
LWI and Safari: A New Index Structure and Query Model
for Graph Databases

Srinath Srinivasa
∗

Indian Institute of Information
Technology,

26/C, Electronics City,
Bangalore, India 560100.

sri@iiitb.ac.in

Martin Maier
†

C L Infotech Pvt Ltd.,
214, 7th Block,
Koramangala,

Bangalore, India 560095.

martin@clinf.com

Mandar R. Mutalikdesai
Indian Institute of Information

Technology,
26/C, Electronics City,

Bangalore, India 560100.

mandar@iiitb.ac.in

ABSTRACT
Graph databases are gaining importance in several emerging
applications, especially molecular biology. In many exist-
ing approaches, such databases are regarded as a “schema-
less” collection of labeled graphs. However, there are often
user-defined schemes that help in limiting the search space
while answering a query and to deliver meaningful results.
Techniques based only on index structures do not exploit
such situations. This paper presents our work on a graph
database system called GRACE, where a Data Manipula-
tion Language (DML) called Safari is proposed for graph
databases and is closely integrated with structural indexes
in the DBMS. Users may define schematic structures over
a subset of graphs in the database and add them into the
database as any other member graphs. The query model
in turn can use such member graphs to define its search
space in order to deliver more meaningful results. Queries
can be composed, so that schemas defining search spaces
can be generated dynamically. An augmenting index struc-
ture called labeled walk index (LWI) is also proposed that is
extensively used for answering structural queries in Safari.

1. INTRODUCTION
Databases of labeled graphs are finding applications in

many emerging areas – most significantly in molecular bi-
ology. Molecular structures stored as labelled graphs often
need to be retrieved based on structural similarity or sub-
graph isomorphism.

Determining structural similarity or subgraph isomorphism
are both NP-complete in complexity. As a result, various

∗Contact author†On study leave from Fachhochschule Regensburg,
Prüfeninger Strasse 58 93049, Regensburg, Germany

techniques ranging from pre-processing to heuristics based
approximate searches have been explored [1, 3, 6, 13, 18].

In a graph database, not only comparing individual graphs
is difficult, it is also required to make this comparison against
all graphs in the database.

In walk-based indexing approaches like Graphgrep [3], all
walks in the member graphs are enumerated until a max-
imum walk length lw. The query is also similarly decom-
posed and the problem reduces to a set of string matching
tasks. In frequent substructure based approaches like gIn-
dex [18], member graphs are indexed based on frequently
occurring substructures contained in them. A query graph is
also searched for occurrences of these substructures and the
search space is thus narrowed down. Indexing and search-
ing over structures is facilitated by storing the graphs in a
“canonical form” that is in the form of a string.

However, a shortcoming with existing approaches is that
they treat the database as a “schemaless” collection of graphs.
The default search space for all queries is the set of all mem-
ber graphs in the database.

In reality however, several classifications and schematic
structures are employed by users to relate graphs in the
database. In the realm of protein structures, there exist
several schemes like SCOP [12], CATH [2] and FSSP [9]
which relate protein structures based on several parameters.

One can envisage a user query of the form: Which is the
biggest common cluster of proteins that are classified sim-
ilarly under both SCOP and CATH? Such queries cannot
be answered in a straightforward fashion in existing ap-
proaches.

User defined schemes reflect domain knowledge; and as a
result, queries that are posed and answered within such a
context are likely to be more useful than those that blindly
search the entire database.

This paper presents an approach that enables the user to
define one or more schemes and formulate complex queries
over these schemes. A DML called Safari is proposed us-
ing which, users may relate graphs in the database to form
schematic structures. The most general form for a schema is
a graph itself. Hence, a schema can be added to the database
as any other member graph. A Safari query enables a user to
choose a member graph as schema and specify that the query
be answered within its context. The result of such queries
are again graph structures. Hence queries can be composed

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

138



and schema graphs can be generated dynamically.
In addition, data mining techniques based on filtration is

also employed for fast structural searches. The technique is
built around an index structure called “labeled walk index
(LWI)”. Both Safari and LWI are presented in this paper.

2. THE OVERALL GRACE MODEL
Overall structure of a GRACE database:

A GRACE database G is a collection of member graphs,
G = {G1, G2, . . . , Gn}. Each member graph Gi, is “labeled
graph” of the form: Gi = (V, E, VL, λ, VN , γ). Here, V is a
set of nodes or vertices, E ⊆ V × V is a set of edges, VL

is a set of vertex labels, λ : V → VL is the vertex labeling
function, VN is the set of node “names” and γ : V → VN is
the node naming function. The vertex set of Gi is refered
by V (Gi) and the edge set is refered by E(Gi).

In a labeled graph, it is generally the case that the num-
ber of node labels is far less than the number of nodes. This
characteristic is utilized in building reasonably small struc-
tural indexes that can return graphs based on approximate
matching. The label of a node represents the node’s “type”
and the node name refers to a specific node instance of a
given label. Distinct nodes having the same label should
have different names.

We do not consider edge labels in this paper for the sake of
simplicity; although edge labels can be incorporated seam-
lessly.

For each node in a member graph its label/name com-
bination is unique. For example, in a graph representing
an organic molecule, the node C1 denotes node named “1”
belonging to type (having a label) C. Similarly, a node rep-
resenting N1 represents node named “1” belonging to type
“N”. The name distinguishes a node from other nodes hav-
ing the same label.

Attributes in a member graph are in the form of

(name, type, value)

triples, where name is the name of the attribute, type is
its type and value is the value of the attribute. In the cur-
rent implementation, only one attribute type (string) is sup-
ported. Attributes can be associated with nodes, edges and
the graph itself.

Figure 2 shows a graph depicting the molecule benzene
written in a syntax called the modified DOT form that is
supported by GRACE. The graph has a label “aromatic”
and name “benzene”. It has an attribute named “discov-
erer” whose value is “Kekule” associated with it. Node at-
tributes are defined next. This graph does not have individ-
ual node attributes. Instead all nodes having a given label
share the specified attributes for the labels “C” and “H” re-
spectively. Edge definitions follow next and edge attributes
are defined after each edge definition.

Schema graphs: A member graph GS ∈ G is called
a “schema graph” if there exists another member graph
Gi ∈ G such that Gi ∈ V (GS). In other words, a mem-
ber graph which contains at least one node that refers to
another member graph in the database is called a schema
graph.

Referencing a member graph is done using one of the fol-
lowing ways:

1. Using the gid of the member graph. Each member

graph aromatic_benzene
[(discoverer, string, ‘‘Kekule’’)]
{

C [(element, string, ‘‘Carbon’’)];
H [(element, string, ‘‘Hydrogen’’)];
;
C_0--H_0 [(bond, char, ’s’)];
C_0--C_1 [(bond, char, ’s’)];
C_1--H_1 [(bond, char, ’s’)];
C_1--C_2 [(bond, char, ’d’)];
C_2--H_2 [(bond, char, ’s’)];
C_2--C_3 [(bond, char, ’s’)];
C_3--H_3 [(bond, char, ’s’)];
C_3--C_4 [(bond, char, ’d’)];
C_4--H_4 [(bond, char, ’s’)];
C_4--C_5 [(bond, char, ’s’)];
C_5--H_5 [(bond, char, ’s’)];
C_5--C_0 [(bond, char, ’d’)];

}

Figure 1: Representation of a benzene molecule
graph

graph is given a unique graph id gid upon insertion.
This can be used by schema graphs to reference mem-
ber graphs.

2. Using a name/label combination. All member graphs
appear as nodes in at least one schema graph called the
default graph as explained further below. The graph
label and name combination appear as node name and
labels in the default graph. As a result, the combi-
nation of graph labels and names should be unique
throughout the database.

3. Using a Safari query. As explained in Section 3, queries
in Safari return graph structures. Nodes in schema
graphs can use such queries to reference dynamically
generated views of the database.

The first two kinds of referencing techniques are called
static referencing and the last technique is called dynamic
referencing. Insertion of a schema graph fails if any of its
nodes try to refer to a graph that does not exist in the
database. This is in order to maintain referential integrity.
Note that, it can happen only when static referencing tech-
niques are used. A query returns a null graph when no
results match the query. A null graph is a legitimate graph
and hence referential integrity for the schema graph is not
violated.

The graph referenced by a node in a schema graph may in
turn be a schema graph itself. This can continue to any lev-
els and in fact, circular and self references are also allowed.
A schema can refer to itself as one of its nodes1.

When a member graph Gi becomes a node in a schema
graph GS , the graph attributes of Gi become the node at-
tributes of whichever node represents Gi in GS .

The “default” graph: By default, all member graphs
belong to a schema called the default graph. In its original
form, the default graph is a disconnected graph, comprising
only of nodes representing every member graph (including

1This is as long as there are no contradictory semantics as-
sociated with the self reference like the Russell’s paradox.
Self references per se, need not lead to paradoxes.

139



itself) in the database. Edges can be added to the default
graph to establish relationships among member graphs.

For example, if member graphs are protein structures,
edges among nodes in the default graph may denote root-
mean-square distances (RMSD) that are known among many
pairs of protein molecules.

In a general sense however, it is not advisable to add
edges directly to the default graph. This is because addi-
tion (and deletion) of nodes to (and from) the default graph
is automatic. Also addition of other schema graphs into
the database will be reflected in the default graphs as well.
This may interfere with the semantics of relationships among
nodes in the graph.

Graph addition and special attributes: When a mem-
ber graph is inserted into the database, it is given a unique
“graph id” represented by gid. The gid of a graph is added
as a graph attribute into the graph, and as a node at-
tribute for the node which represents this graph in the de-
fault graph. In addition to the gid, the name and label of
each node and of the graph itself are added as corresponding
attributes. The gid can be searched using attribute name
gid, and names and labels can be searched using attribute

names name and label respectively.
Graph deletion: When a member graph Gi is deleted

from the database, all schema graphs which have static ref-
erences to Gi will be modified. Nodes corresponding to Gi

in these schema graphs, as well as all their incident edges
will be deleted.

It is forbidden to delete the default graph. Even an empty
database contains the default graph, which contains just one
node: a reference to the default graph itself.

Graph deletions are not yet supported in the current im-
plementation of GRACE, however the corresponding refer-
ential index structures to handle deletions have been de-
signed.

3. THE Safari DATA AND QUERY MODEL

3.1 Overview
The syntax for specifying graphs in GRACE is a modi-

fied form of the DOT format developed under the Graphviz
project at AT&T2. A language called Safari is proposed that
can manipulate graph objects specified in the modified DOT
form and manage their storage and retrieval in databases.
Safari constructs are divided into four types:

Graph modification constructs: These include constructs
where nodes and edges can be added or deleted from
graphs. In addition, attributes for nodes, edges and
for the graph itself can be managed.

Graph retrieval constructs: These include constructs which
take a graph as input and return a subgraph based on
the specified condition.

Database modification constructs: These include con-
structs that add and delete graphs to and from a database.

Database retrieval constructs: These constructs search
the database for graphs matching the specified con-
dition and returns either a member graph or a dy-
namically created meta-graph as the query result. A

2http://www.research.att.com/ erg/graphviz/info/lang.html

meta-graph is a “pure” schema graph where all nodes
refer to other member graphs.

In this paper, we shall be mainly considering retrieval con-
structs; specific examples of other constructs would be pro-
vided as and when necessary. Also structural query con-
structs are not considered in this section. They are taken
up separately in the next section.

3.2 Graph retrieval constructs
Graph retrieval constructs take a graph and return a sub-

graph. These operations are completely in-memory opera-
tions. No database access is performed.

The main construct for graph retrieval is called the selecton
operator (pronounced as “select on”), denoted by σo. The
syntax of selecton is as follows:

σo 〈condition〉 [〈graphref〉]
The σo construct takes two arguments, of which the sec-

ond one is optional. The first argument is a graph retrieval
condition. Some example functions that specify these con-
ditions are outlined in Table 1. The second argument is the
graph over which retrieval is to be performed. If this is omit-
ted, the default graph for the current database is chosen.

Note that since σo does not perform any database oper-
ations, the graph provided in the argument should already
be in memory. When a database is chosen (with the “use”
command, explained later), the default graph and a few in-
dex structures are loaded into memory.

The graphref or the graph reference that forms the third
parameter of the command-line (or the second argument of
the command)3 can be provided in one of the following ways:

1. Omit the third parameter to automatically take the
default graph reference

2. Provide the name of a session variable holding a graph

3. Provide an inline DOT formatted graph

4. Place another Safari query output.

Suppose we have a session variable called PDB1a8i which
stores the molecular structure of the protein 1a8i. The fol-
lowing query:

C1a8i = selecton Edgeattr(‘‘BondType’’,‘‘Hydrogen’’)

selecton

Edge(Nodeattr(‘‘__label’’,‘‘C’’),

Nodeattr(‘‘__label’’,‘‘C’’))

PDB1a8i;

returns a subgraph containing hydrogen bonds among car-
bon molecules. The inner selecton selects all edges between
nodes having label “C” and the outer selecton prunes this
to select only those edges which have a “BondType” at-
tribute as “Hydrogen”. Note the assignment operator which
assigns the output graph to another session variable called
C1a8i.

3We shall use the terms “third parameter” of the command-
line and the “second argument” of the command, inter-
changeably.

140



Condition Comments

Nodeattr(String,
String)

Returns all nodes which have an at-
tribute matching the first parame-
ter, whose value matches second pa-
rameter. When two or more nodes
are returned, any edges among them
are also returned.

Edgeattr(String,
String)

Returns all edges which have an at-
tribute matching the first parame-
ter, whose value matches second pa-
rameter. When an edge is returned
the corresponding nodes are also re-
turned.

Edge(Nodeattr(),
Nodeattr())

Returns all edges that exist between
nodes matching the first argument
and nodes matching the second ar-
gument.

Walk(Nodeattr(),
Nodeattr(), n)

Returns all walks of length n or
below between nodes matching the
first argument and nodes matching
the second argument.

Table 1: Example graph retrieval conditions

3.3 Graph modification constructs
These constructs take a graph as input and return a mod-

ified graph. All these are done in memory and no database
access is performed. Some of the graph modification con-
structs include the following:

addnode The syntax of addnode is of the form:

addnode label_name [name1=value1,...] graphref;

The node with the specified name and label is added
to the graph specified in the graphref, which could be
either a variable, query result or an inline reference.
The modified graph is then returned. If a node with
the specified name and value already exists, then the
list of attributes is merged with the existing node.

addedge The syntax of addedge is:

addedge label1_name1 -- label2_name2

[name1=value1,...] graphref;

An edge is added between nodes label1 name1 and
label2 name2. If no such nodes exist, then they are
created. If an edge already exists, then the specified
attribute list is merged with that of the existing edge.

merge This is of the form:

merge graphref1 graphref2;

If graphref1 = (V1, E1) and graphref2 = (V2, E2)
then the functioning of merge would be graphref2 =
(V1 ∪ V2, E1 ∪ E2).

Consider the following query:

CCN1a8i = merge C1a8i

selecton Edgeattr(‘‘BondType’’,‘‘Hydrogen’’)

selecton

Edge(Nodeattr(‘‘__label’’,‘‘C’’),

Nodeattr(‘‘__label’’,‘‘N’’))

PDB1a8i;

This query first generates a subgraph showing all hydro-
gen bonds between “C” and “N” atoms by the two selecton

statements. The earlier graph having only “C” labeled nodes
is then merged into this graph to to show bonds between “C”
labeled nodes and between “C” and “N” labeled nodes.

Instead of the session variable C1a8i in the above example,
the complete selecton query can be written instead.

3.4 Database retrieval constructs
Database retrieval constructs take logical conditions and

match graphs in the database. The search space may be
limited by specifying a schema, without which the entire
graph (the default schema) will be used as the search space.

There are two main graph retrieval constructs: selectin

represented by σi and selectgraph represented by σg.
The selectin operator is specified as:

σi 〈condition〉 [〈graphref〉]
Here, condition is a logical condition on either attributes

in a graph or its structure, and graphref is the usual graph
reference which corresponds to the current default graph if
omitted.

The selectin operator works as follows:

1. The graph specified in the third parameter is used as
a schema and all the graphs referred by it are searched
for the specified condition

2. The schema graph (third parameter) is then pruned
to remove all nodes that either do not refer to other
graphs, or refer to graphs that do not match the con-
dition. When a node is removed, its incident edges are
also removed.

3. The pruned schema graph is then returned.

The selectin operator creates a “derived view” of the
database from an existing schema by matching conditions
from graphs in the database. Contrast this with selecton

in which conditions are matched within the graph itself.
Consider the following query:

selectin EdgeAttr(‘‘BondType’’, ‘‘Triple’’)

Amino_acids;

The query takes the schema graph referred by the variable
Amino acids and returns only those nodes (and edges among
them if any) that represent graphs containing at least one
triple bond.

The selectgraph operator (σg) is used to select a mem-
ber graph from a schema. The syntax of σg is as follows:

σg 〈condition〉 [〈graphref〉]
If condition matches a single graph in the provided graphref ,

this member graph is fetched from the database and re-
turned. If condition matches more than one member graph,

141



Command Comments

createdatabase

<name>

Creates a new graph database
with the given name and popu-
lates it with the default graph.

use <name> Uses the specified database as
the current database. This
entails loading the new de-
fault graph and index struc-
tures into memory and discard-
ing any previously loaded ones.

insertgraph

<graphref>

Inserts the specified graph into
the database. Insertion fails if
the name/label combination of
the graph already exists in the
database. When a graph is in-
serted, it is given a new gid.

deletegraph

<attribute

list>

Delete the member graph
matching the list of attributes
specified in the attribute list.
Deletion fails if no graphs
match or more than one graph
matches attribute list. Specify-
ing either gid or name and
label can help in uniquely

identifying member graphs.

Table 2: Some database manipulation commands

then σg acts as σi and returns that part of the graph pro-
vided in graphref that match the given condition. A new
graph attribute ismeta is created and set to 1 in the re-
turned graph to denote that the returned graph is a meta-
graph and not a member graph.

The following conditions may be used to uniquely identify
graphs: gid and name/label combination.

As usual, the third graphref parameter is optional and
refers to the default graph if omitted.

Consider the following query:

selectgraph (Nodeattr(‘‘__name’’, ‘‘Phenylalanin’’))

selectin EdgeAttr(‘‘BondType’’, ‘‘Double’’)

Amino_acids;

Assuming a bio-molecular database, this query searches
for a molecule named “Phenylalanin” among the set of molecules
described by the Amino acids schema that have a double
bond.

3.5 Database modification constructs
These constructs enable the user to create a database, add

graphs to the database, delete graphs from the database and
drop databases. In the present implementation, there is no
facility to modify graphs in place. The user should delete a
graph and add the modified member graph separately.

Database manipulation constructs are not directly rele-
vant to the topic of the paper. Hence, some of the Sa-
fari commands that manipulate the database, are summa-
rized in Table 2.

4. INDEX STRUCTURES AND QUERY AN-
SWERING

4.1 Index structures in GRACE
This section describes index structures that are used in

GRACE to handle queries. Three kinds of index structures
are used by default in a GRACE database. These are:

1. The attribute-value index (AVI)

2. The graph location index (GLI) and

3. The label-walk index (LWI)

AVI is used for attribute searches over the database. AVI
is an inverted index that stores gid values of graphs matching
specific attribute and value pairs. Since the current imple-
mentation of GRACE supports only string attributes, AVI
suffices for all attribute related queries.

The GLI is used to quickly retrieve a graph based either
on its gid or its name/label combination. Graphs are stored
in one or more data files and the number of graphs in a
data file is determined by a configurable parameter called
“graphs per file” (gpf). The GLI forms a secondary index
into these data files, indexing every graph entered into the
database.

AVI and GLI are not covered in depth in this paper.
The third index, LWI, is used for structure based searches.

Label Walks are used to codify structural properties of mem-
ber graphs. A label walk is a walk4 comprising of only node
labels (without the node names). A label walk is hence
a data type representing the set of all walks in the graph
having this sequence of labels. Since undirected graphs are
considered, a label walk is the same as the reverse of itself.
Hence the label walk C-C-N is the same as N-C-C. GRACE
stores only the lexicographically smaller label walk between
a given label walk and its reverse. If directed graphs are
assumed, this check need not be performed.

Operations of LWI can be divided into two phases, the in-
dex generation and the query processing. Index generation
is a one time effort over each graph in the database, and is
performed whenever graphs are added to the database. The
query processing applies an incremental strategy in gener-
ating label walks for progressively refining query details.

4.2 Index Generation
Whenever a new graph Gi is added to the database, la-

bel walks in Gi are generated up to a maximum length lw.
Walk generation is performed by a depth-first search (DFS)
procedure starting from all nodes in the graph.

The set of all label walks in Gi having label l is depicted
by wl(Gi). For each label l, the number of label walks or
|wl(Gi)| is stored in the LWI index. The index structure is
in the form of a prefix tree (called the LWI tree) that stores
label walks, their number of appearances and the ids of the
graphs in which they can be found.

The label walk index LWI is organized as a database-wide
prefix tree as shown in Figure 2. Each node in the LWI tree
holds information about the label walk starting from the
root to itself. Each node points to a sorted table of pairs
of the form (num, gid), that pairs member graph gids with

4A walk in a graph is a sequence of nodes v1v2 . . . vn, such
that there exists an edge between any two consecutive nodes
and no edge repeats itself in the walk. Note that nodes may
repeat in a walk.

142



Root

C N OH

C H N O N O O O

C H H O O
1    3,8

2    4,7,9

3    1,6

#occurrences gid list 

Walk: H−−N−−O

Level 0

Level 1

Level 2

Figure 2: The LWI tree

the number of occurrences of the present label walk in the
graph. There are no intermediate nodes in the LWI tree,
except the root node. Each node holds information about
label walks until itself starting from the root.

In the figure an LWI tree is shown which is created after
addition of one or more graphs into the database. The figure
also shows the table associated with a node. The position
of the node from the root indicates that it represents the
labeled walk H--N--O. The table associated with this node
has two columns: the number of occurrences of this walk
and the set of gids that have such an occurrence. In the
example database of Figure 2, walk H--N--O appears once
in graphs with ids 3 and 8, while it appears twice in graphs
with ids 4, 7 and 9.

When a query graph Q is presented for structural similar-
ity search, walks in the graph are enumerated and a vector
is created comprising of pairs of the form (walk, proj). Here
walk is a walk present in Q, while proj is the number of oc-
currences of walk in Q. The LWI is then searched to look for
entries of all walk values present in Q such that the number
of occurrences is proj ± w, where w is a nearness threshold
that can be configured as a database parameter.

Query answering is done in a phased manner where each
refinement constitutes exploring one level further in the LWI
tree. This is explained in more detail in the next section.

4.3 Processing structural queries
Two main kinds of structural queries are supported by

GRACE:

Similarity: Similarity searches take a graph as parame-
ter and returns a set of “structurally similar” graphs.
Structural distance between graphs is the edit distance,
or the number of node/edge edit operations that are
required to transform one graph to another. Struc-
tural similarity searches return graphs at small edit
distances to the query graph.

Substructure: Substructure queries take a query graph as
input and returns all graphs that are likely to have the
query graph as one of its subgraphs.

Structural queries are processed by generating label walks
from the query graph and comparing them with number of
appearances in the LWI tree. Generation of label walks of

the query graph is done in a phased manner so that query
results can be returned quickly and can be progressively
refined.

All label walks for a given gid at any given level are treated
as a vector depicting the position of the graph at that level.
When a query graph is similarly vectorized, query results
would be based on distances between the query graph vector
and the member graph vectors. This approach can be con-
trasted with that of Graphgrep [3], where all walks from the
graph are stored to produce results based on exact matching.
The LWI is many orders of magnitude smaller than a data
structure storing all walks in the member graphs. However,
the vectorization based approach used in GRACE provides
results based on approximate matching.

The algorithm for pruning the search space for struc-
ture based queries is based on the mining technique called
FBT [14] developed by the GRACE team for graph min-
ing applications. FBT is based on the concept of filtration,
rather than incremental construction that is employed by
other graph mining algorithms. In order to mine for com-
mon subgraphs in a database of graphs, FBT starts with an
assertion that all graphs in the database are isomorphic, and
progressively starts pruning edges that refute such an asser-
tion. The process then converges to the maximal common
subgraphs among the graphs.

A similar technique is used for structure based searches
in LWI. Given a query graph Q and a schema graph S, a
similarity search proceeds as follows.

1. Start from level l← 0 (first level after the root) of the
LWI tree

2. Let WS be the set of all gids present in the schema
graph S

3. Let Ql be the set of all label walks and their corre-
sponding number of occurrences in the query graph
(i.e. the vector of query graph) at level l

4. Let Ll be the set of all label walk vectors in the LWI
tree at level l

5. Compare Ql with Ll and obtain the set of all gids WL

that are “close enough” to the query vector, based on
a window parameter δ.

6. Compute Rl = WS ∩WL as the set of query results at
level l

7. Since query results at level l + 1 has to be contained
in the query results at level l, remove all gids from WS

that are not in Rl. That is, WS = WS ∩Rl.

8. If any walk in Ll contains no gids from the new Wl,
mark the corresponding node in the LWI tree as “use-
less”. The entire sub-tree under this node can be ig-
nored when comparing at the next level

9. Set l ← l + 1 and return to step 2 until the desired
number of refinements are done

The “close enough” function is computed by considering
a sphere of radius δ around the query graph vector at each
level and adding all vectors that lie within this radius. For
substructure queries, the “close enough” function is replaced

143



by the “contains” function which returns the set of all vec-
tors that lie above the query vector.

The LWI tree is augmented with another data structure
called the layered star schema proposed in [15] for fast spa-
tial searches in a discrete space having different levels.

4.4 Structural query constructs in Safari
In Safari, structural queries can be performed by provid-

ing a graphref as input parameter to functions like similar(),
contains() and mcg(). Here mcg stands for “maximal com-
mon subgraph” between the query graph and the graphref
in the third parameter.

All the above structural query constructs come in two
forms:

1. Single-step structural query, where structural searches
are performed for one level above the previous search
if any, and

2. Multi-step structural query, where structural searches
are performed for a pre-specified number of levels.

For example, the similar() function has the following
forms: similar(graphref) and similar(graphref, depth).
In the first form, the given graphref is searched for similar
graphs in a given domain for one level. If the domain is a
usual schema graph, then only level 0 is searched. If the
domain is the result of a previous structural search, then
similarity search is done for one level above the number of
levels searched in the domain.

Consider the following query:

selectin similar(fructose)

selectin similar(fructose);

This query searches the entire database (using the default
graph as the search domain) and returns molecular struc-
tures similar to fructose till a depth of 2 (levels 0 and 1). The
inner selectin returns a pruned default graph containing
graphs whose vectors lie within distance δ from the vector
of fructose at level 0. The returned graph is given a special
attribute called slevel whose value is set to 0 (the level
until which search was performed). When the similar()

search in the outer selectin sees this attribute in the do-
main, it knows the next level which has to be searched.

Progressive structural searches not only provide interac-
tive response times and enable the user to choose between
speed and accuracy; it is also useful in queries that cluster
structural isomers from member graphs. The following set
of queries shows such an example.

level0 = selectin similar(fructose);

flevel1 = selectin similar(fructose) level0;

glevel1 = selectin similar(glucose) level0;

The first query above retrieves a set of graphs that are
structurally similar to fructose at level 0 (i.e. in terms of
the number of different kinds of atoms). The second query
refines this to the next level; but the third query takes results
from the first query and compares it against another graph:
glucose. This query in effect says that: among all graphs that
are similar to fructose in terms of atoms, which are similar
to glucose in terms of bonds between atoms? While the first

a           b

c

b a

b            a

c

Input to mcg() Third Parameter

a           b

c

b            a

c

After running mcg() to 3 levels

Figure 3: Illustration of mcg()

query gets all structural isomers of fructose, the third query
separates those molecules that are similar to glucose.

Similarity searches can be “instrumented” at several levels
in order to separate structurally similar graphs into different
classes.

The similar() search can also accept a depth parameter
which specifies the depth to which similarity search should
proceed. Hence the query:

selectin similar(fructose, 3)

selectin similar(fructose);

searches the database for graph structures similar to fruc-
tose until a depth of 3, over the previous depth of 1 (or until
level 0). The return value of this query is a meta-graph
where the slevel is set to 3.

The contains() function behaves in an analogous fashion
to similar(). Both similar() and contains() are used in
selectin queries.

The mcg() function is used in selecton queries in order
to compare individual graphs. The mcg() function takes a
graphref as input and compares it with the graphref pro-
vided as the third parameter. Without a second parameter,
mcg() compares till a depth of 1 and removes all label walks
in both graphs that are not common.

Figure 3 illustrates how mcg() works. The first graph in
the figure is given as input to mcg and the second graph is
the third parameter of selecton. After mcg() runs for 1
level, it finds that the labels a, b and c are common to both
graphs. Hence the graphs are unchanged. Even after the
next refinement, the graphs are unchanged as all the level
1 label walks (a-b, a-c, b-c) are common. However, in the
next refinement, label walk b-a-b found in the input graph
is not present in the other graph. Similarly, the label walk
a-b-a found in the other graph is not present in the input
graph. The graphs are then pruned to result in the graphs

144



shown in the lower half of the figure.
The mcg() function has to maintain two graphs across

different invocations. In order to support this, the output of
mcg() is a “composite graph” that contains both the pruned
graphs. In a composite graph, nodes are tagged with an
extra attribute that identify to which graph they belong.
The graph also has an attribute mlevel that specifies the
level to which mcg() has already been run on these graphs.
When an mcg() command detects a composite graph as the
third parameter, it ignores any graphref provided as its
input parameter. This parameter may be omitted in such
cases.

The pruning concept used in mcg() is derived from the
FBT [14] algorithm for mining graph databases.

5. THE ANMOL SUITE FOR MOLECULAR
ANALYSIS

Initially GRACE was designed with molecular biology ap-
plications in mind. However, GRACE has now evolved into
an application independent graph database that can man-
age labeled graphs. Molecular biology applications are now
addressed in a suite called AnMol (expanding to “Analysis
of Molecules”).

AnMol is an OLAP application for managing bio-molecular
data. It has been tested primarily on protein records avail-
able from the Protein Data Bank (PDB) [11]. The de-
sign goals of AnMol are meant towards analytical queries
– that return aggregate properties of the data set. Hence,
querying collective properties like finding a cluster of similar
molecules is given more importance in AnMol, than finding
precise structural differences between pairs of molecules.

Structures of bio-molecules are usually represented by a
set of (x, y, z) coordinates for each atom in the molecule.
A commonly used mechanism for comparing two molecular
structures is to use the root-mean-square (RMSD) distance
between corresponding atoms of two molecules. The main
challenge in RMSD calculation is to obtain this correspon-
dence among the atoms.

In the DALI algorithm [10] all-pairs distances between
atoms are computed to create a distance matrix for each
molecule. Molecules are then aligned by aligning the matri-
ces. This is done by swapping rows of one of the matrices
until the largest common sub-matrix of distances is found.

A similar technique is also used in geometric hashing [7],
that was introduced in the area of computer vision. Geo-
metric hashing has also been applied in comparing molecular
structures [8, 16]. Geometric hashing hashes objects in a 3D
space by computing all-pairs distances among them.

However, establishing correspondences between distance
matrices poses a problem in the above approaches. When
objects in a 3D space are all of different types, it is simpler to
establish this correspondence. However, molecules are char-
acterized by large numbers of similar atoms (graph nodes
with the same labels), which requires distance matrices to
be first aligned before comparison.

In addition to 3D structures, several other features of bio-
molecules also form basis for comparison. For instance, sim-
ilarity in the structure of hydrophobic regions in two or more
proteins may be interesting, even if their 3D shapes differ.
Geometric hashing cannot be used to compare molecules
based on such non-spatial features.

GRACE           DBMS

Pre−processors

PDB
Record
Store

User
Query

Manager

Visualization
Engine(s)

Insertion Query

Figure 4: Overall AnMol architecture

In contrast, AnMol considers labeled graphs as the fun-
damental representation of molecules. Nodes and edges in
these graphs may represent several things like: atoms and
covalent bonds, atoms and hydrogen bonds, structural mo-
tifs and distance, etc. AnMol provides a set of pre-processors
that take a 3D representation of bio-molecules (usually a
PDB record in case of proteins) and convert them into one
of these various labeled graphs.

Labeled graphs thus created are managed by the GRACE
DBMS. AnMol supports structural queries based on simi-
larity and substructure. Given a molecular structure, a sim-
ilarity search returns other similar molecules. The measure
of similarity can be biased by assigning relative weights to
the different kinds of labeled graphs. For instance, assigning
high weightage to hydrogen bond graphs and lesser weigh-
tage to covalent bond graphs would favour molecules that
are similar in the hydrogen bonding structure than covalent
bonding structure.

Once relevant graphs are retrieved from the database, An-
Mol ranks them based on the relative weightages assigned
for each kind of graph. The ranked list is then linked with
the original PDB records containing the 3D structure. The
user can then use freely available visualization tools for ren-
dering the returned molecules.

Figure 4 schematically depicts the overall architecture of
AnMol.

6. PERFORMANCE ANALYSIS
GRACE implementation was tested on a set of PDB records

pre-processed for proximity structure among atoms (all atoms
that are less than 6 Angstroms from one another being con-
nected), and a set of synthetic graphs.

Evaluation was performed on a Pentium II with 256MB of
RAM. Unfortunately, comparison with related software like
GraphGrep and gIndex could not be performed. GraphGrep
had compilation problems due to some library requirement
which could not be met till date; and gIndex could not be
obtained.

PDB graphs were used mainly to measure graph loading
times. With a maximum walk length of 4, insertion of a
graph (which includes generation of its LWI entry) is shown
in Figure 5.

While insertion is fast enough for a maximum walk length

145



Figure 5: Insertion time against graph size for PDB
graphs

of 4, a walk length of 5 made insertion take several hours
when size of the graph increased beyond 4000 edges.

Insertion is hence performed in a batch mode; the control
returns to the user as soon as a graph is given for insertion.
The user is notified once insertion is complete.

In order to determine query result accuracy, a set of syn-
thetic graphs were used. A graph generator that took a seed
graph and generated graphs of various lengths was employed
to populate the database.

Given a member graph as input, and a similarity region
of radius δ = 0, similarity search yielded accurate results in
a maximum of 2 refinements. The same was true of sub-
structure queries. When one of the seed graphs were given
as input, accurate results were obtained after a maximum
of 2 refinements.

The graph database contained 100 graphs ranging be-
tween 250 to 1000 edges for this experiment, and a maxi-
mum walk length of 4 was used. The queries took an average
of 0.02 seconds (including the refinements) for substructure
queries and 0.03 seconds for similarity queries.

7. RELATED LITERATURE
The schema in a traditional RDBMS can be represented

by an Entity-Relationship labeled graph. Hence an RDBMS
is a graph database; only, it stores different instances of the
same graph – the schema graph.

Graph databases developed in the early 90s in OODBMS
frameworks have sought to query and manipulate such schemas
and their instances directly by treating them as graphs,

rather than converting them to tables. These objectives and
design principles are fundamentally different from the objec-
tives of GRACE. Some representative examples are taken up
here for comparison.

The GOOD [4] database system allows for storage of sev-
eral graphs in a database. Graph nodes are objects that
can be invoked to perform query and update operations. A
notion of schema graphs is also proposed. A schema graph
in GOOD is a graph comprising of only node labels without
names. All instances of this schema are graphs that have the
same structure but with different node names. By contrast,
in GRACE, a schema graph contains meta-data that estab-
lishes relationships among member graphs, each of whom
may have different structures unrelated to the schema struc-
ture itself. GOOD also does not seem to support structure
based retrieval.

GOAL [5] is another example. GOAL is an extension of
GOOD which supports different kinds of nodes represent-
ing simple data types, classes of objects and relationship
types. GOAL also allows schema graphs (and hence all its
instances) to be modified by addition and deletion of graph
elements.

Several other database systems like XML data bases, spa-
tial databases, hypertext webbases, etc. have used graph
theoretic representation and query mechanisms. However,
they are not directly relevant to GRACE which is meant for
retrieval of labeled graphs based on structural similarity.

Several other database systems have been proposed that
have similar objectives as that of GRACE. These systems
are contrasted based on the approaches taken for structure-
based retrievals.

In the SUBDUE database [6], a concept called hierarchi-
cal conceptual clustering is used to identify and index sub-
structures in a graph database. Whenever an interesting
substructure is found, all occurrences of the substructure
are abstracted away by a single node. This is however a
time-consuming process since it requires several structural
comparisons. In addition, when two or more interesting
substructures overlap, abstracting one will lose information
about the other. A compression technique similar to that of
SUBDUE was employed in earlier versions of GRACE [13,
15], but have been replaced by walk based approaches be-
cause of the above problems.

Graphgrep [3] is most similar to GRACE. However, Graph-
grep stores all walks from graphs for exact matching and all
searches are executed over the entire database. In contrast,
GRACE allows the user to specify schematic constructs that
restrict the search space. GRACE also uses vectorization
concepts that help in returning “similar” graphs in an effi-
cient fashion.

The gIndex approach [18] indexes frequently occurring
substructures in order to query graph databases. Frequent
substructures are mined using their earlier algorithm called
gSpan [17]. Mining and graph matching is based on rewrit-
ing graphs into a canonical form that represents them as
strings. Rewriting large graphs is a time-consuming process,
especially when a large query graph has to obtain results in
an interactive time frame. Also, if the graph database con-
tains very few recurring substructures, the index is likely to
become sparse. In contrast, GRACE indexes all structural
features and provides for progressive refinements of query

146



results. The user can also restrict search spaces for more
meaningful results by using appropriate schema graphs.

Several index structures based on label paths have been
proposed in XML literature. Since they are primarily ori-
ented towards XPath queries and not structural similarity,
they are not referred here.

8. CONCLUSIONS
GRACE presents a mechanism for managing data and

meta-data in graph databases in a uniform fashion. The
Safari constructs enable a user to dynamically create new
search spaces and schematic structures and search within
them.

For future directions, a number of new functions are en-
visaged for Safari, that can expand the scope of GRACE
from supporting structural queries over undirected labeled
graphs to more general graph theoretic queries. Some poten-
tial application areas that are planned to be addressed using
GRACE include knowledge management, XML databases
and managing web usage patterns.

9. ADDITIONAL AUTHORS
K. A. Gowrishankar, Gopinath P.S., Indian Institute of

Information Technology, Bangalore

10. REFERENCES
[1] S. Beretti, A. D. Bimbo, and E. Vicario. Efficient

macthing and indexing of graph models in
content-based retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23, 2002.

[2] CATH. Protein structure classification.
http://www.biochem.ucl.ac.uk/ bsm/cath/.

[3] R. Giugno and D. Shasha. Graphgrep: A fast and
universal method for querying graphs. In Proceedings
of the International Conference in Pattern recognition
(ICPR), Quebec, Canada, 2002.

[4] M. Gyssens, J. Paredaens, J. V. den Bussche, and
D. van Gucht. A graph-oriented object database
model. IEEE Transactions on Knowledge and Data
Engineering, 6(4):572–586, 1994.

[5] J. Hidders and J. Paredaens. Goal, a graph-based
object and association language. CISM - Advances in
Database Systems, pages 247–265, 1993.

[6] I. Jonyer, L. B. Holder, and D. J. Cook. Hierarchical
conceptual structural clustering. International Journal
on Artificial Intelligence Tools, 10:107–136, 2001.

[7] Y. Lamdan and H. Wolfson. Geometric hashing: A
general and efficient model-based recognition scheme.
In Proc. of the IEEE Int’l Conf. on Computer Vision,
1988.

[8] N. Leibowitz, Z. Y. Fligelman, R. Nussinov, and H. J.
Wolfson. Multiple structural alignment and core
detection by geometric hashing. In Proceedings of the
Seventh International Conference on Intelligent
Systems for Molecular Biology, pages 169–177. AAAI
Press, 1999.

[9] L.Holm and C. Sander. Fold classification based on
structure-structure alignment of proteins.
http://www2.ebi.ac.uk/dali/fssp/.

[10] L.Holm and C. Sander. Protein structure comparison
by alignment of distance matrices. Journal of
Molecular Biology, 23, 1993.

[11] PDB. The protein data bank. http://www.pdb.org/.

[12] SCOP. Structural classification of proteins.
http://scop.mrc-lmb.cam.ac.uk/scop/.

[13] S. Srinivasa, S. Acharya, H. Agrawal, and R. Khare.
Vectorization of structure to index graph databases.
In Proceedings of IASTED Int’l Conf. on Information
Systems and Databases (ISDB’02), Tokyo, Japan.
Acta Press, 2002.

[14] S. Srinivasa and L. BalaSundaraRaman. A filtration
based technique for mining maximal common
subgraphs. Under revision towards publication in
IEEE TKDE, 2003.

[15] S. Srinivasa and S. Kumar. A platform based on the
multi-dimensional data model for analysis of
bio-molecular structures. Proceedings of VLDB 2003,
Berlin, Germany, 2003.

[16] X. Wang and J. T. Wang. Protein classification: A
geometric hashing approach. In Computational
Biology and Genome Informatics. World Scientific
Publishing Company, 2003.

[17] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In Proceedings of ICDM 2002, 2002.

[18] X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure based approach. In Proceedings of
SIGMOD 2004, Paris, France, June 2004.

147


