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ABSTRACT

Finding frequent patterns from databases has been the
most time consuming process of the association rule
mining. Till date, a large number of algorithms have been
proposed in the area of frequent pattern generation.
However, all of these algorithms produce output only at
the completion and are not amenable to the real-time
need. The need for real-time frequent pattern mining for
online tasks and real-time decision-making is increasingly
being felt. In this paper, we describe BDFS(b), an
algorithm to perform real-time frequent pattern mining
using limited computer memory. Empirical evaluations
show that our algorithm can make a fair estimation of the
probable frequent patterns and reaches some of the
longest frequent patterns much faster than the existing
algorithms.

1. INTRODUCTION

Since its inception in 1993 by Agarwal et al., association
rule mining for large databases of business data, such as 
transaction records, is of great interest in data mining and 
knowledge discovery [1]. An association rule is an 
expression of the form X Y  , where X and Y are sets
of items. Such a rule reveals that the transactions in the
database, containing items in X tend to contain items in Y,
and the probability, measured as the fractions of the
transactions containing X also containing Y, is called the
confidence of the rule. The support of the rule, is the
fraction of the total transactions that contain all items both
in X and Y.

For an association rule to hold, the support and the
confidence of the rule should satisfy a user-specified
minimum support and minimum confidence. The problem
of mining association rules is to discover all rules that
satisfy this user-specified minimum support and minimum
confidence. In this paper, we assume that the reader
knows the basic assumptions and terminologies of
association mining.

However, it is noteworthy at this point that the work
of association rule mining can be decomposed into two
phases:

1. Frequent itemsets generation: Find out all 
itemsets (or group of parameters) that exceed the
given minimum support

2. Rules construction: From the frequent itemsets
generated in step 1 above, generate all
association rules having confidence higher than
the given minimum confidence.

As the second phase mentioned above is 
straightforward and less-expensive, researchers have
generally focused on the first phase itself. The search
space needed for finding all frequent itemsets is
undoubtedly huge [6]. A number of efficient algorithms
have been proposed in the last few years to make this
search fast and accurate[7]. However, most of the 
algorithms stop only after finding the exhaustive
(optimal) set of frequent itemsets. These algorithms have
been very efficient and scalable for many real-life 
applications and are based on the “collect-store-analyze”
model. In all these, data mining is typically considered to
be an offline analytical task. These algorithms do not have
the ability to run under user defined real-time constraints
and produce some satisficing (interesting sub-optimal)
solutions. With the increasing demand of real-time
applications in various fields of business today,
development of real-time data mining algorithms demand
attention.

In this paper, we describe BDFS(b) (adopted from
[20]), a real-time frequent pattern mining algorithm which
runs under  limited computer memory. We also show its 
edge over existing efficient association mining algorithms
such as FP tree, when it runs to completion and outputs
exhaustive set of frequent patterns.
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The rest of the paper is organized as follows. In the
next section we discuss on the importance of real-time
frequent pattern mining in businesses. In Section 3, we
present a review of the previous work in association rule
mining.  In Section 4, we introduce algorithm BDFS(b).
Section 5 contains the empirical evaluation of our
algorithm. Finally, we conclude the paper in Section 6. 

2. NEED FOR REAL-TIME FREQUENT
PATTERN MINING IN BUSINESS

In recent years, business intelligence systems are playing 
pivotal roles in fine-tuning business goals such as
improving customer retention, market penetration,
profitability and efficiency. In most cases, these insights
are driven by analyses of historic data. Now the issue is, if 
the historic data can help us make better decisions, how
real-time data can improve the decision making process
[8] ?

An offline approach to data mining reflects sound
practice because the data have to be cleaned, checked for 
accuracy, etc. However, in a scenario of cutthroat 
competition, the organizations cannot afford to show the
attitude of not keeping abreast with the latest changing
demands and trends of their customers and get satisfied
with periodical data. They have to act on the latest data
that is available to them to react not only to the fierce 
global competition, but also market products keeping in
mind of the latest customer wishes. In such a scenario, the
concept of a real-time enterprise has creped into the 
corporate boardrooms of a number of organizations.
Using up-to-date information, getting rid of delays, and
using speed for competitive advantage is what the real-
time enterprise is about [5].

In the following sub-sections, we discuss the
importance of real-time frequent pattern mining in some
common business applications.

2.1 Real-Time CRM 

Due to the change in the focus of marketing from mass
marketing to more of relationship marketing, Customer
Relationship Management (CRM) has become a major
focus and thrust area for most of the companies, both
online and offline. It costs five to seven times more to
find new customers than to retain current customers. A 
5% reduction in customer defection can result in profit
increases from 30% to 85%. If companies increase their 
customer retention by 2%, it is the equivalent of cutting
their operating expenses by 10% [3].

In this context, the extraction of hidden patterns
from large databases help the organizations to identify
customers, predict their future behaviors and enable firms
to take proactive and knowledge-driven decisions.

However, one important thing to be noted is that the
companies do not have infinite time to run data mining
tools on huge transactional databases and data warehouses
to look into the patterns or come up with offers for the
customers who come to visit their stores. This applies to
both online and offline business outlets. Companies have
understood the need for real-time CRM and that real-time
analysis of the buying habits is desperately needed to
make relevant offers to a particular concerned customer,
before the customer leaves the outlet and ends the
transaction. Researchers [15] believe that real-time
personalization technology will proactively offer a 
particular customer products and services that will fit into
her needs exactly. A real-time analytical engine will work
in real-time, analyzing web clicks or sales rep interactions
and matching them with the past purchasing history to
make the offerings.

2.2 Real-Time Recommender Systems

The explosive growth of the world-wide-web and the
emergence of e-commerce have led to the development of
recommender systems [8], which is a variant of real-time
CRM. Recommender systems are personalized
information filtering technology used to either predict if a 
particular user will like a particular item (prediction
problem) or to identify a set of N-items that will be of
interest to a particular user (top-N recommendation
system) [29].

In recent years, recommender systems have been
used in a number of different applications.
Recommending products that a customer is most likely to
buy such as movies, books, music, TV programs, and
restaurant recommendations, demonstrating the wide
range of application domains of existing recommender
systems a user will find enjoyable, identifying the web
pages that will be of interest, or even suggesting alternate
ways of searching for information[18]. In particular,
Schafer et al. [24] made an elegant survey on major
existing systems and approaches to e-commerce
recommendation.

Despite the popularity of the recommender
systems, they have a number of limitations related to their
scalability and real-time performance. As a typical
example, the SmartPad system developed at IBM [16]
makes recommendations using a model of association
rules. The model is built on the past eight weeks of data
from Safeway Stores and is updated weekly or quarterly
to reflect seasonal differences. Hence, Shen et al. [26]
observes that most existing data mining approaches to e-
commerce recommendation are past data model-based in
the sense that they first build a preference model from a
past dataset and then apply the model to current customer
situations. Such approaches are not suitable for 
applications where fresh data should be collected and 
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processed instantly since it reflects changes to customer
preferences over some products.

There are numerous other areas where real-time
decision making plays a crucial role. These include areas
like real-time supply chain management [13], real-time
enterprise risk and vulnerability management [21], real-
time stock management and vendor inventory [25], real-
time operational management with special applications in
mission critical real-time information as is used in the
airlines industry, real-time intrusion and real-time fraud
detection [17], real-time negotiations and other areas like
real-time dynamic pricing and discount offering to 
customers in real-time. More than that, real-time data
mining will have tremendous importance in areas where a 
real-time decision can make the difference between life
and death – mining patterns in medical systems.

3. PREVIOUS WORK 

Association rule mining was introduced by Agrawal et al.
[1]. A detailed discussion about the various algorithms of
frequent pattern mining and their performance can be
found in the literature surveys of frequent pattern mining
[7, 9, 12].

It is noteworthy at this point that the total search 
space for all frequent itemsets is huge. Instead of 
generating and counting the supports of all possible
itemsets at once, which is obviously infeasible, several
solutions have been proposed to perform a more directed
search by iteratively generating and counting sets of
candidate itemsets [6].

The most well known and influential algorithms are 
Apriori[1] and FP-growth [10]. Apriori uses an a-priori
knowledge of frequent k-itemsets to generate candidate
itemsets of length (k+1) and employs an innovative
technique for pruning non-promising candidates.
However, the most discussed drawback of this algorithm
is that when the cardinality of the longest frequent
itemsets is k, Apriori needs k passes of database scans.
FP-growth, however, uses a depth-first strategy for
finding frequent patterns without generating any
candidate itemset. It constructs an FP-tree with itemsets
above the user-given support and then recursively mines
the constructed Fp-tree to find out all patterns. FP-growth
makes only 2 scans of the database for finding all the
frequent patterns. Many variants of Apriori algorithm
have been designed. Other ways of solving the problem
were using various partitioning methods and sampling
methods. These implementations included algorithms like
Apriori-TID[2], Apriori-Hybrid[2], Partition [23],
Sampling [28], DIC [4], CARMA [11], ECLAT [19], and
Top-Down [19]among others. Although CARMA
[Continuous Association Rule Mining Algorithm) uses a 
similar technique like DIC (to divide the database into
intervals of a specific size) reducing the interval size to 1.
More specifically, candidate itemsets are generated on the

fly from every transaction. After reading a transaction, it 
increments the supports of all candidate itemsets
contained in that transaction and it generates a new 
candidate itemset contained in that transaction, if all of its 
subsets are suspected to be relatively frequent with 
respect to the number of transactions that has already
been processed. As a consequence, CARMA generates a
lot more candidate itemsets than Apriori. Again, to
determine the exact supports of all generated itemsets,
another full scan of the database is required [7].

Majority of the algorithms in this area have been
classified according to their strategy to traverse the search 
space and by their strategy to determine the support
values of the itemsets [12]. However, [27] has concluded
that the most salient features of these algorithms are their 
counting strategy, search direction and search strategy.
Horizontal counting or vertical intersections are used for
counting the occurrences of candidate itemsets. Most of
the algorithms have generally used a bottom up approach
in the search strategy. While applying the search strategy,
the algorithms have used a breadth first or a depth first
search. The above points may be summarized in the
following table:

Search Direction

Bottom-up Top-Down
Search Strategy Search Strategy

Counting
Strategy

Depth-first Breadth-first Depth-
first

Breadth-first

Counting FP-Growth Apriori Top-Down

Intersection ECLAT Partition

Figure 1. Classification of prevailing algorithms [27]

4. BDFS(b): AN EFFICIENT TECHNIQUE 

OF FREQUENT PATTERN MINING IN 

REAL-TIME

4.1 Algorithm Basics

In this study, we propose a brute force algorithm,
which is a variant of the Block Depth First Search[20].
We call the algorithm as BDFS(b). BDFS(b) explores the
given search space in stages. The search is conducted in a
depth first manner, which ensures that patterns of greater
length will be preferred over those of comparatively
shorter lengths.

We assume that a lower triangular frequency matrix
M is created in a pre-processing step, which stores the 
support independent frequencies of all 1-length and 2-
length patterns. Once the user specifies a desired support
value, all frequent patterns of length 1 and 2 (meaning
F(1) and F(2), where F(n) means frequent pattern of
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length-n) are obtained from M. Then BDFS(b) starts its
search for frequent patterns of higher lengths from this
point forward.

iii. Arranging the candidate patterns according to their
merits (explained later) and group them into blocks
containing b-patterns each. If the block has empty
space, it gets candidate patterns from the previous
level. This can be handled using a global pool of
candidate patterns that has been sorted in descending
order of length. We resolve ties arbitrarily.

The most salient features of BDFS(b) are:
(a) It conducts search in stages and uses back-

tracking strategy to run to completion and ensure optimal
solution.

(b) It takes a block of candidate patterns b from a 
global pool, conducts the search by checking the
frequency of these patterns in the database. It generates
the possible candidate patterns (explained later with an 
example) of the next higher length from the currently
known frequent patterns. These candidate patterns are
continued to be explored in a systematic manner until all 
frequent patterns are generated. The value of the block b
is defined by the user using her knowledge and
experience (later in the paper, we have shown how the
performance of BDFS(b) is affected with changing block
size b). 

4.2 Algorithm Details

Algorithm BDFS(b):

Initialize the allowable execution time .
Let the initial search frontier contain all 3-length candidate
patterns. Let this search frontier be stored as a global pool of 
candidate patterns. Initialize a set called Border Set to null. 
Order the candidate patterns of the global pool according to
their decreasing length (resolve ties arbitrarily). Take a group
of most promising candidate patterns and put them in a block b
of predefined size. 

Expand (b)
Expand (b: block of candidate patterns)
If not last_level 
  then

begin
 Expand1(b)

  end.
Expand1(b):
1. Count support for each candidate pattern in the block b 

by intersecting the t-id list of the items in the database.
2. When a pattern becomes frequent, remove it from the

block b and put it in the list of frequent patterns along 
with its support value. If the pattern is present in the
Border Set increase its subitemset counter. If the
subitemset counter of the pattern in Border Set is equal to
its length move it to the global pool of candidate patterns.

3. Prune all patterns whose support values < given
minimum support. Remove  all supersets of these patterns 
from Border Set.

4. Generate all patterns of next higher length from the newly 
obtained frequent patterns at step 3. If all immediate 
subsets of the newly generated pattern are frequent then
put the pattern in the global pool of candidate patterns 
else put it in the Border Set if the pattern length is > 3.

5. Take a block of most promising b candidate patterns from 
the global pool.

6. If block b is empty and no more candidate patterns left, 
output frequent patterns and exit.

7. Call  Expand(b) if enough time is left in  to expand a new 
block of patterns, ,else output frequent patterns and exit.

A possible state space diagram of BDFS(b) is shown 
in figure 2.

Figure 2. State space diagram for BDFS(b).

The initial state (or the root node) in the state-space is 
denoted by S0, which contains the complete set of 2-
length frequent patterns F(2). In S0,, the set of all 
candidate patterns of length 3 or more are set to . In 
general, by the expansion of a node (which is a block of
candidate patterns in this case) we mean:

Figure 3. Algorithm BDFS(b)

Let us consider the following example to show how
BDFS(b) works. Let us consider some market basket data
to illustrate its working, which has been a conventional
technique in describing many frequent pattern mining
algorithms.

i. Counting the support frequency of all candidate
patterns in the state from the database.

ii. Generating the candidate patterns or patterns of 
border set of next higher level (explained later in the
algorithm and its working through example).
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Let the following table represent a set of 12
transactions, where the items are represented by a, b, c …

1.   a b c d e 2.   a c d e 3.   a d e 4. b c d e 
5.  b d e 6. a b d 7. a b d 8. a b c d
9. d e 10. a c d e 11. a b c d e 12. ace 

Figure 4. An example of transaction data

Now we proceed as follows:
Step I. Given this set of transactions D, we create a 

two dimensional lower triangular matrix M using
procedure Create_Matrix and the transaction id lists.

I. Create a lower triangular adjacency matrix, M, for n-
items (Total storage required: n*(n+1)/2). M stores the
frequencies of 1-at-a-time and 2-at-a-time combinations of 
all items.
II. In M, M(i,j) represents the number of occurrences of the 
item-pair i and j, i = 1,2…n and  j = 1,2,3…i and
M(i,i) represents the total number of occurrences of item i.

Figure 5. Procedure Create_Matrix

The created matrix M is depicted in figure 6. This step of
creating the matrix M and the tid-list (figure 7) is a 
support independent step and we refer this step through
out this paper as a pre-processing step.

Step II. Let the absolute support  (abs) given
for running BDFS(b) be 3. This means that we are
interested only in patterns, which have frequency greater
than or equal to 3. Cells of Matrix M are visited to find
F(1) and F(2) [where F(n) is frequent pattern of length n].
Thus we have:

F(1) = { a(9), b(7), c(7), d(11), e(9)} ………….…. (1)

F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4),
cd(6), ce(6),  de(8)} …………………….…….…… (2)

Frequency of each pattern is shown within parentheses.
Thus the pattern e of F(1) has frequency 9 and bd of F(2)
has frequency 7. 

Step III. Two 2-length patterns are merged if
their first elements match.

Thus newly merged patterns = { abc, abd, abe, acd, ace,
ade, bcd, bce, bde, cde } ……………..……………… (3) 

Step IV. Find if all the subsets of new merged
patterns are frequent. For any 3-lemgth newly merged
pattern, if all its 2-length subsets are not present, then the
pattern is pruned (using the support monotonicity
property[18]). Otherwise, if all its 2-length subsets are
present the pattern becomes a candidate-pattern and it is
moved to the global-pool of candidate patterns C( ). The 
global-pool of candidate patterns is sorted on length and

any tie between two same length patterns is resolved
arbitrarily.

C ( ) = { abc, abd, abe, acd, ace, ade, bcd, bce, bde,
cde } ………………………….……………………... (4) 

Figure 6. Matrix M 

Item Transaction Ids
a 1 2 3 6 7 8 10 11 12
b 1 4 5 6 7 8 11
c 1 2 4 8 10 11 12
d 1 2 3 4 5 6 7 8 9 10 11
e 1 2 3 4 5 10 11 12

Figure 7. The tid-list of the items

Step V. Let us assume that the block size b is 4,
which means that we can take at most 4 patterns into a 
block for checking their frequency. This means as the 3-
length candidate patterns are pushed into the global pool,
4 of these patterns namely, abc, abd, abe and acd, will be
put in the next block b.

Step VI. We now check the frequency of these
patterns by intersecting the tid-lists of the items.

b = {abc (3), abd (5), abe (2), acd (5)} .......... (5)

As frequency of abe is less than the support threshold, it
gets pruned.

F (3) = {abc (3), abd (5), acd (5)} …………….…..… (6) 

Step VII. We now merge the newly found frequent
patterns in F(3) and test these newly merged patterns
generated for the presence of their immediate subsets..

Newly merged patterns = { abcd } …………………… (7) 

We now find that all immediate subsets of the pattern 
abcd are not present in F(3). But only three immediate
subsets are present. Hence we move the pattern abcd to
border set of length 4, BS (4), with a sub-itemset counter
of 3.

BS (4) = { abcd (sub-itemset = 3) }  ………………..…(8)
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F(3) = { abc (3), abd (5), acd (5), ace(5) ,ade(5), bcd(4),
bce(3), bde (3),cde (5)}

Patterns ace, ade, bcd, bce are taken in the next block
b from the global-pool of candidate patterns.

F(4) = { abcd (3), acde (4), bcde (3)}b={ace(5),ade(5),bcd(4),bce(3)}.................................. (9)

The block size b can now be varied to show how it
affects the execution time of the algorithm. In the next
section, we show and discuss this effect. BDFS(b) has the
capability to run in real-time. Whenever it is stopped
before its natural completion, it outputs frequent patterns
of various lengths it had obtained up to that point of
execution time.

We find that all these items have frequency greater 
than (abs) = 3 and are hence frequent. Thus from the
new block

F(3)={ ace(5) ,ade(5), bcd(4), bce(3)}…………….... (10) 

For each pattern in the current F(3), we search BS (4) to
see if any of the immediate supersets are waiting in the
border set. We find that the pattern abcd is in BS (4) with
sub-itemset counter = 3. Hence we increase the sub-
itemset counter of abcd and make it 4. The pattern abcd is 
of the highest length among the candidate patterns in the
global-pool and is put in the next block b.

5. EMPIRICAL EVALUATIONS 

Legend:
T= Average size of transaction; I= Average size of the
maximal potentially large itemset; D= No. of transactions
in the database; N= Number of items.

Newly merged patterns (4) = {acde ,bcde } …………(11) In order to show how BDFS(b) performs, when it is 
run to generate all frequent patterns, we have chosen to
compare it with FP-growth and Apriori. Since FP-growth
is known to be an order faster and scales better than
Apriori[10], we  have taken FP-growth as the benchmark
and compared its execution time with that of  BDFS(b),
,implemented with a TRIE data structure. For the sake of
curiosity we have also compared Apriori and BDFS(b)
but for their number of patterns checked.  The
experiments were performed on a Linux machine with
1GB RAM and 20 GB HD.

The number of frequent immediate subsets of
acde and bcde are 3 and 2 respectively. Hence they are
moved to BS (4).

BS (4) = { acde (sub-itemset = 3), bcde (sub-itemset =
2)}……………………………………………………. (12) 

The patterns abcd, bde and cde go to the current
block b. After intersecting the tid-list of these patterns, we
find that

5.1 Performance of BDFS(b) on Synthetic 

Datasets
F (4) = {abcd (3)} …………………………..……… (13)
F (3) = {bde (3),cde (5)} …………………………… (14)

Experimental evaluation of BDFS(b) has been performed
on several synthetic datasets like: T10I8D100K,
T10I8D10K, T10I8D1K, T10I2D100K, T6I5D10K,
T5I4D1K, T5I4D10K, T5I4D100K (all these datasets
have 1K number of items), T5I4N500D1K,
T5I4N500D10K, T5I4N500D100K (with number of items
being 500), T5I4N100D1K, T5I4N100D10K,
T5I4N100D100K (where the number of items is 100) etc.
These datasets were generated using the IBM synthetic
data generator1 [2].

Similarly we search the BS (4) with newly found
F(3) patterns and merge the patterns in the newly found
F(3)’s with previous F(3)’s to generate higher length
patterns. We find that acde and bcde move from BS (4) to
global pool of patterns and moves into the block b. By
intersecting the tid-lists of the items, we find that

F(4)={acde (4), bcde (3)} ………………………..…. (15)

As no higher length patterns can be generated and the
number of patterns in block b becomes zero and also the
number of candidate patterns in the global pool of
candidate patterns becomes zero, the algorithm stops
executing here. Thus, the set of all frequent patterns are:

5.1.1 Comparison of BDFS(b) with Existing 
Algorithms
In figures 8 and 9, we have compared the run-time of FP-
growth2 and BDFS(b) for two different datasets and found
that BDFS(b) compares well with FP-growth in all theF(1) = { a(9), b(7), c(7), d(11), e(9)}

F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4),
cd(6), ce(6),  de(8)} 1 The data generator is available from

http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData.
2 The FP-growth code used for comparison is publicly available at 
www.cse.cuhk.edu.hk/~kdd/program.html
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5.2.1 Comparison of BDFS(b) with Existing 
Algorithms

cases. In figure 10, we have tested the scalability of the
FP-growth and BDFS(b). We have observed that both the
algorithms are well scalable with time and number of
transactions in the database. Here again BDFS(b) takes 
relatively much less time than FP-growth over the same
databases.

In figures 18 and 19, we have compared the run-time of 
BDFS(b) and FP-growth on two different real-life
databases, BMS-POS and BMS-WebView-2. We have
found that BDFS(b) performs well on these datasets too.Comparing the number of patterns being checked by

Apriori and BDFS(b), as shown in figure 11, it is found
that BDFS(b) checks much lesser number of patterns than
Apriori3. Although the Apriori code used here for
comparison is an efficient version of Apriori with several
optimizations added and the hash-tree data structure
replaced with TRIE, but as BDFS(b) has the capability to
find out one and two-length frequent patterns from the
pre-processed matrix itself, the total number of patterns
checked by BDFS(b) is lesser compared to Apriori.

5.2.2 Real-time Performance of BDFS(b) 

In figures 20,21,22,23 and 24, we present the real-time
performance of BDFS(b) on three real-life datasets
namely, BMS-WebView-2, BMS-POS and BMS-
WebView-1 [22]. In figure 20 we show how BDFS(b)
performs on the dataset BMS-POS. Again, in figures 21
and 22, we observe the real-time performance of BDFS(b) 
on real-life datasets BMS-WebView-2 and BMS-
WebView-1respectively. In these figures, 20, 21 and 22
we show percentage of frequent patterns generated with
percentage execution time having F(1) and F(2) included
and excluded in two respective curves. Similarly, in
figures 23 and 24, we particularly see that the efficiency
of the algorithm enhances with increase in the support
value.

5.1.2 Real-time Performance of BDFS(b)

Performance of BDFS(b) for varying values of block size
b is shown in figure 12. We find that for b = 1K, 10K and
100K BDFS(b) is well scalable. When the block size is 
too small, say b = 1K, then it takes more running time for
completion compared to b = 10K or 100K. For b = 10K or
above it gives similar performance. This is quite intuitive,
because a successor block can then accommodate all the
candidate patterns of a parent block.

Figure 25 makes a tabular presentation of real-
time outputs showing length-wise frequent patterns,
border sets, and candidate sets, at different  time slices
(expressed as % of total execution time). It may be seen
from the output that all the F(8) patterns (which are of 
maximal length in this case) were outputted only in 4.17%
time. It may be noted that the over all percentage of
output is almost always ahead of percentage execution
time.

Figures 13 and 14 summarize the real-time
behavior of BDFS(b) by depicting the percentage of
frequent patterns generated with the percentage of total
execution time. These include F(1) and F(2) obtained
from the frequency matrix. Figure 14 particularly shows
how the percentage of patterns generated by BDFS(b)
increases with the increasing values of support for a 
particular percentage of its running time. Next three
figures namely, 15,16 and 17 present three different
scenarios of real-time performance of BDFS(b) by
showing the number of patterns of different lengths
obtained at different time slices (expressed as % of total
execution time), using three different block sizes.
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5.2 Performance of BDFS(b) on Real-life 
Datasets

To evaluate the performance of BDFS(b), we have tested
it on various datasets. This includes real-life datasets like
BMS-WebView-1, BMS-WebView-2 and BMS-POS [14]

Figure 8. Time Comparison of FP-growth and
BDFS(b) T10I8D100K,b =100K

3 The Apriori code used for comparison is publicly available at
http://www.cs.helsinki.fi/u/goethals/software/index.html
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Time (s) 3.5.5 8.58.5 28.528.5 48.548.5 78.578.5 98.598.5 128.5128.5 198.50198.50 203.49203.49

% Time 1.72 4.18 14.01 23.83 38.58 48.41 63.15 97.55 100.00

F[1] : 350 F[1] : 350 F[1] : 350 F[1] : 350 F[1] : 350 F[1] : 350 F[1] : 350 F[1] : 350 F[1] : 350 

F[2] : 2319 F[2] : 2319 F[2] : 2319 F[2] : 2319 F[2] : 2319 F[2] : 2319 F[2] : 2319 F[2] : 2319 F[2] : 2319 

F[3] : 612 F[3] : 1028 F[3] : 1542 F[3] : 1488 F[3] : 1783 F[3] : 1935 F[3] : 2078 F[3] : 2695 F[3] : 3049 

F[4] : 488 F[4] : 607 F[4] : 953 F[4] : 944 F[4] : 1070 F[4] : 1163 F[4] : 1250 F[4] : 1456 F[4] : 1790 

F[5] : 299 F[5] : 301 F[5] : 347 F[5] : 331 F[5] : 363 F[5] : 376 F[5] : 390 F[5] : 445 F[5] : 508 

F[6] : 134 F[6] : 134 F[6] : 134 F[6] : 134 F[6] : 134 F[6] : 136 F[6] : 136 F[6] : 137 F[6] : 141 

F[7] : 1 F[7] : 31 F[7] : 31 F[7] : 31 F[7] : 31 F[7] : 31 F[7] : 31 F[7] : 31 F[7] : 31 

F[8] : 3 F[8] : 3 F[8] : 3 F[8] : 3 F[8] : 3 F[8] : 3 F[8] : 3 F[8] : 3 

Border
Sets BS[4] : 524 BS[4] : 879 BS[4] : 2469 BS[4] : 2446 

BS[4] : 
2890 BS[4] : 3159 BS[4] : 3676 BS[4] : 4820 BS[4] : 8127 

BS[5] : 285 BS[5] : 310 BS[5] : 625 BS[5] : 625 BS[5] : 697 BS[5] : 747 BS[5] : 771 BS[5] : 927 BS[5] : 1865 

BS[6] : 90 BS[6] : 90 BS[6] : 106 BS[6] : 101 BS[6] : 110 BS[6] : 118 BS[6] : 118 BS[6] : 136 BS[6] : 170 

BS[7] : 21 BS[7] : 21 BS[7] : 21 BS[7] : 21 BS[7] : 21 BS[7] : 21 BS[7] : 21 BS[7] : 21 BS[7] : 21 

Candidat
e Sets C[3] : 17180 C[3] : 14570 C[3] : 10755 C[3] : 11698 C[3] : 9632 C[3] : 8504 C[3] : 7345 

Figure 25. Frequent Pattern Output along with Border Sets and Candidates Patterns of BDFS(b) for BMS-Web View-1 with
support 0.08%. N= 497, T=2.5, D=59602 and b=497. 

6.   CONCLUSION Moreover, by adjusting its block size properly,
BDFS(b) has the extra ability to run with limited available
memory, which often becomes a point of concern in other
algorithms. We have then shown that while running under
real-time constraints it outputs large chunks of frequent
patterns with fractional execution times. We have made
detailed performance evaluation based on empirical
analysis using several commonly used synthetic datasets
and one real-life dataset. 

Traditionally, the frequent pattern mining has been kept as
an offline analytical task, where the frequent patterns are 
found on the data captured for a specific time period, few
weeks, months or even years. But with the changing
scenario in the business environment and with
improvement in the communications technology and the
Internet, and with the more and more business processes
going online, frequent pattern mining for real-time decision
making has become a thrust area of research [22].

Thus, we have demonstrated that real-time frequent pattern
mining can be done successfully using BDFS(b).

Further research in this direction may include
design of powerful heuristics to enhance the efficiency of
BDFS(b) under different scenarios. We believe this study
will encourage use of AI heuristic search techniques in
real-time frequent pattern mining.

Real-time frequent pattern mining will have great
impact on the way knowledge is gathered from patterns
from the databases. It has the capability to affect all aspects
of doing business in today’s world. It will provide decision
makers with more accuracy and reduced time lag and help
in real-time decision-making.

In this paper, we have proposed an algorithm
BDFS(b), which is a brute force version of the Block Depth
First Search(BDFS) [20]. First we have compared the
performance of BDFS(b) with FP-Growth and Apriori and
shown that it does significantly better than both.
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