is represented using a 4 byte double.

All trajectory segments are stored in the GMS database. Each
tuple has a unique trajectory id, a segment number, and the two
end points of the trajectory segments.

Since no real trajectory data sets are available, we generated
simulated data sets using the GSTD [18] data generator. The
GSTD data generator produces trajectory data sets for a specified
number of moving objects, with a specified number of segments
per moving object. The GSTD generator has numerous parameters
for changing the distribution of the initial positions of the moving
objects, the direction of the movements, trajectory segment length,
etc. We experimented with a number of data sets produced by
varying some of these parameters, and found that the results using
the default uniform distributions were representative of these
other data sets too. In the interest of space, we only present results

135

for GSTD data sets that were generated using the default data
generation parameter values.

4.2 Performance Evaluation

We examined the time-interval query for the past with 0.1%
selectivity as the number of moving objects is increased. The
experiment [Figure 6] shows that the PCFI'-index outperforms
the SETI-index and PCFI-index. The reason for this is that the
PCFI'-index has three dimensions whereas SETI-Index and PCFI-
Index have only one dimensional spare R*-tree.

140 T
2120 -
E —+—PCF+ —=— PCFI SETI
g 100 e
E 80 0
S 60 /jf/ﬁ
E 40 —
& 29 = el
w [l c’/_l 1
10 20 40 a0 160

Number of Segments{M)

Figure 6. Past Time-interval query for variable of moving
objects, 0.1% selectivity

100 =
~ A —+— PCFI+
[}
% 60 —=— TPR -
E 40 PCFI "
E
S 20 & /
E 0 "
g by
5 10 Z0 40 80 160

Number of Moving Objects (K)

Figure 7. Current query for variable of moving objects, 1%
selectivity

We examined the current query for PCFI-index, PCFI -index,
TPR*-tree, and SETI. The experiment result [Figure 7] shows that
PCFI'-index outperforms all other indices. Furthermore, the
PCFlI-index has the same performance with TPR*-tree for current
queries, and the SETI-index has the highest execution time. This
is because PCFI has the same index structure and algorithm as the
TPR* for current queries, both of them only contain one TPR*-
tree, but PCFI+-index has a set of TPR*-tree which has a higher
degree of concurrency and smaller

. 140

2]

e —— PCFI+ -
R —=— PCFI

E S
= 80 —~TPR 7

E 60

= /

3 40

3] ,a.//

w 20

e R :

10 20 40 80 160
Number of Moving Object{K)

Figure 8. Future Time-slice query for variable of moving
objects, 1% selectivity

We also examined the future slice queries for PCFI-index, PCFI'-
index and TPR*-tree. The experiment result [Figure 8] shows that
both the PCFI-index and TPR*-tree have the same execution time.
This is because the PCFI-index uses the same algorithm as the
TPR*-index. The PCFI'-index outperforms the other two.

5. Conclusions and Future Work

In this paper we have proposed and evaluated a new spatio-
temporal indexing mechanism, called PCFI'-Index. Based on the
implementation in Storm/NT, we have demonstrated that PCFI*-
index challenges with the original SETI for both historical time-
interval and historical time-slice queries with better performance,
but overcomes the SETI for current queries, and has a better
performance than the TPR*-Index and PCFI-Index for current or
future query. PCFI'-Index also provides a uniform processing
method for the querying the past, current and future positions.
Compared with the SETI-index and PCFI-Index, the PCFI'—
index is more realizable since there is a set of TPR*-tree, which
provide better concurrency degree. For future work, we plan on
investigating the use of PCFI for evaluating trajectory queries,
which require fetching entire trajectories, and computing derived
values such as average speed.

6. REFERENCES

[1] M. Abdelguerfi, J. Givaudan, K. Shaw, and R. Ladner.
The 2-3 TR-tree, A Trajectory-Oriented Index Structure for
Fully Evolving Valid-time Spatio-temporal Datasets. In Proc.
of the ACM workshop on Adv. in Geographic Info. Sys.,
ACM GIS, pages 29-34, Nov. 2002.

[2] M. Cai and P. Revesz. Parametric R-Tree: An Index
Structure for Moving Objects. In Proc. of the Intl. Conf. on
Management of Data, COMAD, Dec. 2000.

[3] V.P.Chakka, A. Everspaugh, and J. M. Patel. Indexing
Large Trajectory Data Sets with SETI. In Proc. of the Conf.
on Innovative Data Systems Research, CIDR, Asilomar, CA,
Jan. 2003.

[4] N.Katayama and S. Satoh. The SR-tree: An Index Structure
for High-Dimensional Nearest Neighbor Queries. In Proc. of
the ACM Intl. Conf. on Management of Data, SIGMOD,
pages 369-380, May 1997.

[5] G.Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing
Mobile Objects. In Proc. of the ACM Symp. on Principles of
Database Systems, PODS, pages 261-272, June 1999.

[6] D.Kwon, S. Lee, and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile
Data Management, MDM, pages 113—-120, Jan. 2002.

[7] D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel
Approaches in Query Processing for Moving Object
Trajectories. In Proc. of the Intl. Conf. on Very Large Data
Bases, VLDB, pages 395-406, Sept. 2000.

[8] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile
Objects in Spatio-Temporal Databases. In Proc. of the Intl.
Symp. on Advances in Spatial and Temporal Databases,
SSTD, pages 5978, Redondo Beach, CA, July 2001.

136

[9] Y. Tao and D. Papadias. Efficient Historical R-trees. In Proc.
of the Intl. Conf. on Scientific and Statistical Database
Management, SSDBM, pages 223-232, July 2001.

[10]Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal
Access Method for Timestamp and Interval Queries. In Proc.
of the Intl. Conf. on Very Large Data Bases, VLDB, pages
431-440, Sept. 2001.

[11]Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An
Optimized Spatio-temporal Access Method for Predictive
Queries. In Proc. of the Intl. Conf. on Very Large Data Bases,
VLDB, Sept. 2003.

[12]S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects. In
Proc. of the ACM Intl. Conf. on Management of Data,
SIGMOD, pages 331-342, May 2000.

[13]X. Xu, J. Han, and W. Lu. RT-Tree: An Improved R-Tree
Indexing Structure for Temporal Spatial Databases. In Proc.
of the Intl. Symp. on Spatial Data Handling, SDH, pages
1040-1049, July 1990.

[14] Mohamed F. Mokbel , Thanaa M. Ghanem and Walid G.
Aref . Spatio-Temporal Access Methods. Bulletin of the
IEEE Computer Society Technical Committee on Data
Engineering, 2003

[15] Steve Loughran, Code for Speed :Writing High Performance
Win32 Code, http://www.iseran.com/Win32/CodeForSpeed/

[16] Guting, R. H., B'OHLEN, M. H., Erwig, M., Jensen, C. S.,
Lorentzos, N. A., Schneider, M., and Vazirgiannis, M. A
Foundation for Representing and Quering Moving Objects.
ACM Transactions on Database Systems 25, 1, pp1—42, Mar,
2000

[17] Code for speed,
http://www.iseran.com/Win32/CodeForSpeed/

[18] Theodordis, Y., SILVA, J. R. O., and Nascimento, M. A. On
the Generation of spatiotemporal Datasets. In Advances in
Spatial Databases, 6th International Symposium (1999),
Lecture Notes in Computer Science, Springer, pp.147—
164, 1999

[19] Pfoser, D., Jensen, C. S., and Theodordis, Y. Novel
Approaches in Query Processing for Moving Object
Trajectories. In Proceedings of the 26st VLDB Conf. (Cairo,
Egypt, September 2000), pp. 395-406, 2000

[20] Dieter Pfoser, Indexing the Trajectories of Moving Objects,
Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, pages 1-7, 2002

[21]Mario A. Nascimento, Je_erson R. O. Silva, and Yannis
Theodoridis, Evaluation of Access Structures for Discretely
Moving Points, In Proc. of the Intl. Workshop on Spatio-
Temporal Database Management, STDBM, pages 171-188,
Sept. 1999.

[22]Z. Song and N. Roussopoulos. SEB-tree: An Approach to
Index Continuously Moving Objects. In Mobile Data
Management, MDM, pages 340-344, Jan. 2003.

[23]Liu Zhao-Hong, C.H. Lee, J. W. Ge and H. Y. Bae, Indexing
Large Moving Objects from Past to Future with PCFI. In
Proc. Of the 2™ Asian Symposium on GISs from Computer
Science & Engineering View(2004), pages 25-34, May. 2004

[24]Mong Li Lee , Wynne Hsu, Christian S. Jensen , Bin Cui and
Keng Lik Teo, Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach, Proceedings of the 29th VLDB
Conference, Berlin, Germany, 2003

[25]Kihong Kim, Sang K. Cha, Keunjoo Kwon, Optimizing
Multidimensional Index Trees for Main Memory Access, In
Proc. of the ACM Intl. Conf. on Management of Data,
SIMMOD, page139-150, 2001

[26] GEOMania Co. LTD, http://www.geomania.com

137

