
A Comparative Study of Mobile Agent and Client-Server
Technologies in a Real Application

ABSTRACT
The anticipated increase in popular use of the Internet has
created more opportunity in information dissemination, E-
commerce, and multimedia communication. It has also created
more challenges in organizing information and facilitating its
efficient retrieval. From the network perspective, there are
additional challenges and problems in meeting bandwidth
requirement, as in network management. In response to this,
new techniques, languages and paradigms have evolved which
facilitate the creation of such applications. Certainly the most
promising among the new paradigms is the use of mobile
agents. In this paper, mobile agent and client-server
technologies are applied in an E-commerce application and a
comparative study is discussed. We report an implementation
of a banking system, whose database may be distributed at
different sites on the Internet. A customer can send his/her
mobile agent to perform various tasks involved in banking and
get back an appropriate result or can use client-server
methodology to perform the same task. PMADE is used as the
platform to develop these mobile agents. Security checks have
been also implemented, as this is an important requirement in
E-commerce.

Keywords- Mobile Agent, Bank Agents, E-commerce

1. INTRODUCTION
Internet technologies are rapidly evolving and modifying the
way people interact with each other. The increasing number of
virtual market places facilitates trading transactions by bringing
together a vast number of potential buyers and sellers [9], [10],
[14]. In this context, business interactions are moving toward
more dynamic and automated solutions and electronic payment
methods play a key role for all forms of online business [5].
Despite the growing deployment of e-banking systems that
allow some degree of automation [4], Web interfaces or ad hoc
tools still require a large degree of human interactions [6].
Transactions and payment orders [14], for instance, can be
performed electronically, but only if a human enters the right
code or presses the right button in a specific graphical user
interface. Customer self-service channels have evolved to more
automated and fully integrated business applications that drive
products and services to the consumer.

In the near future people, will not physically go to their
financial organization branches nor logon to the Internet to deal
with their banking tasks. They will delegate the management of
their bank accounts, paycheck, investments, insurances,
mortgages, loans and credits to their personal electronic
financial assistants [7]. The software entities acting on behalf of
humans and/or service providers will automate several
electronic business and commercial activities such as service
advertisement, market trend monitoring, services pricing and
negotiation [8].
Applications that need to monitor events on remote hosts, such
as, whether a particular bank account’s balance has fallen below
a threshold, are greatly benefited from MAs, since agents need
not use the network for polling. Instead of periodically
downloading bank statements, an agent can be sent to quote
service to monitor the balance. The agent can inform the user
when a specified event occurs.
The expression ‘banking services’ refers to the set of processes
and mechanisms required for enabling agents to make / receive
side payments for creating / maintaining / closing bank
accounts. While current bank services are very simple and still
require extensive testing, they do demonstrate that it is possible
to represent a first step towards developing the robust services
that would be required to support an effective agent economy.
Online businesses, and in particular e-banking, require complex
interactions between diverse systems owned by different
organizations or individuals.
When building business systems relying on mobile agent
technology, the notion of trust has to be redefined for building
an appropriate secure framework. This is particularly crucial for
bank- specific services, since authentication, non-repudiation,
privacy and confidentiality represent intrinsic requirements that
need to be satisfied. It is possible to envisage two main levels at
which mechanisms are needed.

(1) Authentication of an agent that is willing to access the
bank. The banks may define specific policies to be
followed when interacting with the bank or with other
agents making use of banking services. For instance,
in order to access the bank, agents may need to be
identified as regular customers or they may be
required to introduce themselves and enter specific
information.

(2) Specific security mechanism/policies at the level of
every different service offered within the bank. For
instance, if an agent admitted to the bank wants to
know the amount of money in a specific account, the

R. B. PATEL
Department of Electronics & Computer Engg.

IIT Roorkee, Roorkee-247667,
Uttaranchal, India,
+91+9412978806

Email: patrbdec@iitr.ernet.in

K. GARG, Senior Member IEEE
Department of Electronics & Computer Engg.

IIT Roorkee, Roorkee-247667,
Uttaranchal, India,
+91+1332-285649

ADVANCES IN DATA MANAGEMENT 2005
Jayant Haritsa, T.M. Vijayaraman (Editors)
© CSI 2005

176

bank will verify if the agent has the rights to access
this information.

This paper presents an implementation of a MA-based banking
system whose databases may be distributed at different sites on
the Internet, i.e., a virtual organization offering banking
services to agents accessing the agent based market place.
Customers can send their mobile agents (MAs) [15] to perform
various tasks and get back appropriate results. Our aim is to
define an open and distributed framework to create an online
network in which autonomous and heterogeneous agents can
supply and/or provide a variety of services, i.e., integration of
agent infrastructures with existing non-agent based
environments such as databases, legacy systems, various tools,
etc. In this context, the proposed model provides a generic way
for agents to make payments to one another. PMADE is used as
the development platform which has been developed at IIT
Roorkee [1].
The rest of the paper is organized as follows: Section 2 gives an
overview of PMADE. Section 3 presents the Architecture and
Design of the Banking System. Section 4 discusses an
implementation and performance study of the developed system
and Section 5 concludes the paper.

2. OVERVIEW OF PMADE
Figure 1 shows the basic block diagram of PMADE. Each node
of the network has an Agent Host (AH), which is responsible
for accepting and executing incoming agents. A client called
Agent Submitter (AS) [1], submits the agent on behalf of the
user to the AH.

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver
Agent Host

Figure 1. Block Architecture of PMADE Model

A user, who wants to perform a task, submits the MA designed
to perform that task, to the AS on the user system. The AS tries
to establish a connection with the specified AH, where the user
already holds an account. If the connection is established, the
AS submits the MA to it and then goes offline. The AH
examines the nature of the received agent and executes it. The
execution of the agent depends on its nature and state. The
agent can be transferred from one AH to another whenever
required. On completion of execution, the agent submits its
results to the AH, which in turn stores the results until the
remote AS retrieves them for the user. The AH is the key
component of PMADE. It consists of the manager modules and
the Host Driver. The Host Driver lies at the base of the PMADE
architecture and the manager modules reside above it. It is the
basic utility module responsible for driving the AH by ensuring

proper co-ordination between various managers and making
them work in tandem. Details of the various managers and their
functions are provided in [3]. PMADE provides weak mobility
to its agents. One-hop, two-hop and multihop agents can be
programmed on PMADE [2].

3. ARCHITECTURE AND DESIGN OF
THE BANKING SYSTEM
In our system the customer (client) dispatches one or more
MAs, each with its list of required modes of transaction,
amount and potential accounts/banks. The MA visits each bank
server in turn to perform the required transaction. If the desired
account is present, it processes the transaction on behalf of the
user, or it moves to other bank servers. If the transaction is
committed, or the bank list is exhausted, the MA returns to the
customer with the details of the operations performed.
Three types of agents are implemented. They differ mainly in
the different roles they can cover and/or services they can offer
during trading transactions.

(a) Bank Agent (BA) which acts on behalf of the
banking organization. It offers two kind of services:

(i) Account management service that includes
open account, close account and list account
information operations.

(ii) Electronic payment service in which the
transfer of funds between two accounts is
performed. This entity can therefore be
considered as the agent interface of the
banking system for the organization toward
the external world.

(b) Customer Agent (CA) which can be considered as a
personal assistant that acts on the behalf of end users
and uses the services offered in the agent enabled
market, and

(c) Insurance Agent (IA) which represents an insurance
business offering, mainly, to sell an insurance policy.
Credit card based payment is considered.

The last two entities represent agents making use of banking
services, i.e., specific possible customers of the banking
organization. In the following, we list the scenarios that are
developed for defining and verifying the specific mechanisms
needed and offered by the different types of agents depicted
above. Note that in order to facilitate task decomposition, CAs
act mainly as buyers and IAs act essentially as sellers.

Opening an account: When CA-X wants to open an account
within a given bank it requests BA-Y to open an account
including in the request message the information needed. BA-Y
will send back to CA-X the result of his demand.

Closing an account: When CA-X wants to close an account
within a given bank it requests BA-Y to close its account. BA-
Y will then verify if the given account belongs to the agent CA-
X, and after having performed the required action, BA-Y will
send back to CA-X the corresponding action’s result.

Getting information from an account: When CA-X asks for
accounts information, BA-Y receives the query and verifies the

177

ownership of the account and the result is sent back to CA-X.
The message is either an error notification or the requested
information. If the account identifier is not specified, the query
is interpreted as a query for information about the full list of
accounts owned by CA-X.

Credit card based payment: CA-X stipulates an insurance
policy with agent IA-LIC (Insurance Agent with a Life
Insurance Company) for an amount x . CA-X sends its credit
card details to IA-LIC that requests the bank server to transfer
amount x from CA-X’s account to IA-LIC’s account. Both
CA-X and IA-LIC have accounts with BA-Y (i.e., the same
bank agent managing both accounts) and are informed about the
transaction.

The next section gives details of our e-banking application,
the architecture of which is shown in Figure 2.

3.1 Distributed Database
A distributed database is required to hold all the data pertaining
to the banking system, like details of customers, transactions
completed, accounts, etc. It may be distributed by
fragmentation, or replication, or both. The designed application
supports all three types of distributed databases and uses a
relational database model.
All updates are made in parallel in all parts of the database.
Once a tuple of the database is opened by an entity (MA), no
one else can access it (for updates, but reading is permissible)
until this entity has released it. Thus at any time, a tuple is
under control of only one MA and update operation is done in
buffer and its contents periodically incorporated into the
database. This feature facilitates parallel operation, i.e., multiple
agents (from different clients) can access same database in
parallel. This feature supports concurrency control in the
database.

Deadlocks are avoided by making all operations independent of
others and having a single control on a tuple. No cyclic
dependency occurs and no rollback is required. The MA may be
terminated if it stays for a long period on the server or it may
itself migrate to another server if it does not get access to the
databases.
We have identified four tables in the required database and their
design is given in the following sections:

Ledger Book: which contains information about every account
holder. An entry is made in it whenever a new account is
opened in the bank. It is searched by either Credit Card ID or
by Account Holder Signature. The Bank Administrator
generates these automatically whenever a new entry is made. A
MA is authenticated by these fields before it is forwarded for
further operation.

Balance Book: has an entry for each account holder and
contains information about the present balance in it. It is
searched and updated by Credit Card ID and Account Holder
Signature. It is updated whenever a transaction takes place,
after authentication from the Ledger Book.

Debit Book: If the MA comes for debit, a detailed entry is
made in this table about that transaction. As a customer can
make several such debits, it can have several entries
corresponding to each transaction.
Credit Book: If the MA comes for credit, a detailed entry is
made in this table. As a customer can make several such credits,
it can have several entries corresponding to each transaction.
Credit and Debit book can be used to generate a monthly
statement of all the transactions that the customer has made.
Also the expenditure pattern of a customer can be studied and
special packages may be offered to him. This is an important
feature in e-commerce. These records help in back tracking the
flow of money in case of any problems later.

Fig ur e 2 . A r c hite c tur e of e -bank ing A ppl ic ation

 C lie nt
 End

G raphical U ser P anel

User To Agent S ubmitter
Interface

PM A D E-S F

Bank S erver

Ba n k
D a ta b a s e

Se rv e r
En d

S e rve r End

U ser

Sy s te m
A d min is t ra to r

Se rv e r
En d

Se rv e r
En d

178

3.2 Bank Server
This is the central module of the application. All the
functionality of the bank resides here. All MAs report to this
module, which performs the actual operation such as
authentication and transaction on a database and returns an
appropriate message to the agent. The architecture is illustrated
in Figure 3.

The Bank administrator creates new accounts and can check
and manipulate the user’s account. The customer has to go
physically to the server who incorporates this program and ask
to open a new account. This module has to be hooked up with
the mobile agent system (MAS). A Graphical User Interface
(GUI) has been designed. The administrator uses the services of
the following:

New-Account/Customer Information Module: This module
provides services for creating an account, checking and
updating the information pertaining to the customer of an
existing account. This module returns a Credit Card ID and
Signature for a new account. Credit Card ID number is an
AutoNumber generated by the database. Signature is a four-
character word randomly generated by the bank administrator
using 26 (small letters), 26 (capital letters) alphabets and 10
digits. Thus, we can have more than one million unique
signatures.

Bank Server

Bank Agents

AC AD

NAA IA

Bank Administrator

Online module for Bank Administrator

New Account/Customer Information

Balance

Insurance Relational
Bank

Database

PMADE-SF

Figure 3. Architecture of Bank Server

Minimum opening balance and guarantor criteria has been
embedded here, a violation of which gives an appropriate
message. A guarantor is required for every new customer is
seeking an account. This guarantor should be an existing
account holder. His/her Credit Card ID, Name and Signature
are also authenticated. Initially, when the database is created,
an entry is made in the name of the Bank in the Ledger Book.
The GUI form for this sub module has thirteen fields for
accepting various information from the customer, like his/her
full address, opening balance, details of guarantor, etc. Of these
thirteen, the customer has to fill eleven fields and two are for
Credit Card ID, and Signature. The module itself displays these
when the form has been submitted. All this information is
written in the Ledger Book.
We can also search and update information of existing
accounts. The GUI is the same as above. First, an account’s
information has to be searched by given a signature of that
account. After matching this signature with the existing one,

information is displayed in the same form. Then one can
update the information and resubmit the form. It should be
noted that Credit Card ID, and signature field cannot be
updated, as the bank allots them.

Balance module accepts the Credit Card ID and Account
Holder Signature of an existing account and returns the balance
in that account from the Balance Book. The entire procedure
takes place via a form. A GUI has also been provided so that a
customer, who has failed to submit a MA, can himself/herself
do a transaction.

Credit and Debit modules: These modules perform the actual
credit/debit into the account. All the above modules display
appropriate messages after each operation, informing either
successful transaction execution or stating reasons for failure. A
GUI with a Help facility, has been designed for ease of use of
these modules.

Insurance Module: This module supports in the management
of insurance policies of the customers.

3.3 Bank Agents
The Bank Server has four stationary agents called the
Authenticator Credit (AC), Authenticator Debit (AD), New
Account Agent (NAA) and Insurance Agent (IA), which
provide second level security to the bank database after the
authentication, by PMADE itself. AC is the stationary agent and
helps the customers’ agents to perform transactions associated
with them. AD provides a similar facility to the customers’
agents which want to debit their account. NAA helps in adding
customers to the bank while IA supports the management of
customer insurance policies.
A customer MA uses the services of these bank agents to
perform the required transactions by furnishing the required
parameters. Customer MAs do not themselves fetch, search or
update the bank database. This is done for enhancing the
security of the system and prevents an authorized customer
from creating a malicious agent who can manipulate his/her
account. The stationary agents perform the actual transaction
and inform the customer MAs whether the transaction was
successfully completed or reasons for its failure.
It is important to note that the database is opened in read mode
only. An agent may be required to find only the balance from an
account. Hence, it has direct access to the database. This is done
because a third party may want to check the account of a
customer. This feature is necessary in a buyers-sellers problem
in e-commerce, the seller would first have to check the buyer’s
account before delivering commodities to him.

3.4 Customer Agents (Mobile Agents)
The standard GUI provided by the AS interface is shown in
Figure 4. It accepts sixteen parameters: Login Name, Password,
Agent Name (MASIF standard [13]), Agent Version, Method
Name (class file name of agent), Argument List, Itinerary
Pattern type (S: Serial, VS: Virtual Serial, P: Parallel) and
Itinerary Address (List of Host to be visited), Services &
Location needs to define when additional class files (other files)
are required to agent at remote site, Agent Packing (Nested,
Patel): Mode of sealing agent, i.e., Distributed Object Model or
nested, Base Host: Name of Router of the Network, where

179

Trusted Re-router is installed and Last Field is the location
where the agent is initially submitted by the agent owner. The
first two fields are for loading the authentication certificate of
agent owner from the database maintained at AS and required
to authenticate the agent owner on the host whose IP
address/URL is given in the Itinerary Address field. This
authentication is different from the bank’s authentication.
Parameters (Credit, Name, Signature, etc) for MA are given in
Argument List field. As there is only one field provided in this
GUI, all the parameters are given in this field separated by ‘|’.
This field is given to the MA, whose name is specified in the
Agent Name field. Therefore, all the MAs have code for parsing
this field to obtain the actual parameters.
A single agent is sufficient for performing the same task at
different banks (single code multiple data). When the agent
reaches an AH, it clones itself and sends these to all the places
where a bank server is running. Hence all the databases, where
the customer account exists, are updated simultaneously,
allowing concurrency control. This feature makes handling of
distributed databases possible. We have identified several MAs
for our application. They are:

1. BFindAgent: This agent is used to enquire balance in an
account. It accepts three parameters, namely, CID No.,
Name and Signature from the user. This agent has code
which directly accesses the balance table of the bank
database. After confirming the CID No. and Signature, it
reads the amount field of the table, stores the result in a
variable, and notifies it to the present AH. The host then
sends this value to the user.

2. AgentDebit: This agent is used for debiting an account. It
accepts four parameters CID No., Name, Signature and
Amount. Amount is the value by which the account has to
be debited. On reaching the bank server it calls the AD
with these parameters. The AD then performs the actual
task of debit and notifies the MA with the appropriate
result about either a successful debit or reasons for failure.

3. AgentCredit: This agent is used for crediting an account.
It accepts seven parameters as follows: CID No., Name,
Signature, Amount, Cheque/DD Number, Cheque/DD Date
and issuing bank. After reaching the bank server it calls
the AC with these parameters. The AC then performs the
actual task of credit and notifies the MA with the
appropriate result about either a successful credit or
reasons for failing of the transaction.

4. NewAccountAgent: The functionality of this agent is the
same as New Account/Customer Information module
discussed earlier.

5. QueryAgent is a general agent, used to find the different
schemes launched by banks from time-to-time. It needs no
authentication on the bank server because it is allowed to
only read the general database, which is open for the
public.

4. IMPLEMENTATION AND
PERFORMANCE STUDY
The database is made in Oracle and the driver used to run it, is
Microsoft Access Driver of ODBC (Object Database
Connectivity). JAVA has its own database driver called JDBC
(Java Database Connectivity). The interface between these two

has been provided by JDBC-ODBC Protocol. All queries are
made in SQL (Structured Query Language).
Users can interact with PMADE by developing agent
application programs which are implemented as Java objects.
Users would first need to write a Java class that specifies some
action, such as accessing a database on a remote host. Once this
Java class is written and compiled, the user can launch the agent
program in three ways: (1) via a GUI Agent Launch Wizard, (2)
via a command line tool, or (3) using the external API (Agent
Programming Interface). The first two mechanisms are
provided with PMADE, while the last one requires the user to
write a customized launch class, which makes use of PMADE
class libraries.
We have implemented the banking application using the
following mechanisms:

1. Serial or Parallel Client-Server [12]: This is based
on the traditional client-server paradigm. The client
queries and receives replies from each server
sequentially or in parallel.

2. Serial or Parallel MA: A single multihop MA
moves from the client to each server sequentially or in
parallel to process the information.

The CS implementation consists of a bank server that sends an
information brochure on request, from a multithreaded client.
The client and the bank server have been implemented using
Java RMI [11]. We used various application parameters that
influence performance, such as, size of CS messages, size of the
MA, number of remote information sources, etc, and performed
experiments to study their effect on performance. We used trip
time, i.e., time elapsed between a user initiating a request and
receiving the results, as the metric for performance comparison.
This includes the time taken for agent creation, time taken to
visit/collect account details and processing time to extract the
required information. We have performed experiments to
determine:

(a) The effect of data size on trip time: The processing delay
at the bank server was kept constant and information
brochure sizes of 100KB, 200KB, 500KB and 1 MB were
used. This was done for different enquiries from 1 to 52
bank servers.

(b) The effect of bank server processing delay on trip time:
The information brochure size was kept constant at 500KB
and the bank server processing time for servicing each
request was varied from 10ms to 500ms. The trip time was
measured for different enquiries from 1 to 52 bank servers.

Results are shown in Figs. 5 to 7, from which the following
observations can be made:

The performance of the MA based application
remains the same for different data sizes while the
performance of the CS based application degrades
with increase in data size.
CS implementations perform better than MA
implementations for data sizes less than 100 KB.
MA performs better than CS when the data size is
greater than 200KB and number of banks to visit is
greater than 6.

180

MA performs better than CS for all mobility patterns,
for small processing delays (10 ms) and large
(500KB) data size.
Parallel implementations perform better than serial
implementations, when the number of banks to visit is
greater than 6 and the processing delay is greater than
or equal to 500ms.
Parallel MA performs better than parallel CS for
higher processing delays (500 ms) and large (500KB)
information brochure size.
Performance crossover points, i.e., parameter values
for which MA starts performing better than CS
implementation can be found for a given set of e-
commerce application parameters.

0

2000

4000

6000

8000

10000

12000

14000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

No. of Bank Servers

T
ri

p
 T

im
e

(m
s)

MA with Any Data Size
CS at 100 KB Data
CS at 200 KB Data
CS at 500 KB Data
CS at 1 MB Data

Figure 5. Effect of data size on trip time in serial MA and
serial CS

5. CONCLUSION
Our experiments suggest that CS implementations are suitable
for applications where a small amount of information (less than
100 KB) is retrieved from a few remote servers (less than 6),
having low processing delays (less than 10ms). However, most
real-world e-commerce applications require a large amount of
information to be retrieved and significant processing at the
server. MA’s scale effectively as the size of data to be
processed and the number of servers the data is obtained from
increases. Scalability being one of the needs of net-centric
computing, we find that MAs are an appropriate technology for
implementing e-commerce applications.
Parallel implementations are effective when processing delay
(greater than 500ms) contributes significantly to trip time. Our
experiments also identify performance crossover points for
different implementation mobility patterns; this could be used
to switch between implementations for performance critical
applications. We feel that a complex model employing all the
three patterns would result in high performance gain for large-
scale distributed applications.
Our experience suggests that mobility patterns play an
important role in deciding the implementation strategy to be
used for performance critical applications. The selection of a
mobility pattern from those feasible for a given application

could be based on several criteria such as ease of
implementation, performance, availability of technology, etc.

0

2000

4000

6000

8000

10000

12000

14000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

No. of Bank Servers

T
ri

p
 T

im
e

(m
s)

Parallel MA
Serial Itinerary MA
Parallel CS
Serial CS

Figure 6. Trip Time for processing delay of 10ms and
information brochure size 500KB

0

5000

10000

15000

20000

25000

30000

35000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

No. of Bank Servers

T
ri

p
 T

im
e

(m
s)

Parallel MA
Serial MA
Parallel CS
Serial CS

Figure 7. Trip Time for processing delay of 500ms and
information brochure size 500KB

In future we intend to implement some complex B2B
applications using our mobile agents to see how effective the
PMADE system is. We would also compare our agent-based
banking system with more efficient CS based algorithms for
banking.

REFERENCES
[1] Patel, R.B. and Garg, K., “PMADE – A Platform for

mobile agent Distribution & Execution,” in the
Proceedings of 5th World MultiConference on
Systemics, Cybernetics and Informatics (SCI2001) and
7th International Conference on Information System
Analysis and Synthesis (ISAS 2001), Orlando, Florida,
USA, July 22-25, 2001, Vol. IV, pp. 287-293.

181

[2] Patel, R.B. and Garg, K., “Providing Security and
Robustness to Mobile Agents on Open Networks,” in
Proceedings of the 6th International Conference on
Business Information Systems (BIS 2003), Colorado,
USA, June 4-6, 2003, pp. 66-74. (Received Best Paper
Award).

[3] Patel, R.B. and Garg, K., “Mobile Agent Management
in PMADE,” in Proceedings of ADCOM 2001, 9th

International conference on Advanced Computing and
Communications, Bhubaneshwar, India, Dec. 16-19,
2001.

[4] Asokan, N., Janson, P.A. Steiner, M. and Waidner, M.,
“The state of the art in electronic payment systems,”
Computer, 30(9): 28–35, 1997.

[5] Furche, A. and Wrightsom, G., “Computer Money – A
Systematic Overview of Electronic Payment Systems,”
DPunkt Verlag, 1996.

[6] Xubin He and Qing Yang “Performance Evaluation of
Distributed Web Server Architectures under E-
Commerce Workloads,” Journal of Parallel and
Distributed Computing, 2003.

[7] Calisti, M., Deluca, D. and Ladd, A., “An agent-based
framework for financial transactions,” in Proceedings of
Autonomous Agents 2001 Workshop on Agent-Based
Approaches to B2B, May 2001.

[8] Nwana, H. S., Rosenschein, J., Sandholm, T., Sierra, C.,
Maes, P. and Guttmann, R., “Agent-mediated electronic
commerce: Issues, challenges and some viewpoints,” in
K. P. Sycara and M. Wooldridge, editors, Proceedings

of the 2nd International Conference on Autonomous
Agents (Agents’98), pages 189–196, New York, May 9–
13, 1998. ACM Press.

[9] Dasgupta, P., Narasimhan, N., Moser, L.E. and Melliar
Smith, P.M., “A Supplier Driven Electronic
Marketplace Using Mobile Agents,” First International
Conference on Telecommunications and E-commerce,
Nashville, TN, Nov. 1998.

[10] Dasgupta, P., Narasimhan, N., and Moser, E. L.,
“MAgNET: Mobile Agents for Networked Electronics
Trading,” IEEE Transaction On knowledge and data
engineering, 11(4), July/August 1999.

[11] Sun Microsystems, “Java Remote Method Invocation–
Distributed Computing for Java. White Paper,” March
1998.

[12] Tay B.H. and Ananda A.L., “A Survey of Remote
Procedure Calls,” Operating Systems Review, 24(3): 68-
79, July 1990.

[13] MASIF specification is available through
http://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

[14] Calisti, M., Deluca, D. and Ladd, A., “An agent-based
framework for financial transactions,” in Proceedings of
Autonomous Agents 2001 Workshop on Agent-Based
Approaches to B2B, May 2001.

[15] Nwana, H.S., “Software Agents: An Overview,”
Knowledge Engineering Review, 11(3): 1 - 40, Sept.
1996, Cambridge University Press, 1996.

Figure 4. Agent Submitter Interface

182

