
Association Rules Mining Using Heavy Itemsets
Girish K. Palshikar

Tata Research Development and
Design Centre (TRDDC),

54B, Hadapsar Industrial Estate,

Pune 411013, India.

Tel.:91 20 4042500

email: gk.palshikar@tcs.com

Mandar S. Kale
Tata Consultancy Services (TCS),

54B, Hadapsar Industrial Estate,

Pune 411013, India.

Tel.:91 20 4042469

email: mandar.kale@tcs.com

Manoj M. Apte
Tata Consultancy Services (TCS),

54B, Hadapsar Industrial Estate,

Pune 411013, India.

Tel.:91 20 4042471

email: manoj.apte@tcs.com

ABSTRACT
A well-known problem that limits the practical usage of
association rule mining algorithms is the extremely large number
of rules generated. Such a large number of rules makes the
algorithms inefficient and makes it difficult for the end users to
comprehend the discovered rules. We present the concept of a
heavy itemset. An itemset A is heavy (for given support and
confidence values) if all possible association rules made up of
items only in A are present. We prove a simple necessary and
sufficient condition for an itemset to be heavy. We present a
formula for the number of possible rules for a given heavy
itemset, and show that a heavy itemset compactly represents an
exponential number of association rules. We present an efficient
greedy algorithm to generate a collection of disjoint heavy
itemsets in a given transaction database. We then present a
modified apriori algorithm that uses heavy items and detects more
heavy itemsets, not necessarily disjoint with the given ones.

1. INTRODUCTION
Association rule mining, as originally proposed in [1] with its
apriori algorithm, has developed into an active research area.
Many additional algorithms have been proposed for association
rule mining [2, 4, 7, 15]; see also [9]. Also, the concept of
association rule has been generalized in many different ways, such
as generalized association rules, association rules with item
constraints, sequence rules [10] etc. Apart from the earlier
analysis of market basket data, these algorithms have been widely
used in many other practical applications such as customer
profiling, analysis of products and so on. We have used these
algorithms in innovative applications such as warranty claims
analysis and inventory analysis. Several commercial data mining
tools now offer variants of the association rule mining algorithms.

End users of association rule mining tools encounter several well-
known problems in practice. First, the algorithms do not always
return the results in a reasonable time. Typically, this happens

because the algorithms generate an exponential number of
candidate frequent itemsets. Although several different strategies
have been proposed to tackle efficiency issues, they are not
always successful. Also, in many cases, the algorithms generate an
extremely large number of association rules, often in thousands or
even millions. Further, the association rules are sometimes very
large. It is nearly impossible for the end users to comprehend or
validate such large number of complex association rules, thereby
limiting the usefulness of the data mining results. Several
strategies have been proposed to reduce the number of association
rules, such as generating only “interesting” rules, generating only
“non-redundant” rules, or generating only those rules satisfying
certain other criteria such as coverage, leverage, lift or strength.
While these are promising strategies, none of them seem to
sufficiently “compress” or reduce the generated association rules,
for easy comprehension by end users.

In this paper, we propose a concept called a heavy itemset. An
itemset A is heavy (for given support and confidence values) if all
possible association rules made up of items only in A are present.
We prove a simple necessary and sufficient condition for an
itemset to be heavy. We present a formula for the number of
possible rules for a given heavy itemset, and show that a heavy
itemset compactly represents an exponential number of
association rules. We present an efficient greedy algorithm to
generate a collection of disjoint heavy itemsets in a given
transaction database. We then present a modified apriori
algorithm that uses a given collection of heavy itemsets and
detects more heavy itemsets, not necessarily disjoint with the
given ones, and of course the remaining association rules. Table 1
shows an example, where the itemset {"97217”, “ 99501-3095",
"98055"} is heavy (see last 12 rules).

The concept of heavy itemsets is useful in several practical
applications; e.g., in a database of inventory or warranty claims, a
group of parts (which forms an assembly) will often occur
together. For example, when one assembly is replaced, all the
member parts in that assembly are actually replaced. Either these
relationships among the items will be known beforehand, or they
will constitute an interesting new knowledge. (a) If we already
know that some parts always occur together, then they can be
modeled as heavy itemsets. In this case, the association rules
among the member items of an assembly (which are already
known) will be suppressed. This is particularly useful when the
assembly consists of a large number of parts. (b) Discovering
unknown heavy itemsets is a potentially interesting and useful

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

148

new knowledge. The algorithms presented in this paper can be
used to discover only the heavy itemsets in a given transaction
database,

The paper is organized as follows. Section 2 discusses some
related work. The formal definition of the concept of heavy
itemset and its theoretical properties are discussed in section 3.
An efficient algorithm to generate a collection of disjoint heavy
itemsets is presented in section 4. Section 5 contains the modified
apriori algorithm, which uses a given collection of disjoint heavy
itemsets as input, and generates “remaining” association rules and
also finds more heavy itemsets, not necessarily disjoint from the
given ones. Section 6 presents some experiments results. Section
7 presents conclusions and further work.

Table 1. Some association rules generated from real data.

"15238-2901" ==> "33610"
"33610" ==> "15238-2901"
"28241-7787" ==> "33610"
"33610" ==> "28241-7787"
"28241-7787" ==> "98055"
"98055" ==> "28241-7787"
"97217" ==> "98055"
"98055" ==> "97217"
"97217" ==> "99501-3095"
"99501-3095" ==> "97217"
"98055" ==> "99501-3095"
"99501-3095" ==> "98055"
"97217" ==> "98055”, ” 99501-3095"
"98055" ==> "97217”, “ 99501-3095"
"99501-3095" ==> "97217”, “ 98055"
"97217” “ 98055" ==> "99501-3095"
"97217”, “ 99501-3095" ==> "98055"
"98055”, “ 99501-3095" ==> "97217"

2. RELATED WORK
Association rule mining, as originally proposed in [1] with its
apriori algorithm, has developed into an active research area.
Many additional algorithms have been proposed for association
rule mining [2, 4, 7, 15]; see also [9]. End users of association
rule mining tools encounter several problems in practice, such as
too much time taken by the algorithms and too many rules
generated as output. Since finding support requires a pass over the
entire database (and thus results in high I/O cost), one strategy to
improve the efficiency involves the use of random sampling to
estimate the support of an itemset; see [6, 13]. Use of hash-based
efficient data structures [12] and mining of vertical (rather than
horizontal) database [11] are some other approaches that have
been tried to improve the efficiency of the association rule mining
algorithms.

[16] compares 5 well-known association rule mining algorithms
(viz., apriori, FP-tree, charm, Magnum-Opus and Closet) using 3
real-world data sets and observed super-exponential growth in the
number of rules generated on these datasets. Several different
strategies have been proposed to reduce the number of association
rules generated. For example, we could use an interestingness
measure to generate only interesting rules. See [5] for an excellent
survey of many interestingness measures proposed in the
literature. A closely related work is [14], which proposed the
concept of a closed frequent itemset and used it to generate an

exponentially smaller number of non-redundant association rules.
Several post-processing strategies have been proposed in [8] to
reduce the number of generated association rules; e.g., prefer
general association rules over specific ones, summarize and report
only direction-setting (i.e., rules which indicate the type of
correlation between specific itemsets) rules etc. In [3], algorithms
are given to find itemsets containing highly correlated items i.e.,
association rules having high confidence but not constrained by
any minimum support.

3. HEAVY ITEMSET
When generating association rules over a set of items, we often
find that all possible association rules over a subset A of items are
generated. Each of these association rules over A has the form X

Y where X and Y are disjoint non-empty subsets of A. These
rules clutter the generated output. They can be actually
summarized (and hence removed from the output) by stating that
A is a heavy itemset.

Definition 1. Let L and R be any two non-empty disjoint itemsets.
Let 0.0 < σ, τ ≤ 100.0 be the given support and confidence values.
We say that L R is a valid association rule (for given σ and τ) if
(i) support(L) ≥ σ and (ii) support(L ∪ R) ≥ σ and (iii) [support(L
∪ R) / support(L)] ≥ τ.

Definition 2. Let 0.0 < σ, τ ≤ 100.0 be the given support and
confidence values. A non-empty itemset A (|A| ≥ 2) is said to be a
heavy itemset (for given σ and τ) if for every non-empty disjoint
subsets X, Y of A, X Y is a valid association rule (for given σ
and τ). An element of a heavy itemset is called a heavy item.

It is easy to see that a subset (of cardinality 2 or more) of a heavy
itemset is itself a heavy itemset. This observation, along with the
efficient condition for checking whether a given itemset is heavy
or not (as proved below) leads to a straightforward application of
the apriori algorithm for mining only heavy itemsets. In each step
of apriori, instead of finding frequent itemsets, we find heavy
itemsets. However, we run into the same difficulties of an
exponential number of candidates, in case there exist heavy
itemsets of large size in a given transaction database. Instead, we
use special properties of the heavy itemsets and give below a
polynomial time algorithm for generating disjoint heavy itemsets.

We first formalize the concept of heavy itemset, so as to facilitate
counting of the rules a heavy itemset represents.

Definition 3. Given a non-empty finite set A = {a1, a2, …, an} of n
≥ 2 items. A 2-split (or simply, a split) of A is a tuple (X,Y) where
X, Y are non-empty disjoint subsets of A (i.e., X, Y ⊆ A, X ≠ ∅, Y
≠ ∅ and X ∩ Y = ∅ but X ∪ Y need not be all of A). A split-set
over A is a non-empty set of splits of A. Given a non-empty subset
B ⊆ A, the complete split-set of B is the set of all splits of B.

149

For example, let A = {a, b, c, d}. Then ({a},{b, d}) is a split of A
and so are ({b}, {d}), ({d}, {b}) and ({b, c}, {a, d}). The
complete split-set of B = {a, b, c} containing 12 splits is:

{({a}, {b}), ({a}, {c}), ({b}, {a}), ({b}, {c}), ({c}, {a}), ({c}, {b}),
({a}, {b, c}), ({b}, {a, c}), ({c}, {b, a}), ({a, b}, {c}), ({a, c}, {b}),
({b, c}, {a})}

Thus a split represents an association rule; e.g., the split ({a}, {b,
c}) stands for the association rule {a} {b, c}. Then an itemset
A is heavy if all the association rules in the complete split-set of A
are present with the required support and confidence.

Proposition 1. The size of the complete split set (i.e., the number
of all possible splits) for a given finite set A of size N is given by

n
mN

N

m

mN

n
m

N CC −

=

−

=1 1

Here, m and n denote the sizes of the LHS and RHS sets in a spilt.
Proof: The term NCm denotes the number of ways in which the m
elements in the left hand side set can be selected out of the total N
elements. The term N-mCn denotes the number of ways in which
the n elements in the right hand side set can be selected out of the
remaining N – m elements. Since both LHS and RHS need to be
selected, we take the product of these two terms (rule of product).
Since the number of element m varies from 1 to N and m varies
from 1 to N – m, we take the summations over all possible values
of m and n, to get the total number of splits sets (rule of sum).
When m = N, we assume that the term 0Cn = 0.

�

Thus, if N = 3 (e.g., A = {a, b, c}), the total number of all possible
splits is 3C1 ⋅ (2C2 + 2C1) + 3C2 ⋅ (1C1) = 3 ⋅ 3 + 3 ⋅ 1 = 12, as
shown above. If N = 4, the total number of possible splits is:
4C1 ⋅ (3C3 + 3C2 + 3C1) + 4C2 ⋅ (2C2 + 2C1) + 4C3 ⋅ 1C1 = 4 ⋅ (1+3+3)
+ 6 ⋅ (1 + 2) + 4 ⋅ 1 = 28 + 18 + 4 = 50.

It is easy to provide an upper bound on the summation in
Proposition 1. Each item in the itemset A has 3 choices for each
split: either it appears in the left side or it appears in the right side
or it does not appear in either side. Thus the total number of
possible rules for an itemset A of size n is bounded above by 3n.
Since neither the RHS nor the LHS of an association rule can be
empty, we need to eliminate such association rules. The number
of association rules where the RHS is empty and the LHS is any
subset of the itemset is 2n. Similarly, the number of association
rules where LHS is empty is also 2n. Since the empty association
rule (LHS = RHS = ∅) is counted twice, an alternative expression
for the number of association rules corresponding to a heavy
itemset of n items: 3n – 2n+1 + 1. This expression is equivalent to
the one in Proposition 1.

Corollary 2: A heavy itemset compactly represents an
exponential number of association rules.

Proof: Immediately follows from the expression 3n – 2n+1 + 1. �

We now prove a simple necessary and sufficient condition to
decide whether an itemset is heavy or not.

Proposition 3: Suppose H = {a1, a2, …, an} is an itemset of n ≥ 2
items. Let s0 be the support of H. Let s1, s2, …, sn be the supports
of the singleton itemsets {a1}, {a2}, …, {an} respectively. Let the
minimum required support and confidence be σ and τ. Let mn =
min {s0, s1, s2, …, sn} and mx = max {s0, s1, s2, …, sn} be the
minimum and maximum of the support values. Then H is a heavy
itemset iff (i) mn ≥ σ and (ii) (mn / mx) ≥ τ.

Proof: (only-if part) Assume that (i) mn ≥ σ and (ii) (mn / mx) ≥ τ.
H is a heavy itemset iff L R is a valid association rule for any
disjoint non-empty subsets L and R of H. Let L and R be any two
disjoint non-empty subsets of H. We need to prove that (i)
support(L) ≥ σ and (ii) support(L ∪ R) ≥ σ and (iii) [support(L ∪
R) / support(L)] ≥ τ. Clearly, support(L) ≥ mn. Given that mn ≥ σ,
it follows that support(L) ≥ σ. Similarly, we can prove that
support(L ∪ R) ≥ σ. [support(L ∪ R) / support(L)] ≥ mn /
support(L) ≥ mn / mx which is given to be ≥ τ; hence [support(L ∪
R) / support(L)] ≥ τ as required. Hence L R is a valid
association rule. Since L, R are arbitrary disjoint subsets of H, we
have proved that H is a heavy itemset.

(if part) Assume that H is a heavy itemset. We need to prove that
(A) mn ≥ σ and (B) (mn / mx) ≥ τ. Since mx = max {s0, s1, s2, …,
sn}, let L = {ak} be the singleton itemset such that support(L) =
support({ak}) = mx. Let R = H \ L be the itemset of all items from
H except ak. Clearly, L, R are two disjoint subsets of H such that L
∪ R = H and L ∩ R = ∅. Then since H is a heavy itemset, L R
is a valid association rule. Hence, (i) support(L) ≥ σ and (ii)
support(L ∪ R) ≥ σ and (iii) [support(L ∪ R) / support(L)] ≥ τ.
Since support(L ∪ R) = s0 = mn, it follows from (ii) that mn ≥ σ,
thus proving (A) We now prove that (B) mn / mx ≥ τ. In (iii), the
numerator is the same as mn and the denominator is the same as
mx and hence it follows by substitution that mn / mx ≥ τ. �

We present below an algorithm that returns yes or no depending
on whether or not the given itemset is heavy. Note that the
algorithm uses the condition proved in Proposition 3 and does not
explicitly check all the possible association rules to decide
whether H is heavy or not.

algorithm is_heavy
input database D of N transactions
input heavy itemset H = {a1, a2, …, an} of n ≥ 3 items
input minimum support σ, minimum confidence τ
output yes if H is a heavy itemset; no otherwise
1. Let s0 be the support of H in D;
2. Let s1, s2, …, sn be the supports of {a1}, {a2}, …, {an} in D

respectively;
3. Let mn = min {s0, s1, s2, …, sn} and mx = max {s0, s1, s2, …,

sn} be the minimum and maximum of the support values;
4. if mn < σ then return(no);
5. if (mn / mx < τ) then return(no);
6. return(yes);

150

Correctness of the algorithm follows from Proposition 3.
Checking this condition for a given itemset A requires one pass
over the database to obtain support for each of the singleton
subset of A and for A itself.

4. FINDING DISJOINT HEAVY ITEMSETS

4.1 FP-Tree
We first summarize the concept of the frequent-pattern tree,
introduced in [4]. A frequent-pattern tree (FP-tree) consists of (i)
a header, which is a sorted list of frequent itemsets in the
descending order of their support (ii) vertices consisting of items
in the header (iii) solid edge from an item u to item v having a link
count c if support of u ≥ support of v and u and v co-occur in c
transactions (iv) dashed edge from each item u in the header to the
first vertex in the tree for u (v) dashed edge from each vertex u to
the next vertex for u in the tree. Thus, all the vertices in the tree
for the same item u are ordered from left to right and connected
into a sequence by dashed edges. Dashed edges do not have any
count values. An FP-tree is a representation of all the transactions
pruned to contain only items in its header. Support for an item u
in the header is equal to the sum of the link counts of all solid
edges that come into a vertex in the tree labeled with u. The
algorithm for constructing an FP-tree is as follows. For simplicity,
we omit the construction of the header of FP-tree, which contains
frequent items in the given transaction database and their links.

algorithm build_fp_tree
input Transactions Database D
output FP-Tree T
1. Create a root node T of FP-Tree and label it as null.
2. do for every transaction t ∈ D
3. if t is not empty
4. insert (t, T)
5. link the new nodes to other nodes with similar labels

links originating from header list.
6. return FP-Tree T

algorithm insert
input transaction t, any_node
1. do while t is not empty
2. if any_node has a child node with label head(t) then
3. increment link count between any_node and head(t) by 1
4. else create a new child node T0 of any_node with label

head(t) and having link count 1
5. call insert(body(t), T0)

First column of Table 2 shows a database containing N = 12
transactions of 11 items. For σ = 33%, τ = 33%, the 9 frequent 1-
itemsets are shown in column 2 of Table 2. Column 3 of Table 2
shows each of the original transactions after (i) pruning the
infrequent items (10, 11) and (ii) sorting the remaining items in
the transaction in descending order of their support. Fig. 1 shows
the FP-tree for these pruned and sorted transactions.

The path label for a path in an FP-tree is the minimum link count
in that path; e.g., in Fig. 1, the path label of the path <root, 3, 2, 7,
1> is min{10, 9, 6, 4} = 4.

Table 2. Transaction, frequent 1-itemsets and pruned transactions.
Original
transactions

Frequent 1-itemsets
item (support)

Pruned, sorted
transactions

2,3,4,5,6,7,8
4,5,6,7,8,9
1,2,3,4,5
1,2,3,6,7
1,2,3,7
1,2,3,7,8
2,3,7,9,10,11
1,2,3,4,5,6,7
6,7,8,9,10,11
1,2,3,4,8,9,10,11
2,3
1,3,4,5,7

3 (10)
2 (9)
7 (9)
1 (7)
4 (6)
5 (5)
6 (5)
8 (5)
9 (4)

3,2,7,4,5,6,8
7,4,5,6,8,9
3,2,1,4,5
3,2,7,1,6
3,2,7,1
3,2,7,1,8
3,2,7,9
3,2,7,1,4,5,6
7,6,8,9
3,2,1,4,8,9
3,2
3,7,1,4,5

Fig. 1. FP-tree for the transactions in Table 2.

Fig. 2. Conditional FP-tree for frequent item 1.

Given an item u in the header of an FP-tree T, we construct a new
conditional FP-tree Tu for u as follows. Tu is the same as T except
that it does not contain any vertex labeled with v (and solid edges
incident on them) where v comes “after” u in the header of T or

root

3

Item

set
3(10)

2(9)

7(9)

1(7)

4(6)

5(5)

6(5)

8(5)

9(4)

2

7

9

4

5

6

8

1

6

8

4

5

6

1

4

5

8

9

7

1

4

5

6

8

9

7

4

5

6

8

9

9

6

1

1

1

1

4

1

1

1

10

1

1

1

2

1

1

1 1 1

1

1

1

1

2

1
1

1

1

1

1

1

root

3

Item

set
3(7)

2(6)

7(5)

1(7)

2

7

1 1

7

1

6

4

4

7

2

1

1

151

there is no path in T from the root to the vertex v which passes
through u. The later condition essentially removes those
transactions in which u is not present. Such items v are also
removed from the header of Tu. The link counts in Tu and support
values for items in the header are different from those in T; these
are initialized to 0 and re-calculated as follows. Consider the
frequent item 1; there are 3 paths <3,2,7,1>, <3,2,1>, <3,7,1> to
the 3 vertices labeled 1 in the FP-tree T of Fig. 1. These paths
represent a total of 7 transactions, since support(1) = 7 in the
header of T. The path label for <3,2,7,1> is 4; so add 4 to each
link count in this path. The path label for <3,2,1> is 2; so add 2 to
each link count in this path. Finally, the path label for <3,7,1> is
1; so add 1 to each link count in this path. Now we find the new
support for an item u in the header of Tu as the sum of the link
counts of all solid edges that come into a vertex in the conditional
FP-tree labeled with u. Fig. 2 shows the conditional FP-tree for
frequent item 1.

4.2 Algorithm to Find Disjoint Heavy Itemsets
We now present an algorithm to find a collection of disjoint heavy
itemsets for a given database D, support σ and confidence τ.

algorithm find_disjoint_heavy_itemsets
input database D of N transactions.
input support � , confidence �

output a collection S of disjoint heavy itemsets
1. S = ∅; h = ∅; // h = current heavy itemset being built
2. (HD, T) = build_fp_tree(D) // HD is the header
3. nDepth = |HD|; // size of heavy itemset we are looking for
4. nHeavy = |HD|; // size of largest possible heavy itemset
5. while (nDepth > 1)
6. if (|h| > 0) // found heavy itemset h
7. S = S ∪ {h}; h = ∅; // add h to S, re-init h to empty
8. delete all elements of h from HD
9. re-initialize all links in HD to NULL
10. nHeavy = nHeavy – |h|
11. nDepth = nHeavy
12. Delete the old FP-tree T
13. T = build_fp_tree(HD, D) // build new FP-tree
14. for every item I in HD do // start from last item
15. conditional_treeR(T, HD, I, σ, τ, ∅, h)
16. nHeavy = nHeavy – 1
17. if nHeavy < nDepth then
18. break
19. nDepth = nDepth – 1
20. return S

algorithm conditional_treeR
input T, HD, I, σ, τ, nDepth // FP_tree,header,item,support,…
input L // list of items for which conditional tree is built
output h; // heavy itemset found
1. (HD1, T1) = build_conditional_fp_tree(T, HD, I)
2. Remove all elements of HD1 for which the support of the

item (as per T1) in the element is < σ.
3. L = L ∪ {I}
4. CH = L ∪ HD1 // candidate heavy itemset
5. nHeavy = |CH|
6. if (nHeavy < nDepth) then

7. return 1 // don’t record this itemset on return path
8. if (|HD1| > 1) then
9. if (get_confidence(L) < τ) then
10. return 0
11. found = 0;
12. for every item I1 ∈ HD1 such that I1 ≠ I do
13. rec = conditional_treeR(T1,HD1,I1,σ,τ,nDepth,L,h)
14. if (rec != 0) then found = 1;
15. nHeavy = nHeavy – 1
16. if (nHeavy < nDepth) then
17. return 1
18. if (found = = 0) then
19. if (get_confidence(L) > τ) then {h = h∪L; return 1;}
20. else return 0;
21. return 1; // found something during recursion, so return 1
22. else // come here when |HD1| ≤ 1
23. if (get_confidence(L) > τ) then { h = h ∪ CH; rec = 1; }
24. else rec = 0;
25. return rec

The subroutine build_fp_tree is the same as the one in [9]. The
subroutine get_confidence computes the confidence of an itemset
A as per the formula 100 * (support(A) / mx), where mx = max
{support of elements of A}.

We now illustrate our algorithm for finding heavy itemsets.
Initially, nDepth = nHeavy = 9, which is the number of frequent
1-itemsets. The subroutine conditional_treeR builds the
conditional FP-tree T1 for item 9 and finds that there are no other
items in the header HD1 of T1. The condition in line 6 is violated,
the subroutine returns, nHeavy is decremented, condition in line
17 is violated, the for loop is exited. Thus there is no possibility
of getting a heavy itemset of size 9. Hence nDepth is decremented
and the algorithm starts looking for a heavy itemset of size 8. The
algorithm continues and does not find any heavy itemsets of size
upto 5 or more. Suppose nDepth = nHeavy = 4. The algorithm
does not find any heavy itemset of size 4 for conditional FP-trees
of items 9, 8, 6, 5, 4. Suppose now I = 1 in line 14 in
find_disjoint_heavy_itemsets. We now enter the subroutine
conditional_treeR and build the conditional FP-tree for 1 (Fig. 2).

No item is removed from HD1 in line 2. Now L = {1} and CH =
{3,2,7,1}. Since support({1}) = 4, the get_confidence condition is
satisfied in line 9. We now recursively enter subroutine
conditional_tree, with I1 = 7. In the recursive call, conditional FP-
tree for 7 is built using the conditional FP-tree for 1, whose
header contains HD1 = {3, 2, 7}, none of which are removed in
line 2. Now L = {1, 7}, CH = {3,2,7,1}. Since support({1,7}) = 4
(as per the conditional FP-tree of 7) and max{support({1}),
suport({7}) = 9, as per the header in original FP-tree T,
confidence = (4/9)*100 = 44.44 > 33%. Continuing similarly, we
reach and satisfy the base condition for recursion in line 23; thus
finding and reporting the heavy itemset {3,2,7,1}. These 4 items
are then removed from the header of the original FP-tree and the
algorithm continues, finding another heavy itemset {4, 5}. The
algorithm stops after reaching nDepth = 1 in
find_disjoint_heavy_itemsets.

152

5. THE apriori_heavy ALGORITHM
Suppose A is the set of all frequent 1-temsets in a given
transaction database D. Suppose also that we find a collection H =
{h1, h2, …, hk} of k heavy itemsets in D using the above
algorithm. Let B be the set of all frequent items in A, which do not
occur in any heavy itemset in S. Apart from the association rules
consisting of items only in B, there may be additional association
rules involving (i) relationships between items in different heavy
itemsets in H; and (ii) relationships between items in B and items
in one or more heavy itemsets in H. We now give an association
rule mining algorithm, which uses H and B as given inputs and
finds the set of all other “missing” association rules. The
algorithm also finds more heavy itemsets, not necessarily disjoint
from the given ones and adds them to H. Thus the generated
collection of heavy itemsets H and the generated association rules
complete the mining process.

algorithm apriori_heavy
input set of heavy itemsets H = {h1, h2, …, hk}
input set of frequent item B = {f1, f2, …, fm} where each {fi} is

a frequent 1-itemset and fi ∉ hj, for any hj in H
input transaction database D, support σ, confidence τ
ouput set of association rules L R
1. C2 = {{u, v} | (∃ 1 ≤ i, j ≤ k such that u ∈ hi ∧ v ∈ hj ∧ i ≠ j)

∨ (∃ 1 ≤ i ≤ m, 1 ≤ j ≤ k such that u = fi ∧ v ∈ hj)
∨ (∃ 1 ≤ i ,j ≤ m such that i ≠ j ∧ u = fi ∧ v = fj) }

2. Find support of all 2-itemsets in C2 to determine L2

3. move_to_heavy(L2,H)
4. k := 3; stop = 0;
5. while stop = 0 do
6. Ck = gen_candidate_itemsets(H,B,k,Lk-1)
7. prune(Ck,H,B)
8. Lk = set of all candidates in Ck having support ≥ σ
9. if Lk = ∅ then stop = 1;
10. move_to_heavy(Lk,H)
11. k++
12. answer = ∪Lk

algorithm move_to_heavy
input Lk, H // lists of frequent k-itemsets and heavy itemsets
1. for all itemsets l ∈ Lk do
2. if is_heavy(l) then
3. H = H ∪ {l}
4. Remove all strict subsets of l from H
5. Lk = Lk – {l}

algorithm gen_candidate_itemsets
input set of heavy itemsets H = {h1, h2, …, hk}
input set of frequent item B = {f1, f2, …, fm} where each {fi} is

a frequent 1-itemset and fi ∉ hj, for any hj in H
input k, set Lk-1 of frequent itemsets of size k-1
1. Ck = ∅
2. for all itemsets l1 ∈ Lk-1 ∪ H such that |l1| = k-1 do
3. for all itemsets l2 ∈ Lk-1 ∪ H such that |l2| = k-1 do
4. if (l1[1]=l2[1] ∧ l1[2]=l2[2] ∧ … ∧ l1[k – 1]<l2[k – 1])

then
5. c = l1[1], l1[2], …, l1[k – 1], l2[k – 1]
6. if c ⊄ h’ for any h’ ∈ H then Ck = Ck ∪ {c}
7. for all heavy itemsets h ∈ H do

8. for all itemsets l ∈ Lk-1 ∪ H such that |l| = k-1 do
9. if (l does not contain any item from h) then
10. for all items i ∈ h do
11. c = l ∪ {i}
12. if c ⊄ h’ for any h’ ∈ H then Ck = Ck ∪ {c}

13. else // l and h are not disjoint
14. let i0 be the largest item of h present in l
15. for all items i ∈ h ∧ i > i0 do
16. c = l ∪ {i}
17. if c⊄h’ for any h’∈H then Ck = Ck ∪ {c}

The algorithm apriori_heavy is nearly the same as the original
apriori algorithm, except for the following. The initial candidate
itemsets are of size 2, obtained by taking pair-wise Cartesian
product of the heavy itemsets in H among themselves and with the
set B of “non-heavy” frequent items. After finding the frequent k-
itemsets, the algorithm checks (using subroutine is_heavy) if any
of them are heavy itemsets; if so, then it removes that set from Lk

and adds it to H, taking care to remove all proper subsets of the
newly added heavy itemset from H. Since the set Lk may become
empty in this process, the terminating condition stated differently
(stop when no new frequent itemsets are found).

In algorithm gen_candidate_itemsets, lines 2-7 are the nearly
same as the original candidate generation scheme in apriori;
except that heavy itemsets of size k-1 are also treated as frequent
(k-1)-itemsets. Rest of the lines 7-17 pick a frequent (k-1)-itemset
(or a (k-1) size heavy itemset from H) and systematically add one
heavy element from H to it. The itemsets are assumed to be sorted
as per the (arbitrary) item IDs.

A small modification is needed to actually generate the
association rules from the resulting heavy itemsets and frequent
itemsets. We omit the details here.

The trace of this algorithm on the database of Fig. 1 is as follows:

k = 2, H = {{1,2,3,7}, {4, 5}}, B = {6, 8, 9}
C2 = {{1,4},{1,5},{1,6},{1,8},{1,9},{2,4},{2,5},{2,6},{2,8},
{2,9},{3,4},{3,5},{3,6},{3,8},{3,9},{4,6},{4,7},{4,8},{4,9},
{5,6},{5,7},{5,8},{5,9},{6,7},{6,8},{6,9},{7,8},{7,9},{8,9}}
L2 = {{1,4},{2,4},{3,4},{3,5},{4,7},{5,7},{6,7},{7,8}}
We find that each itemsets in L2 is a heavy itemset; so we add
each of them to H. The new H is:
H = {{1,2,3,7},{4,5},{1,4},{2,4},{3,4},{3,5},{4,7},{5,7},{6,7},

{7,8}} L2 = ∅

k = 3
C3 = {{3,4,5},{1,2,4},{1,3,4},{1,4,7},{1,4,5},{2,3,4},{2,4,7},
{2,4,5},{3,4,7},{3,5,7},{4,5,7},{4,6,7},{5,6,7},{4,7,8},{5,7,8}}
L3 = {{3,4,5},{1,3,4},{2,3,4},{4,5,7}}
We find that each of these is again a heavy itemset; so we add
them to H and delete all their subsets already in H. The new H is:
H = {{1,2,3,7},{3,4,5},{1,3,4},{2,3,4},{4,5,7},

{6,7},{7,8}} L3 = ∅

k = 4
C4 = {{3,4,5,7},{1,3,4,7},{1,3,5,7},{2,3,4,7},{2,3,4,5}}
L4 = ∅
stop = 1

153

As an output of the algorithm apriori_heavy, we find the
following heavy itemsets:

H = {{1,2,3,7},{3,4,5},{1,3,4},{2,3,4},{4,5,7},{6,7},{7,8}}

These itemsets altogether represent 50, 12, 12, 12, 12, 2, 2
association rules respectively. Note that some of the association
rules “belong to” multiple heavy itemsets; e.g., 3 4 is
represented by {3,4,5}, {1,3,4} and {2,3,4}. Any standard
algorithm for association rule mining (e.g., apriori) reports 92
association rules for the example in Fig. 1 for σ = 33%, τ = 33%.
We have “compactly represented” these 92 rules in terms of the 6
heavy itemsets, without loss of any information. Moreover, a
heavy itemset represents a more meaningful relationship between
the items, than in a single association rule.

There are no other rules left in this example, other than those
represented by the heavy itemsets. However, in general, along
with heavy itemsets, there would be other association rules as
outputs of this algorithm. Note that the newly added heavy
itemsets are not disjoint from one or more of the already known
heavy itemsets {1,2,3,7} and {4, 5}.

As another example, for the following database of transactions,

1,3,5,6,8,9
1,2,5,7,9
2,3,5,6,7,9
1,2,5,6,8
2,3,4,5,7,9
3,4,6,8,9
2,3,5,7,8,9
1,2,4,5,6,7,9
1,2,3,6,8
1,2,3,5,7,9

we get the following heavy itemsets

3,9
2,5,7,9

and association rules (for support = 50% and confidence = 65%).

support,50.00,confidence,83.33,1,==>,5
support,50.00,confidence,83.33,1,==>,2
support,50.00,confidence,71.43,3,==>,5
support,50.00,confidence,71.43,3,==>,2
support,50.00,confidence,71.43,3,==>,5,9
support,50.00,confidence,100.00,3,5,==>,9
support,50.00,confidence,83.33,3,9,==>,5
support,50.00,confidence,71.43,5,9,==>,3

Note that any standard association rule mining algorithm will
report 60 rules in the above transaction database (for these
support and confidence values). But apriori_heavy reports only 8
association rules and 2 heavy itemsets. 50 association rules were
suppressed because of the heavy itemset {2, 5, 7, 9} and 2 were
suppressed because of the heavy itemset {3, 9}.

6. EXPERIMENTS

We have conducted several experiments on several real life data
sets. We have observed considerable reduction in the number of

association rules generated by the apriori_heavy algorithm, as
compared to the standard apriori algorithm. We present below
some results. We have consistently seen considerable decrease in
the number of association rules reported. This decrease is also
dependent on the support and confident values used; e.g., for
dataset-3, we observed a 100.0% decrease when the values
support = 60.0% and confidence = 60.0% were used. We have
also found that the facility of only identifying the heavy itemsets
is of considerable use in practice.

Table 3. Experimental results.
Data-1 Data-2 Data-3

no. of transactions 209 134 22
no. of items 152199 46 815
min items / transaction 1 1 1
max items / transaction 3388 17 615
avg. items / transaction. 972.87 4.1 316.27
min transactions / item 1 11 1
max transactions / item 15 15 17
avg. transactions / item 1.34 11.96 8.54
support % 5.0 8.0 60.0
confidence % 90.0 60.0 83.0
no. of rules apriori 2510 2692 62485
no. of rules apriori_heavy 2142 0 41593
% decrease in no. of rules 14.66 100.0 33.44
no. of heavy itemsets 4 6 7

7. CONCLUSIONS AND FURTHER WORK
Most association rule mining algorithms suffer from the twin
problems of too much execution time and generating too many
association rules. In this paper, we proposed a solution to address
the latter problem. We proposed the concept of heavy itemset,
which compactly represents an exponential number of rules. We
gave an efficient theoretical characterization of a heavy itemset.
We presented an efficient greedy algorithm to generate a
collection of disjoint heavy itemsets in a given transaction
database. We then presented a modified apriori algorithm that
uses given collection of heavy itemsets and detects more heavy
itemsets, not necessarily disjoint with the given ones and of
course the remaining association rules.

We have implemented the algorithms proposed in this paper. The
heavy itemsets are a useful and informative abstraction, which is
clearly understood by the end users in business terms. Typically, a
heavy itemset represents a group of items, which logically belong
together; e.g., as a unit or assembly. We have tried the algorithms
on several real life data sets and there is a drastic reduction in the
number of generated association rules, due to the use of heavy
items. Thus the end users can make better sense and use of the
outputs of the association rule mining algorithms. The
apriori_heavy algorithm usually shows a substantial improvement
over the performance of the apriori algorithm, due to its use of
heavy itemsets.

As further work, we are looking for a more efficient algorithm to
generate all heavy itemsets, disjoint or not. We are also looking
into a generalization of the heavy itemset that associates a degree
of heaviness with it. We are working on the concept of a heavy
association rule, which is also an abstraction of a group of

154

underlying association rules. For example, if a transaction
database has all association rules (for a given support and
confidence) of the form L R, where L ⊆ {a, b, c} and R ⊆ {p,
q, r, s}, then all these rules can be compactly represented by
stating that {a,b,c} {p, q, r, s} is a heavy association rule. Note
that, in this case, {a,b,c,p,q,r,s} need not be a heavy itemset.
Finally, we are investigating information theoretic
characterization of the heavy items and heavy association rules.

8. ACKNOWLEDGMENTS
We thank Dr. Sachin Lodha for many constructive suggestions.
Thanks also to Dr. Gautam Sardar for useful discussions. We
sincerely thank Prof. Mathai Joseph for his support.

9. REFERENCES
[1] Agrawal R., T. Imielinski, A. Swami, “Mining Associations

between Sets of Items in Massive Databases”, Proc. ACM
SIGMOD 1993, pp. 207-216.

[2] Brin S., R. Motwani, J. Ullman, S. Tsur, “Dynamic Itemset
Counting and Implication Rules for Market Basket Data”,
Proc. ACM SIGMOD 1997.

[3] Cohen E., M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R.
Motwani, J. D. Ullman, C. Yang, “Finding Interesting
Associations without Support Pruning”, Knowledge and
Data Engg., vol. 13, no. 1, 2001, pp. 64-78.

[4] Han, J., J. Pei, Y. Yin, “Mining Frequent Patterns without
Candidate Generation”, Proc. ACM SIGMOD 2000.

[5] Hilderman R. J., H. J. Hamilton, “Knowledge Discovery and
Interestingness Measures: A Survey”, Tech. Report CS-99-
04, Dept. of Computer Science, Univ. of Regina.

[6] Karp R.M., S. Shenker, C. H. Papadimitrious, “A Simple
Algorithm for Finding Frequent Elements in Streams and

Bags”, ACM Trans. Database Systems, Vol. 28, No. 1,
March 2003, pp. 51-55.

[7] Lin D., Z. M. Kedem, “Pincer-Search: An Efficient
Algorithm for Discovering the Maximum Frequent Set”,
IEEE Tran. Know. and Data Engg., Vol. 14, No. 3,
May/June 2002, pp. 553-556.

[8] Liu, B., W. Hsu, Y. Ma, “Pruning and Summarizing the
Discovered Associations”, Proc. Fifth ACM-SIGKDD 1999,
New York, pp. 125-134.

[9] Pujari A.K., Data Mining Techniques, University Press,
2001.

[10] Ramaswamy S., S. Mahajan, A. Silberschatz, “On the
Discovery of Interesting Patterns in Association Rules”,
Proc. 24th VLDB Conf., 1998.

[11] Shenoy P., J. R. Haritsa, S. Sudarshan, G. Bhalotia, M.
Bawa, D. Shah, “Turbo-charging Vertical Mining of Large
Databases”, Proc. ACM SIGMOD 2000.

[12] Soo P. J., C. Ming-Syan, P. S. Yu, “Using a Hash-based
Method with Transaction Trimming for Mining Association
Rules”, IEEE Trans. Knowledge and Data Engg.,, Vol. 9,
No. 5, Sep./Oct. 1997, pp. 813-825.

[13] H. Tiovonen, “Sampling Large Databases for Association
Rules”, Proc. VLDB 2000.

[14] Zaki M. J., “Generating non-redundant Association Rules”,
Proc. KDD-2000, pp. 34-43.

[15] Zaki M. J., C. Hsiao, “Charm: An Efficient Algorithm for
Closed Itemset Mining”, Proc. SIAM International
Conference on Data Mining, 2002.

[16] Zheng, Z., R. Kohavi, L. Mason, “Real World Performance
of Association Rule Algorithms”, Proc. KDD-2001.

155

