
Database Access Control for E-Business – A case study
Santosh Dwivedi Bernard Menezes

Kanwal Rekhi School of Information Technology

Indian Institute of Technology Bombay
Powai, Mumbai, IN

{santosh, bernard, ashishc}@it.iitb.ac.in

Ashish Singh

ABSTRACT
In a multi-tiered E-Business application, database access control
can be implemented in the application tier or in the database tier
or in both. We describe the advantages of Application Service
Provider-based Supply Chain Management and present a much
simplified database schema for this application. Common user
queries which provide input to decision making systems relevant
to supply chain optimization are listed. Security requirements in
the form of database access control rules are then spelled out. We
investigate the use and shortcomings of Oracle’s Virtual Private
Database as a component of a database tier firewall.

1. INTRODUCTION
Security is critical in many non-trivial web applications such

as internet banking or on-line commerce. Features of
communication security such as authentication, message
integrity, privacy and non-repudiation have been extensively
researched [6], [7]. In addition to secure data communications, an
important related issue is authorization. Having been
authenticated, what permissions to on-site resources does a
principal have and how are these determined? These permissions
could be as varied as access rights to storage or “execute” rights
to methods of individual classes. The focus of this paper is on the
specification and enforcement of access rights to a shared
database.

Many enterprise applications are structured as a sequence of
tiers so as to logically separate and isolate distinct concerns. For
example, business rules and logic are abstracted out in the
application tier while database access, caching, indexing and
query optimization are confined to the database or storage layer.
There is also need for a web tier in keeping with the principle of
separating the model (domain objects) and the view. End-to-end
security, so crucial in web-based enterprise applications, can only
be provided by securing each individual tier.

Security at the web tier involves authenticating a principal
through the verification of its credentials. Passwords, digital
certificates and biometric techniques possibly in conjunction with
smart cards may be used here. These credentials can then be
maintained in a “session context”, [7] for the duration of a login
session. The idea of a context exists in the web and application

tiers [5], [13]  as well as in database tier [24] implementations. In
the database tier, they serve as input to access control policy
functions which in turn limit the data that is accessible to the
principal.

This paper is principally about providing for secure access
to a shared database in a web-based application with multiple
business partners. We use as a case study centralized Supply
Chain Management (SCM). Here, the inventory levels, orders,
shipment details, etc. of all business partners are stored at a site
owned and operated by an Application Service Provider (ASP).
Because information sharing in this application has long been
proposed to reduce costs, such a set-up makes sense. However,
trust relationships between entities in the supply chain must be
respected motivating the current work.

The application software for ASP-based SCM can be
provided by the ASP or it can permit the use of custom software
implemented by the different supply chain partners. In the latter
case especially, database access control should be implemented
in the database tier itself. For this purpose, we highlight the main
functions of a database tier firewall. We study the use of Oracle’s
Virtual Private Database (VPD) as a component of the firewall.
This involves writing policy file functions which when executed
modify an application query by appending to it a where clause.
The specific predicates appended are a function of the access
constraints specified by the domain expert and captured in policy
functions. We consider a core set of queries useful in providing
input to a decision support system which in turn is used for
supply chain optimization.

The organization of this paper is as follows. In Section 2,
we introduce the important E-Business application of ASP
(Application Service Provider)-based SCM. Section 3 discusses
related work. We present our SCM database schema design and
Virtual Private Database (VPD) basics in Section 4. In Section 5,
we present a number of relevant user queries and explain the
rationale for them. We state specific constraints on database
access. We then present the modified queries upon application of
the appropriate policy file functions. Section 6 contains a
discussion of relevant issues and a conclusion.

2. ASP-BASED SCM
B2B partners usually form a chain for providing a service or

manufacturing a product. The partners along the chain are either
inventory buffer points or value adding points - they push the
product nearer to completion/sale or customize it as per the
requirements of the customers. This chain is referred to as a
supply chain or supply web [21]. The network of suppliers and
consumers is modeled as a graph with nodes representing entities
such as suppliers, manufacturers, wholesalers, retailers, etc. (Fig.
1(a)). A supplier-consumer relationship is represented as an arc
from the supplier to the consumer. The graph is a multi-stage or
multi-partite graph with each stage comprising entities of a given
type. Goods or products flow from a node to one connected to it

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

168



and downstream from it while orders and payments flow in the
reverse direction. We assume that the buyer-seller relationships
are static– a buyer always buys a product from the same seller
though he may buy another product from a different seller. In
Fig. 1(a), the arc labels represent the set of products or items
supplied from the upstream to the downstream node.

Figure1(a). A Supply Web

A node X is an indirect supplier of Y for product P if there
is a sequence of nodes N1, N2, … Nm such that X is a direct
supplier to N1, N1 is a direct supplier to N2, … Nm is a direct
supplier to Y for product P. Even though there may be multiple
disjoint paths from a node to a given downstream node in the
complete supply graph, the subgraph linking suppliers and
customers for a specific product, P, is a directed tree. This
follows from our assumption that, for a given customer, a product
will always be sourced from the same supplier. We refer to this
directed tree as a supply tree. Fig. 1(b) shows a supply tree rooted
at Manufacturer B for Product 4.

Figure 1(b). A Supply Tree forProduct 4 Rooted at B

Our approach to providing support to the business processes
in SCM exploits the pervasive internet by hosting the SCM
software on a single remote site provided by an Application
Service Provider (ASP) [22], [23]. This is often employed when
the client is a small or medium enterprise which lacks the
resources or manpower to support such an application. ASPs

remove technology risks (including obsolescence) out of
investment decisions and insulate users from the pain of
licensing, installation, upgrades, troubleshooting and other
perfunctory tasks such as performing back-ups, recovery and
maintenance.

Intelligent software on the ASP can provide a host of other
services for partners in the supply chain such as:

Demand/Sale forecasts at any node in the chain by analyzing
long and short-term trends, seasonality, cyclicity, etc.
Triggers and alerts which inform entities of sudden surges or
slumps in sales of different items
Computation of re-order points and quantities based on
updated POS (point of sale) and lead time information [9]
Payment gateway functionality to effect funds transfer from
buyer to seller account by having direct connection to the
banking network
Facilities to mine information on sales to identify, for
example, co-relations between sales of related items, the
effect of promotions/discounts on sales volume/profits, etc.

3. RELATED WORK
The ASP-based approach has received much attention in the

literature as has the outsourcing of data management which is
considered an attractive option for many organizations [12][3]. It
relieves the clients from the responsibility of building in-house
data management infrastructure [18]. Partitioning data among
two or more service providers in order to preserve privacy so that
exposure of the contents of any one partition does not result in
privacy violation has been discussed in [3]. Oracle's Virtual
Private Database (VPD) uses query rewriting – a predicate is
appended to an application’s SQL query [24]. An alternative is to
use authorization views [19].

Many proposals have evolved with encryption at the core -
client side encryption is performed and then data is stored
remotely [10][11][2][12]. Moreover some security issues in
encrypted databases have also been mentioned[14]. Hippocratic
databases have been proposed recently [1]. These advocate a set
of ten principles that a database server must follow in order to
advertise its “hippocracy”. The rules that hippocratic databases
must follow are designed as per the various privacy bills in the
U.S. and elsewhere.

The specification of policies plays a significant role in any
access control security mechanism. W3C has developed a
specification for the Platform of Privacy Preferences (P3P)[17],
which encapsulates a standard format of encoding privacy
policies. However, it has been judged to be too complex to be
used efficiently by some [15] and too limiting by others [20].

The above approaches used for database privacy such as
replication and encryption have substantial associated costs. The
cost may be justified especially when data confidentiality from
database administrators at the ASP site is an important concern.
Here, we consider the less general problem of specifying and
enforcing database access restrictions among all valid subscribers
(in our case the supply chain partners).

4. DATABASE SCHEMA DESIGN AND
ACCESS CONTROL

In this section we first present a highly simplified version of
the database schema for centralized SCM. We investigate when
access control should be enforced in the database tier and
propose the database tier firewall. Finally, we study the use of
Oracle’s VPD as a component of the firewall.

169



4.1 Software Development Models     and
Schema Design

There are at least two software development models in the
context of ASP-based SCM.

Model 1: All application software deployed on behalf of the
different business partners is implemented by the ASP.

Model 2: Each client designs and implements customized
application software with its own specific needs and features in
mind.

In the second model, application code should not be trusted
to provide access control. Application tier programmers could be
provided with a standard set of APIs they can use for data access.
This is, of course, in addition to the ever popular SQL queries.
All application programmers see the same E-R or UML class
diagram - they use the same name to refer to a table of purchase
orders. In reality, they see different views of the database but
these are unnamed views. In fact, the user is not explicitly aware
of them. The application program on behalf of client X need not
be aware that the orders placed by one of its grandchildren, Z, is
in a table called orders_Z or in a view named orders_X.Y.Z.
Internally, the Orders table may actually be split (for
performance or security reasons) into Orders_A, Orders_B, etc.
where Orders_A contains all orders placed by A. However,
application programs need not be burdened with such details.
Thus, not only is the programmers’ abstraction of the data stored
the same but the vocabulary of relational schema instances and
attributes is identical.

A simplified database schema for centralized SCM is shown
in the UML class diagram of Fig. 2. Note that in this abstract
schema, orders placed by all nodes are stored in the same table.
Each order is made up of possibly multiple items - information
on each of these is contained in the Order_Lines table.

In keeping with recent trends in SCM such as Vendor
Managed Inventory (VMI) [21], decisions on order quantity and
delivery schedule are often made collaboratively by both supplier
and customer. The digital signature fields in an Orders object are
used to satisfy legal requirements pertaining to approval by both
sides of the terms of the order including pricing. Even after an
order has been signed by both parties, it may be modified by one
party provided that the other party consents to the modification
within a specified time limit. Modifications to an order are
saved in tables Order_Modification_Log and
Order_Modification_Details.

There is also a single table for shipments - regardless of
where a shipment originates and to which node or nodes it is
destined, a shipment is stored in the same Shipments table.
Fulfillment of a single order may be made in different shipments.
Also, a single shipment may carry goods connected with more
than one order and to possibly multiple destinations. Thus the
relationship between Order and Shipment is many-to-many.

In this paper, we assume static chains, i.e., a customer will
always source a specific item from the same supplier – this
information is stored in the Business_Topology schema. Finally,
Point_Of_Sale contains sales volumes of each product stocked
by a retail outlet over different time intervals.

4.2 Access Control Issues
There are a number of basic issues to be addressed in

connection with database access control:
1. Who specifies the access control rules, how are they

expressed and how and where are they enforced?

2. What is the burden placed on the application developer
and the system administrator in supporting access
control and can this be reduced?

3. What are the performance implications of any strategy
or mechanism we devise for access control?

The access control rules for this application are distilled
from experts in the area of collaborative supply chains. Examples
of such constraints are presented in Section 5. These constraints
are expressed in a high-level, human-readable form maintained
by the system. They can be periodically reviewed and modified
to reflect changing subscriber requirements. They can be
enforced in the application tier, the database tier or both tiers
could share some responsibility for access control.

In the first model of software development, the
responsibility of enforcing access control can be placed in the
application or database tier. For example, Sun’s J2EE
specification uses the container architecture to support security.
The application designer can grant authenticated clients access
rights to individual methods of different beans. These access
rights can be specified in a mapping between role and
permissions in the deployment descriptor. Each call to a bean
method is intercepted by the container and the rights of the
principal calling the method are checked from the deployment
descriptor. In addition, instance-based access control is supported
programmatically within the bean i.e. the bean makes a
determination whether another bean method may be called. This
is often done by invoking methods in the application context to
obtain the role of the principal involved.

Use of the above methods of database access control in the
application layer in Model 2 are fraught with danger since each
client is allowed to deploy its own code on the ASP. It is
especially critical in this case that database access control
mechanisms be deployed outside the reach of the application
code and possibly in the database tier itself.

4.3 The Database Tier Firewall
The database tier firewall, as envisaged by us, is a security

mechanism that validates and then transforms an application
generated SQL query to produce a query understood by the
database and in keeping with the access restrictions implied by
the security policy. For this purpose it uses abstract-to-logical
schema mappings, internally created view definitions, security
policy files and information from the session context. To
facilitate ease of programming, it offers the programmer a set of
APIs that complement the provision for expressing queries in
SQL.

The principal building blocks of the database tier firewall
(Fig. 3) include:

Query Validator – It checks whether the input query
submitted by the application is valid with respect to the abstract
schema i.e. whether the table objects and attributes referred in the
query are all contained in the abstract schema visible to the
application developer. It also contains a parser which checks
whether the given query conforms to standard SQL syntax.

Query Generator – The application program has the liberty
of intimating its queries to the database in the form of API calls
as published by the database firewall. Whenever the firewall
receives such a request, it transforms the request into an
appropriate query statement involving tables in the abstract
schema and delivers the query to the query transformer.

170



Figure 2. Database Schema for ASP Based SCM

171



Figure 3. The Database Tier Firewall

Query Transformer – This block transforms a query on the
abstract-schema into an equivalent query containing internally
defined view names or tables in the logical-schema. For example,
abstract schema may specify a single table for all orders - thus an
application will reference this table in a query involving orders.
The logical schema might have as many order tables as there are
suppliers - OrdersX containing all orders placed to the same
supplier, X. The query transformer would then substitute one or
more order tables in the logical schema for the single orders table
in the abstract schema.

Query Filter – This is the most security-aware component in
the firewall, performing operations such as appending a predicate
to a query and projecting out only the columns that the current
user is authorized to see. For this purpose, it consults the security
policies administered by the security manager. In addition, it may
also consult attributes in the session or application context. In
effect, this block does both row-level and column-level filtering.

We have conceptualized the database tier firewall which is
one of the critical components in a prototype of ASP-based SC –
our longer term goal. Rather than reinvent the wheel, we decided
to examine the use of existing products in building the Database
Tier Firewall. One such product is Oracle’s Virtual Private
Database (VPD).

4.4 Role of the Virtual Private database (VPD)
One or more security policies may be attached to each table

and view in the database – each policy is specified in the form of
a set of functions coded in PL/SQL, C or JAVA. A user directly
or indirectly accessing a table or view having a security policy
associated with it causes the server to dynamically modify the
query statement by appending a predicate at the end,
transparently to the user. This predicate is returned by the policy
function. The policy function is highly flexible and it can return
different predicates depending on the values of attributes
contained in the application context. Some attributes are captured
from the login session of the user with help of a login trigger
(such as login credentials) while others are given a default value
at login time and the responsibility of changing them with a
particular submitted query lies with the application. An example
of one such attribute is discussed later in this section.

The mapping of policy to a database table for a specific
operation (select, insert, delete, update) is maintained by the RLS
(Row Level Security) package in the DBMS_RLS table. More
than one policy could be maintained on each table - this

strengthens the access constraints on that table since the final
predicate is the logical AND of all individual predicates returned
by individual security policies. A security policy can be enabled
or disabled by setting a boolean variable in the DBMS_RLS
table. Whenever a query is submitted for execution, DBMS_RLS
is consulted for any security policies attached to the table(s)
which is/are mentioned in the query. If any policies are found
attached to those tables, then all such policies are executed in
order to get a predicate. This predicate is appended to the end of
the query and then the query resumes its execution in the normal
fashion.

An example of a policy function is shown in the Appendix.

Consider a query from user U asking for all orders it has
placed. The application program, acting on behalf of U would
present the following SQL query to the database.

Select * from orders where customer_id =U;

An untrustworthy application component, to obtain
unauthorized order information about its competitor, C, may
substitute C for U. Its attempt would be thwarted by the VPD if
the security policy is programmed to append the predicate

customer_id = SYS_CONTEXT('APPCTX','USER')

for any query involving access to the Orders relation. The
value of attribute named “USER” in the application context
(which in the present case is U) is used in the predicate for the
above query. The conjunction of the predicate supplied by the
application and that supplied by the policy procedure will
evaluate to false and hence no tuples in the Orders relation will
be returned.

Thus U should simply submit the query Select * from
orders. However, there are two interpretations of this query –
“Does U wish to see all orders that it has placed or the orders that
it has received?” This ambiguity can be resolved by introducing
an attribute in the application context which we call ROLE. This
can be set by the application and read and interpreted by the
security policy. Before submitting a query to read all orders U
has placed, it sets ROLE to “customer”. When U wishes to see all
orders placed from it, it sets ROLE to “supplier”. On receiving
the query from U, the security policy inspects the ROLE attribute
and respectively appends one of the predicates,

Select * from orders where customer_id = SYS_CONTEXT
('APPCTX','USER');

or
Select * from orders where supplier_id = SYS_CONTEXT

('APPCTX','USER');

Thus the process of query modification is entirely
transparent to the user. The user’s query is relatively simple with
the onus of ensuring secure access resting squarely with the
author of the security policy.

5. ACCESS CONSTRAINTS IN
CENTRALIZED SCM

In order to make the supply chain more efficient and
responsive, pertinent and up-to-date information should be
provided to authorized parties which in turn is used as input to
their decision making systems. In this section, we specify the
database access constraints and present the predicates generated
by our policy files for a core set of queries used to provide such
information.

172



5.1 Common Queries on the SCM Database
In the most restrictive scenario, the only information shared

between two parties would be orders placed by a customer to its
supplier. However, numerous studies [8] have shown that it is
precisely the lack of information sharing that is responsible for
the Bullwhip effect and the concomitant increase in chain-wide
costs. Essentially, the Bullwhip effect [16] refers to the
phenomenon where orders to the suppliers tend to have larger
variance than sales to the end customer and this distortion
propagates upstream in an amplified form. The distortion of
demand information implies that the manufacturer who only
observes its immediate order data will be misled by the amplified
demand patterns and this has serious cost implications. Sell-
through data and information on inventory status is the key to
improving channel coordination and dampening the bullwhip
effect [21].

The response to the following query will provide
information that can be used to mitigate the Bullwhip effect.

Query 1: A node wishes to see the graph of the total sales
made by all of its leaf descendants for item x between dates d1
and d2.

Other queries of relevance in improving chain efficiencies
are:

Query 2: The root node (manufacturer) wishes to know the
sales volume of item x at a particular retail outlet, R, between
dates d1 and d2.

Query 3: The root node (manufacturer) wishes to know the
quantity of item x ordered by a particular wholesaler, W,
between dates d1 and d2.

Queries 2 and 3 above are especially relevant for products
that have a small cycle time and become obsolete soon. In that
case, the manufacturer would prefer to study sales of item x in
specific stores where, by experience, shopping trends are first
detected. The sales reported by Retail store R of item x may be a
harbinger of sales to come elsewhere. Also, wholesaler W may
be shrewd in spotting trends and the quantity ordered by him may
be indicative of near-term sales of item x. A surge or slump in
sales may aid the manufacturer in making tactical decisions
regarding whether to ramp up production or to scale back.

An important operation in supply chains is the management
of inventory. An effective way of managing inventory at a non-
leaf node, N, is to consider the echelon stock – the inventory at N
plus the total of in-stock and in-transit inventory at all
descendants of N [8]. The ordering decision at N is based on its
echelon inventory position which is its echelon stock plus the
items ordered by N that have not yet arrived. To implement such
an ordering policy, node N would make the following query.

Query 4: Node N wishes to know its echelon stock for
product x.

5.2 Access Constraints on the Supply Chain
Database

Answering the above queries is straightforward given the
schema in Fig. 2. However, users may have several restrictions
concerning access to their data. Some of these are enumerated
below.

• A node requires that its sales and inventory levels of
item x be visible to only its direct or indirect suppliers
of item x.

• A node requires that the orders placed by it of item x be
visible to only its direct or indirect suppliers of item x.
However, the price information should be visible only
to its direct supplier of x.

• Certain fields are write-once only.

With the first two constraints in place, a node would be
authorized to receive inventory, sales or order information only
about a node to which it is a direct or indirect supplier for that
item. The third constraint prevents a node from unilaterally
changing the terms of an order after both sides have signed it. We
next present the predicates generated by our policy functions in
connection with Queries 1-4 and subject to the constraints
enumerated above.

5.3 Policy Files and Access Control
5.3.1 Aggregate Sales of all retail outlets in the
Supply Tree rooted at N (for item x)

Query 1 in Section 5.1 needs access to only the Sales_Data
table. The latter maintains the aggregate sales of all leaf
descendants in the supply tree of each node N for item x. This
value is updated by application software on receiving fresh point-
of-sale information for x from any retail outlet in its supply tree.
Alternatively, a database trigger can be written to update
Sales_data for all nodes that are direct or indirect suppliers of the
retail outlet for item, x. Execution of the security policy in this
case would simply result in appending the predicate

where Customer_ID=N
to the original query from the application
Select quantity, from_date, to_date from sales_data where

product_id = x and d1 <= From_Date and d2 <= To_Date;

5.3.2 Sales/Order quantities at specific points in a
Supply Tree

In Query 2, a node N requires the sales of item, x at only a
specific retailer, R. This information is contained in the
Point_Of_Sale table and should be accessible by N only if R is in
the supply tree rooted at N for x. The security policy must
generate the following predicate:

customer_id in ( select customer_id from business_topology
where child_is_leaf = 'yes' start with parent_id =
SYS_CONTEXT('APPCTX', 'USER') connect by prior child_id =
parent_id and product_id = x)

Query 3, fired by the manufacturer of item x, requires order
information from a wholesaler to its distributor. This information
can be easily obtained by performing a join of tables Orders and
Order_Lines. However, the manufacturer is not permitted to see
the pricing information in the orders. For this purpose, a view,
Order_Lines_Ancestor is created out of Order_Lines by
projecting out the fields other than Price. The query fired by the
manufacturer is

Select * from Orders, Order_Lines_Ancestor where
customer_id = 'W' and placing_date between(d1, d2) and
product_id = x.

173



The predicate appended by the policy is

customer_id in (select child_id from business_topology start
with parent_id = SYS_CONTEXT('APPCTX','USER') connect by
prior child_id = parent_id and product_id = x )

5.3.3 Echelon Stock of complete Supply Tree
Query 4 requires the echelon stock at node N for item, x.

This quantity will increase if fresh shipments of x arrive at N and
will decrease if the leaves of this supply tree sell items of x. The
echelon stock is included in the table Inventory and can be
updated either by the application program itself (in response to
the two types of events mentioned above) or by a trigger. A node
can see its own echelon stock, so the simple policy file that
satisfies this constraint will append the following predicate to the
raw query:

customer_id = SYS_CONTEXT('APPCTX', 'USER')

6. DISCUSSION AND CONCLUSIONS
One deficiency of VPDs is that it provides row level

security, not column level security (since policy functions may
only specify what predicate to append but not which columns to
project out.). Another problem is with predicates generated by
policy functions on tables that cross-reference each other. For
example, the predicates returned by the policy functions
corresponding to tables Orders and Order_Lines in response to
SQL queries fired by “ABC” as a grandparent when he wished
to see the orders received by his grandchildren are respectively

order_id in (Select order_id from order_lines where
product_id in ( select product_id from business_topology start
with parent_id = “ABC” connect by prior child_id =parent_id))

and
product_id in (Select product_id from business_topology

start with parent_id = “ABC” connect by prior child_id
=parent_id) and oder_id in (Select order_id from orders where
supplier_id in ( select child_id from business_topology start with
parent_id = “ABC” connect by prior child_id =parent_id))

Now the predicate to be appended to an SQL query
containing the variable orders references the table order_lines
and the predicate to be appended to an SQL query containing the
variable order_lines references the table orders, the resulting
predicate generated by a query that contains either of these tables
is invalid.

If customized application tier implementations by third
parties is permitted, access control should be implemented in the
database tier. The database tier firewall makes it possible to
present a simpler, uniform view of the database to the application
programmer while at the same time providing for more secure
access control. The application developer now has merely to set
appropriate attributes in the application context and issue
relatively simple queries. Database access control is partially
implemented by security views that are not known to the
application. These views are known and maintained by the DBA.
In addition, he or the security manager (not the VPD) writes and
maintains the policy functions that generate predicates that get
appended to application queries.

We have considered a small set of potentially useful queries
that provide input to help optimize the operations of a supply
chain. We believe that in a complete system, which would

include logistics, forecasting, etc., the security requirements
would increase commensurately making the job of the DBA or
security manager quite challenging. In real world supply chains,
supplier-customer relationships would be dynamic making
policies hard to maintain manually. Also, requirements of
specific clients may vary. For example, X may trust its
immediate supplier but not its supplier’s supplier. All of these
issues make it imperative that we design and implement tools that
help to automate the creation and maintenance of views and
policy files.

7. REFERENCES
[1] R. Agarwal, Jerry Kierman, R. Srikant, Y. Xu, “Hippocratic

Databases ,” Proc. of 28th International Conference on Very
Large Databases, (2002). 143-154.

[2] R. Agarwal, Jerry Kierman, R. Srikant, Y. Xu, “Order
Preserving Encryption of Numeric Data,”. Proc. SIGMOD
(2004).563-574.

[3] G. Aggarwal, M. Bawa, P.Ganeshan, H. Garcia-Molina,
K.Kenthapadi, R.Motwani, U. Srivastava, D.Thomas, Y.
Xu, “Two can keep a secret: A Distributed Architecture for
Secure Database Services,” Technical Report, Stanford
University (2004)

[4] D. Alur, J. Crupi, D. Malks, “Core J2EE Patterns,” Prentice
Hall PTR(2001).

[5] Mark Artiges et al, “BEA Weblogic Server 8.1 Unleashed,”
Sams Publication (2003)

[6] R.Bragg, M. Rhodes-Ousley, K.Strassberg, “Network
Security – The Complete Reference,” Tata McGraw Hill
(2004).

[7] Brian Buege, Randy Layman, Art Taylor, “Hacking
Exposed J2EE & JAVA:Developing Secure Applications
with JAVA Technology,” Tata McGraw-Hill (2002)

[8] F. Chen, “Echelon Reorder Points, Installation Reorder
Points, and the Value of Centralized Demand Information,”
Management Science, Vol. 44, No. 12, S (1998) 221-
234.

[9] G.Gangadharan, L.Khandelwal, and B.L.Menezes,
“Exchange and Use of critical information in ASP-based
Supply Chain Management”, International Conference on
E-Governance, New Delhi, (Dec, 2003).

[10] H. Hacigumus, B.Iyer, C. Li and S Mehrotra, “ Executing
SQL over encrypted data in the database service provider
model,” Proc. SIGMOD (2002). 216-227.

[11] H. Hacigumus, B.Iyer, S. Mehrotra, “Efficient Execution of
Aggregation Queries Over Encrypted relational databases,”
Proc. DASFAA (2004) 125-136.

[12] H. Hacigumus, B.Iyer, S. Mehrotra, “Providing database as
a service,” Proc. ICDE (2002). 29-32.

[13] Rashmi Jain, B.L. Menezes, Prashant Rajoria, “Security for
E-business applications”, Proc. of INFOSEC 2004, Mumbai,
May 2004,  41 – 47. 

[14] M. Kanratcioglu, Chris Clifton, “Security Issues in
Querying Encrypted Data,” Technical Report TR04-013,
Purdue University, (2004)

174



[15] J. Kaufman, S. Edlund, D.Ford, and C.Powers, “The Social
Contract Core,” Proc. International World Wide Web
Conference, Honolulu, Hawaii, (May 2002). 210-220.

[16] H.L. Lee , V. Padmanabhan, S.Whang, “Information
Distortion in a Supply Chain: The Bullwhip Effect,”
Management Science,  43-4 (1997) 546-558.

[17] M. Marchiori, editor, “The Platform for Privacy
Preferences1.0(P3P1.0) specification,” W3C Proposed
recommendation , (Jan, 2002)

[18] “JP Morgan signs outsourcing deal with IBM,” Computer
World, (Dec, 2002)

[19] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, Prasan
Roy, “Extending query rewriting for fine-grained access
control,” SIGMOD (2004), Paris, France. 551-562.

[20] M.Rotenberg, “Fair Infromation practices and the
architecture of privacy,” Stanford Technology Law Review,
1, (2001)

[21] D.Simchi-Levi, P. Kaminsky and E. Simchi-Levi, “
Designing and managing the Supply Chain – Concepts,
Strategies and Case Studies,” McGraw Hill, (2000).

[22] L.Tao, “Shifting Paradigms with the Application Service
Provider Model,” IEEE Computer, (2001) 32-39.

[23] K. Walsh, “Analyzing the Application ASP Concept:
Technologies, Economies and Strategies,” Communications
of the ACM, Vol. 46, No. 8, (2003) 103-107.

[24] “The Virtual Private Database in Oracle 9i r2,” An Oracle
Technical White Paper http://otn.oracle.com/deploy/-
security/oracle9ir2/pdf/vpd9ir2twp.pdf.

A.  SAMPLE POLICY FILE
Policy File for Shipments table

Example Query: “Get the shipments that I am expecting within
the next 48 hours”

CREATE OR REPLACE PACKAGE BODY
SHIPMENT_SECURITY AS

FUNCTION SEC_SHIPMENTS(OWNER
VARCHAR2,OBJECT VARCHAR2)

RETURN VARCHAR2
IS
PREDICATE VARCHAR2(2000);
FILEHANDLER UTL_FILE.FILE_TYPE;
BEGIN
FILEHANDLER := UTL_FILE.FOPEN

('DBDIR','PREDICATELOG.TXT','W');
IF ( SYS_CONTEXT('APPCTX','ROLE')='CUSTOMER')
THEN
PREDICATE := 'SHIPMENT_ID IN ( SELECT

SHIPMENT_ID FROM SHIPMENT_COMPONENTS
WHERE ORDER_ID IN ( SELECT ORDER_ID FROM

ORDERS WHERE CUSTOMER_ID=SYS_CONTEXT
(''APPCTX'',''USER'')))';

UTL_FILE.PUT_LINE (FILEHANDLER, PREDICATE);
UTL_FILE.FCLOSE(FILEHANDLER);
RETURN PREDICATE;
END IF;
IF ( SYS_CONTEXT('APPCTX','ROLE')='SUPPLIER')
THEN
PREDICATE := 'SUPPLIER_ID = SYS_CONTEXT

(''APPCTX'',''USER'')';
UTL_FILE.PUT_LINE(FILEHANDLER, PREDICATE);
UTL_FILE.FCLOSE(FILEHANDLER);
RETURN PREDICATE;
END IF;
EXCEPTION

WHEN utl_file.invalid_path THEN
 raise_application_error(-20000, 'ERROR: Invalid

path for file or path not in INIT.ORA.');
END SEC_SHIPMENTS;
END SHIPMENT_SECURITY;
/

175


