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ABSTRACT

Time series forecasting plays an important role in many day
to day applications, and is often used as a tool for planning
in many areas. In this paper, we propose a generic method-
ology for time series forecasting. We use a subset of the
dataset to build up the system model by compressing the
information through clustering and coming up with inher-
ent patterns in the data. These patterns are represented as
curves that any time series from the given set is expected
to follow. It then facilitates the forecasting through linear
regression by matching to the closest pattern to each time-
series that has to be predicted. We applied this approach
on Kddcup 2003 dataset for predicting the citations of the
research papers and found the results to be on par with best
results.

1. INTRODUCTION

Forecasting is important for taking decisions about fu-
ture events. Typically, past information and patterns are
exploited to predict the future. In case of time series data,
the past information is a series of stamped data sets and
forecasting involves future generation of the datasets [18, 3,
10]. In this paper, we present a methodology for forecasting
time series through clustering.

1.1 Time Series Forecasting

Time series forecasting, or time series prediction, takes
an existing series of data ;—n, ..., Li—2, Ti—1, ¢; and fore-
casts xit1, Tit2, ... the data values. The goal is to observe
or model the existing data series to enable future unknown
data values to be forecasted accurately. Examples of data
series include financial data series like stocks, physically ob-
served data series like sunspots, weather and mathematical
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data series like fibonacci sequence, integrals of differential
equations etc.

Here, we focused on predicting the citations of scientific
research papers with a technique called time series forecast-
ing through clustering. When research paper X refers re-
search paper Y, then Y is said to be cited by X and the
prediction of citations is the number of such references the
paper Y gets in the given amount of time. The popular-
ity and the importance of a research paper is based on its
number of citations.

In the next subsections, the major difficulties inherent
in predicting the citations of research papers and the im-
portance of forecasting the citations are presented. Section
2 presents the related work. Section 3 gives the general
methodology and the model of the predicting system. Sec-
tion 4 presents the case study of our approach on Kddcup
2003 task I dataset. Section 5 discuss about the evaluation
of the system.

1.2 Difficulties in forecasting

There are certain difficulties encountered while forecast-
ing the citations for the given data. The first difficulty is
the availability of limited quantity of the data for the re-
cently published research papers. A research paper pub-
lished recently might have very less number of citations and
prediction of future citations becomes difficult if the fore-
casting time is anywhere more than 40% of the lifetime of
the research paper.

A second difficulty is presence of noise. Noisy data can
be of two types 7) erroneous data and #%) and components
that obsure the underlying form of the data series. The
examples of erroneous data are measurement errors and a
change in measurement methods or metrics. In this paper,
we do not concern about erroneous data points. An example
of a component that obscures the underlying form of the
data series is an additive high-frequency component due to
which there is a sudden spike observed in the curve which
can mislead prediction.

A third difficulty is non-stationarity, data that do not
have the same statistical properties (e.g., mean and vari-
ance) at each point in time. A simple example of a nonsta-
tionary series is the fibonacci sequence: at every step the
sequence takes on a new, higher mean value.

Inorder to eliminate the presence of noise and nonstation-
arity and to capture the overall behaviour of the curve, the
technique we used is to take the cumulative data values and
plotted them against time. Cumulative data captures the
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Figure 1: Flow chart of methodology

overall pattern of the curve since it is a monotonically in-
creasing one. The slope of the curve gives an idea about
how the data is varying with time. The data series ....,
Ti— 4,-% s,xz 2,98z becomes

E Ti—4, E ZTi—3, 2 Ti—2, E Z.

k=1
A fourth dlfﬁculty is selectmg the forecasting technique.

From statistics to artificial intelligence, there are myriad
choices of techniques. One of the simplest techniques is
to search a data series for similar past events and use the
matches to make a forecast. One of the most complex tech-
niques is to train a model on the series and use the model
to make a forecast. We used the first techinque with modi-
fications and the results show that our technique is scalable
and can perform better.

1.3 Importance

With time series forcasting, there are numerous advan-
tages like stock prediction in financial markets, prediction
of weather reports and prediction of the growth of mobile
market, prediction of growth of traffic etc. Forecasting the
number of citations, the research paper receives also plays
a vital role in deciding the importance of the topic. If a
group of research papers on the same topic are going to re-
ceive high citations on the average, then the topic becomes
hot topic for the future. A new researcher can choose that
topic to work on. Also, one can make use of this feature in
designing a ranking algorithm to search the repostitory of
research papers.
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2. RELATED WORK

Time series forecasting can be done by either linear pre-
diction or non-linear prediction. In linear prediction, there
exist a large number of linear models, such as Auto Regres-
sion, Moving Average, Auto Regression Integrated Moving
Average etc. Auto Regression Moving Average is a popular
approach and is widely used in all time series analyis and
discrete signal processing [3, 4, 16, 15]. But linear regression
models fail to forecast accurately if there is non-linearity in
the data. In non-linear prediction, quite widely popular ap-
proach is the use of Artificial Neural Networks[19, 17, 11, 21,
20, 9, 13]. The main disadvantage with the Neural Networks
is it is complex to built and takes huge training time. There
has been some work done by Das et.al. [6] and [5, 1] on
finding rules/pattern from the time series data by forming
subsequences of data and clustering them and finding rules
based on the sequence of clusters. Forecasting time-series by
Kohonen classification is done by Lendasse et.al.[12]. Other
work related to time series on matching and similarity serach
is done by Faloutsos et.al.[8, 2, 7, 14].

3. METHODOLOGY

Our basic hypothesis is that in any given set of related
time series data, there are distinct patterns that are followed
by individual time series. A task of predicting the future
direction of such data would involve:

a) Identifying the distinct patterns followed by the members
of the set
b) For each times series, identify the particular pattern it is



following so far and predict based on that pattern.

Our methodology works best for a set of time series on
which we can apply the concept of a lifecycle. By lifecycle
we mean that each time series has a region of birth, growth,
maturity and decline followed by death. Birth refers to the
initial periods of the time series and death refers to that
point in time after which the data values for each period are
close to zero. These kinds of time series are fairly common
in the world and examples would include monthly sales of
a product, number of citations a paper receives, the sales
of tickets for a particular performance and so on. Thus any
given set of such a time series will consist of series which
have reached their death as well as others which are in in-
termediate stages of their lifecycle. We use the so called
”dead” series for identifying the patterns in the data.

In cases of time series where the concept of lifecycle does
not apply, i.e. series which go on indefinitely, we can use the
members with that have been active for the longest time
to represent the dead series. Examples of such series are
monthly telephone bills, credit card spending etc. However,
our technique has not been tested on such a series.

We divide the dataset into two parts: the dead time se-
ries and the alive time series. They are classified based on
the values in the recent time periods. Based on the nature
of the dataset, we can come up with appropriate rules to
distinguish the dead series. A typical rule may say that for
a series to be classified as dead, it should have less than a
threshold value in the last ‘n’ time periods. For example, a
series is dead if it has a value less than 2 in the last 4 time
periods. Another possible rule is that a series is dead if the
cumulative value in the last ‘n’ time periods is less than =%
of its cumulative value so far. An example of such a rule
is that a series is dead if in the last 4 time periods it has
received less than 5% of its total cumulative value.

Different time series data will have different range of val-
ues in each time period. Also in many cases, the time series
data may not follow a regular pattern and can have a zigzag
curve nature. For example, one time series may have values
from 20-40 in each period whereas another may have values
from 0-4 in each period. To get rid of these differences and
intermidate spikes or impluses, we use a cumulative value
for each period. This helps us in smoothing of curves, since
the cumulative curve is monotonically increasing one. So a
time series 2 2 4 4 2 6 will be represented as 2 4 8 12 14 20.
The next step is to normalize the dead series on a scale of
0 to 1. So the above time series becomes 0.1 0.2 0.4 0.6 0.7
1.0. In this way all the dead time series are now normalized
n a scale of 0 to 1.

We now use clustering to identify the patterns in these se-
ries. We come up with a set of representative patterns based
on manual observation. We then use distance based cluster-
ing to find how many series follow each pattern identified by
us. A permissible deviation is defined from each point on the
pattern and all the series which fall consistently in the per-
missible neighborhood are considered to follow that pattern.
At this stage we eliminate the patterns which do not have a
minimum number of series following them. We also analyze
those time series which were not assigned to any pattern,
and if needed, come up with more patterns. The next step
is to refine the manual patterns by taking the means of each
point of all the time series in a cluster and then coming up
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with the new pattern. The whole process is repeated till the
incremental improvement becomes insignificant. Hence, we
get a set of patterns which is followed by the members of
the given dataset. Each time series which is alive (i.e. not
dead) is expected to be following one of these patterns in its
life so far. Our task is now to identify which pattern it is
following. This is a bit complicated because we do not know
at which stage of its lifecycle a given series is. For exam-
ple, if we take the time series of monthly product sales, we
do not know that so far, what percentage of total sales the
product has achieved. To determine this, we can use apriori
knowledge (i.e. we know that on average, a product receives
x% sales in its first year). In case it is not available, we
can assume different values (say 20%, 25%, 30% and so on)
and see which value gives us the best match with a pattern.
Suppose we assume that the sales of the product is 40%.
This means that we will get the monthly cumulative sales
for the product as described above, but instead of normaliz-
ing it on a scale of 0 to 1, we normalize it on a scale of 0 to
0.4. Now we compare the series to each of the patterns (we
take the relevant portion from 0 to 0.4 for each pattern) and
see which pattern gives the closest match. Based on that,
we predict how the time series will move in future. Refer
section 4.10 for more details on prediction process. The flow
chart of methodology is shown in Figure 1.

4. APPLICATION TO KDDCUP 2003 DATASET

4.1 Task Description
4.1.1 Input

1. The LaTeX source of about 30000 papers in the through
published upto March 1, 2003.

The abstracts for all of the papers. For each paper the
abstract file contains:

e submission date
o title
e authors

e abstract

The SLAC/SPIRES dates for all papers.

4. The complete citation graph for all papers, obtained
from SLAC/SPIRES. Each node will be labeled by its
unique ID.

4.1.2  Output

For each paper P in the collection, the predicted difference
between

e The number of citations P will receive from papers
submitted during the period May 1, 2003 - July 31,
2003, and

The number of citations P will receive from papers
submitted during the period February 1, 2003 - April
30, 2003. (So if there were more citations during the
period May 1, 2003 - July 31, 2003, then the prediction
should be a positive number)



4.2 Getting the citation graph and the citation
lifelines

The first step is to invert the citation graph given in the
input to give us the reverse citation graph. The input ci-
tation graph is a two column vector with the first column
being the paperid and the second column is the citationid
(the papers it cites). Paperid is the unique id given to each
paper. Each paper P cites a list of other papers Pi, P, ...
,P:. So for paper P the citation graph is

P P
P P
P P

For our purpose we need a graph of each paper and the
citations it has received. So the columns of given graph in
the input are inverted. The inverse citation graph is a two-
column vector in which the first column is the paperid, and
the second column has the paperids of the papers which cite
it. Each paper P has a list of citations P, P», .., P, which
means P is cited by paper P, paper P, .. , paper P;. If a
paper does not receive any citations during its lifeline! then
there will be no edge for that paper in the graph.

The total numbers of papers are 29,014 of which the 6,318
papers have no citations. The remaining 22,696 papers have
at least one citation or more.

4.3 Getting citation lifelines for the papers

The next step is to compute for each paper, the number
of citations it received every month from January 1992 to
January 2003. This is done to observe how the pattern of
citations may vary for a research paper during its lifetime.
This is useful for predicting the future citations. For each
paper, we are provided with the SLAC dates, or the date on
which it entered the SLAC database. We took these dates to
be the approximation of the publication date of the paper.
So the number of citations a paper receives in a given month
is the same as the number of papers which cite the paper
and have the SLAC date given month. Let P be the paper
and it has total C citations. Let M be the total number of
months, which we are considering and mi, ma, .., m, be the
first, second and the nth month in that time period. If P
receives c1, €2, . , Cp citations in month m;, month mo, ...
My, then ¢1 +c2 +.... + ¢, = C. For the given data set, we
in the obtained a the month wise citation matrix is of size
22,696 x 133 months.

The citation lifeline of a given paper is considered to be
a sequence of continuous months during which it received
more than 85% of its total citations. We kept the threshold
at 85% because it is observed that in many cases, the pa-
pers have very sparse citations in the beginning and end of
their lifelines. If the sparse months are not neglected, then
the lifelines got unnecessarily elongated. Once we find the
shortest period with 85% citations, for the given paper, we
look at the 6 closest months on either sides of it. We ex-
tend the lifelines for the paper only if it received more than
4% citations in the neighboring 6 months. The lifeline for
different papers varied from 1 to 120.

'we use lifeline and lifetime interchangebly in this paper

Since we have to predict the citations for three month
periods, we grouped the citations taking three consecutive
months starting from the most recent month i.e. January
2003. Thus we now have 44 citation periods instead of 133
with which we have started. For all future computations the
time period used is three months.

4.4 Classification of Dead and Alive papers

Using the trial and error method, the best partition of
the set into dead and alive papers is obtained by using the
constraint that for a paper to be classified as alive, it should
have received more than one citation during the last time
period and more than three citations during the last two
time periods. Otherwise it is considered to be dead. For the
given data set with the above heuristics, we find 2,056 alive
papers and 20,640 dead papers. Other heuristics tried gave
either too many alive papers or too many dead papers.

4.5 Predicting the future citations

After dividing the dataset into two parts of the alive and
the dead papers, we normalized the curves of the dead pa-
pers on a scale from 0 to 1. This is done because the number
of citations varied from one period to another, and the curve
we obtained with the actual value has a zigzag structure.
Hence we used the cumulative citations for normalization to
get a monotonically increasing curve. Let a paper P with
a lifeline of K periods have a total of C citations. The
number of citations it receives in each time period is given
as ci1,¢2,C3,..,cx. The sum of all ¢; adds up to C. The
normalized citations can be represented as mi,n2,ns, .., ng
where

i
P
_j=1

n; = e}
k
and C = E ¢
=1

Each paper has different lengths of lifelines. The number
of time periods varies from one to forty. Out of the 20640
dead papers, about 7000 had lifelines of one period, about
1400 papers each for the lifelines of 2-5 and the number
decrease from a few hundreds with lifelines of 15 periods
down to a few (about 10-20 each) papers with lifelines above
30 periods. Therefore to compare the curves of the papers,
there is the need to sample the normalized curves a fixed
number of times in order to get the same number of points
in each curve. We tried with sampling each curve at 20 and
50 equally spaced points.

The sampling is done as follows. Let there be a paper P
with a lifeline of K periods with normalized citation values
as described above. Let us want to sample the lifeline at
S equispaced points. For this, divide the interval between
every two successive time periods into S equal parts to get
a total of K x S points. Now start from the first point and
take every Kth point to get a total of S sampled points.
Thus the lifeline of every paper is now made of K points.

4.6 Clustering of curves of dead papers

We plotted the cumulative data of the dead papers and
we observed a leaf patterned graph. Having sampled the
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curves of the dead papers, the next step is to cluster the
curves based on the similarity in shapes. Each cluster was
initiated with a representative curve. The initial set of the
representative curves is obtained by manual observation of
the distinct curves appearing in the dataset. We started
with a set of 12 representative curves i.e. we expected to get
12 clusters of the curves. We choose the 12 representative
curves such that these curves represent the entire structure
of the data set. We used distance based K-means, single-
link based clustering, and Euclidean distance function to
calculate distances. Refer Figure 2 for Manual Represena-
tive curves. A permissible neighborhood is defined for each
point in the representative curves. We call that neighbor-
hood as ’e’. The corresponding point of any curve is con-
sidered to be in the permissible neighborhood of the point
on the representative curve if the two points varied from
each other in the range of e. The number of such similar
points are counted for each curve with the given representa-
tive curve. If this number exceeded the threshold, then the
given curve was considered to be a member of the cluster.
After repeated experiments with different values of € ranging
from 0.001 to 0.1, we got the minimum error for the € value
0.05. We took this as ideal value and the threshold for the
number of similar points is kept at 15 for curves sampled at
20 points and at 40 for curves sampled at 50 points.

Manual Representative curves
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Figure 2: Manual Representative curves

Representative curves after refining
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Figure 3: Representative curves after refinement

4.7 Refinement of the representative curves

Each cluster obtained as described above is represented by
a curve with respect to which all members satisfied the mem-
bership condition. In the first iteration of clustering, this
curve is taken to be the manually determined curve. After
getting the cluster member, the means of the correspond-
ing points of each of the curves was computed. The curve
so obtained is taken to be the new representative curve for
the cluster. The clustering process is repeated with the new
representative curve. This iteration goes on till the curve
obtained by taking the means of the members of a cluster
did not vary considerably from the curve used to initiate the
cluster. This curve was taken to be the final representative
curve. Refer Figure 3 for curves after refinement.

We started with 12 curves. After clustering iterations we
find that the clusters of three of these curves have fewer
than 20 members. We neglected these curves for the final
predictions. The number of the representative curves was
kept low because if there are many representative curves,
there was a high probability that any given curve of an alive
paper would match closely with more than one representa-
tive curves. This is because the representative curves were
considerably close to each other during the first and the last
quarters. Hence unless they is reasonably spaced during the
middle region, there € intervals would overlap at almost all
points. Thus for our final predictions only the 9 representa-
tive curves, obtained as described above are used.

4.8 Matching the curves of the alive papers
with the representative curves

Having obtained the representative curves, the next step
is to find the closest matching representative curve for each
alive paper. The first issue involved is that we did not know
at what stage of its lifeline a given alive paper is. For this we
considered the possibilities that the paper may be anywhere
from 50% to 90% of its total lifeline at the given stage. The
motivation for this assumption was that the average lifeline
for the dead papers was around 4 time periods, and due to
our partitioning constraint described above, each alive paper
will have more than two time periods in its lifeline at least.
On studying the result we find that we obtained the best
results by assuming that the papers were in between 60 to
82 percent of their lifeline. This is so because in the case
of 50 to 60 percent, the sample points were not enough in
number to accurately match a representative curve. In case
of 90 to 100 percent, the matching was accurate but the
predictions were unsatisfactory due to the fact that most
of the representative curves were either flat so late in their
lifeline or has sudden spikes in the number of citations.

The next issue is to find which representative curve it
matched most closely. For this purpose, we normalized each
active curve on scales from 0.6 to 0.82. We then sampled
the normalized curve at 12 to 17 points (corresponding to
dead curves with 20 sampled points) or 30 to 41 points (cor-
responding to dead curves sampled at 50 points) depending
on the scale of normalization. We use the same method
for sampling and normalization as described in the case of
dead papers. We compare the so obtained normalized and
sampled alive curves with the representative curves. For the
comparison we use only the points corresponding to the sam-
pled points of the alive curves i.e. suppose an alive curve
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was normalized on a scale of 0.6 and then sampled at 12
points. We would then compare the curve so obtained with
only the first 12 points of each of the representative curves
to see which curve it matches the most closely.

Initially, for finding the most similar curve, we used the
same method as described in clustering the dead papers i.e.
we defined a margin for each point and counted the number
of points for each curve which fall within the margin. But,
we find that since in the initial period, the representative
curves are very close to each other, the alive curves matched
multiple representative curves closely. To avoid this, we de-
cided to apply variable margins. So for the first point of
each representative curve, we kept the margin at 0.04 and
we kept on incrementing this margin by 0.002 till we come
to the middle of the curve. Then we again start decreasing
the margins by 0.002 for each successive point till we come
to the end of the curve. This is because the curves were
well spaced in the middle regions and we could afford wider
margins. A further improvement was to impose a constraint
that for any curve to be considered matching a representa-
tive curve, it must match the latest three time periods i.e.
if the number of sample points are 12, then the 10th, 11th
and 12th points must satisfy the similarity constraint for the
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corresponding points of any representative curve.

Using the above method, we find the percentage similarity
for each alive curve on 12 normalization scales from 0.6 to
0.82. For each such curve we compared it to the correspond-
ing points for each of the representative curves. We calcu-
lated the percentage of points which matched in each case.
For each alive paper, we noted the representative curve and
the normalization scale which gave us the highest percent-
age similarity. Refer Figures 4, 5, 6, 7, for the dead papers
matching with closest representative curves and Figures 8,
9 for the alive papers matching with closest representative
curves on different scales. Refer Figures 10, 11, 12, 13 for
the sample alive curve matching with matching with clos-
est representative curves on scales 0.58, 0.66, 0.74 and 0.82.
Similarly it is done for all the curves.

4.9 Prediction for the next time period

As described above, for each alive paper we get the best
match normalization scale and the representative curve it
has matched. Let the normalization scale be N (0.6 <=
N <= 0.82). Let the representative curve C' be made of
points ci1, c2, ¢3 ..cm ..ck where M is the number of sam-
ple points of the alive curve and K is the total number of
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Figure 10: A sample curve matching on the 0.58 Figure 11: A sample curve matching on the 0.66

scale

sampled points for the dead curves. As mentioned before,
in our case, K is 20 or 50 and corresponding values of M
can be between 12 and 17 or 30 and 41. Let the number of
time periods in the lifeline of the alive paper be L. Let the
total number of citations that the alive paper has received
so far be Rr. So we have to predict the number of citations
in the time period L + 1 or Rp+1.

The first step of the prediction is to find that to how many
sample periods on the normalized scale do L + 1 time pe-
riods of the lifeline correspond to. L time periods of the
lifeline correspond to K sampled points. Let L + 1 time
periods will correspond to p sample points. We can find p
asp = HHLK

Let pi = |p]
and p; = p—p;
Let now the normalized extension value (on the scale of 0

N) be VN. Then

Vv =cp; + (cm+1 — Cp; )pf

So the net extension (on the normalized scale of N) is

scale

E=VNn—cm

So now the predicted number of citations for the next time
period is
__ E.R
Rpyy = =+

Hence in this way obtain the prediction for next time pe-
riod. To get the prediction for the two time periods, repeat
the above procedure again after predicting for one time pe-
riod.

5. EVALUATION OF THE SYSTEM

The actual values of the citations for the months of Febru-
ary to April 2003 were released on May 12, 2003. We evalu-
ated our prediction system against this data. The percent-
age of error in the intervals of percentage of papers predicted
is shown in Table 1. We found that the system was relatively
more accurate for papers with relatively low values for the
average citations per time period. The prediction was inac-
curate if the number of citations in the recent months was
high. This was because in case of higher values, the values
attain a more random nature and it is difficult to fit a curve
matching them. Another problem was of spiking. We found
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Table 1: % Error in the prediction

Percentage Error Papers in interval
>=0 and <= 5% 3.62%
> 5% and <= 10% 5.8%

> 10% and <= 15% 3%

> 15% and <= 20% 3.6%
> 20% and <= 30% 8.6%
> 30% and <= 40% 8.3%
> 40% 9.2%
>= —5% and < 0% 5.2%
>= —10% and < —5% 3.54%
>= —15% and < 10% 5.78%
>= —20% and < —15% 4.1%
>= —30% and < —20% 10%
>= —40% and < —30% 9.3%
< —40% 20.1%

that the representative curves which fell below the diagonal
or the linear curve, went flat for upto the first 80% time peri-
ods or so. After that, for every successive time period, they
spiked suddenly. So if a paper matched the flat region, but
the prediction fell in the spike region, then we get dispro-
portionately high values for the predicted periods. To avoid
this, we tried to use linear extrapolation for the curves which
matched the lower diagonal representative curves, but could
not do so in most cases because the results still remained
substantially different from the obtained value. We will see
this by an example.

106048 3 26 39 24 24 38

106112135349

Given above are two papers and their lifelines. The actual
values for the next 3 months were 20 and 6 respectively.
Our predicted values were 23 and 3 respectively. Now if we
used linear extrapolation then the values we get are about
50 and 13 respectively, which are even more varying than
our predictions. The reason for this is that a look at the
dataset will tell us that the curves are all zigzag in nature
and actually quite random. It is therefore very difficult to
predict the next value based on the previous ones, because
it may rise or fall in an indeterministic manner. What we

scale

did was to model the problem so as to transform it into a
curve fitting and extrapolation problem with monotonically
increasing curves. Here again the limitation was that firstly
the curves which match are with a permissible error margin.
So it.s not an exact match. Within that error margin, the
predictions may actually vary by upto 20% based on various
factors. Further, rather than trying to guess which stage of
the lifeline the paper is actually at (which is again in some
sense indeterministic) we assume that stage of the lifeline
which shows the best match with any of the representative
curves. So what it amounts to is that we try and force a
paper to match one of the 9 curves, whereas in real life each
citation curve might me unique in itself. The broad idea is to
see how the citations vary and then try and predict based on
other curves how that curve may proceed. In actuality, every
paper is independent and we really cannot say that because
another paper went this way, the current paper will also do
so. At best we are trying to generalize based on the given
dataset to get a broad classification of the patterns that
various citation curves follow and predict the progress of a
partial curve using that. Another limitation is that in the
initial stages, many curves are almost similar, so even when
we say that the given curve fits a particular representative
curve, it may be closely similar to another representative
curve as well. In such cases it is likely that the curve may
follow any of them. We can at most make a random guess
about which one it will follow. The above are the limitations
of the system.

6. CONCLUSION

We have proposed a novel approach for forecasting time
series data by identifying patterns using clustering. This is
followed by prediction method which uses these patterns as
a base to predict future trends. This approach yielded good
results when applied to the Kddcup 2003 dataset.

The advantages of this technique is that it combines man-
ual intervention and computing power to yield more efficient
results. It can be used even when we have very small dataset,
even with as few as as hundred time series. Further it allows
us to compare time series of different lengths by normalising
them on a scale of 0 to 1. It also avoids an extensive learning
phase as is the case for many other techniques.
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The disadvantages include the fact that it works more
effectively when we are dealing with time series where the
concept of a lifecycle is applicable. Another problem is that
the predictions are less accurate if there have been heavy
variations from the normal trend in the recent time periods.

Further refinements to this technique can be by taking
moving averages when creating the initial curves for cluster-
ing. Future work can be to automate the selection of the
patters without any manual intervention and also coming
up with a better distance based function for clustering and
non linear forecasting over the representative curve. This
methodology can be used to predict a range of values rather
than specific values. This will render more accuracy to the
system.
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