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Abstract

Role-based access control (RBAC) has attracted consid-
erable research interest. However, the computational is-
sues of RBAC models are yet to be thoroughly studied. In
this paper, we study the problem of efficient maintenance
of large RBAC models in a database-based multi-domain
Web service environment. We propose first-order (SQL)
algorithms to maintain the reachability of access roles un-
der dynamic changes. The main advantages of our algo-
rithms are: the support of various operations required for
managing access roles with fractional information of roles;
the maintenance of an update through operating a bounded
number of join operations despite of the data size. To the
best of our knowledge, our algorithms are the first attempt
to maintain RBAC models using a first-order language.

1 Introduction

In database-based distributed Web service applications, a
data service provider is the access point for data resources
in the network, enabling data source specified access by
users and other services. Secure and effective access con-
trol is crucial in such environments, especially when sensi-
tive data is involved in multiple domains [19, 20]. In this
situation, managing the access roles to efficiently support
system-wide activities is quite challenging: it needs to sup-
port the dynamic changes on accessibility at both the ser-
vice provider level and the local database level in addition
to evaluating the impact of such alterations on the service.

The Role-Based Access Control (RBAC) model [13, 17,
19] has been widely accepted as an effective technique for
access control. In the RBAC model, roles and their rela-
tionship are described by arole graphin which the nodes
represent the roles in a system, and the arcs represent the
accessibility between nodes, theis-junior relationship [13]:
One role can access to another role if and only if there ex-
ists a path from the first role to the second.

In a large distributed enterprise environment, there are
manydomainsthat work cooperatively to provide the in-
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tegrated service. As each domain is an autonomous entity
that manages its own resources, protecting each domains
privacy1 while supporting their collaboration is highly re-
garded in practice. For example, suppose that there is a
trusted agency that provides the information of many uni-
versities to overseas students. The agency can be seen as
the service provider and the universities as domains. The
agency can access, process and manipulate some of the stu-
dents’ data but are not allowed to store or copy the data lo-
cally for privacy considerations. Also for competitive rea-
sons, a university may not be willing to share its data with
other universities directly, but may allow its data to be used
in a restricted manner: sensitive information such as names
will be allowed to be seen (fully, partly or encrypted) only
by certain roles in the agency rather than by roles in other
universities. All these criteria suggest that the existence of
a global mediated schema is obligatory and the various re-
quirements can make the number of roles quite large and
can form a complex roles hierarchical structure.

The previous example can be formulated as a RBAC
model. We assume there is a service provider that is the
entry point of inter-operation with the domains, and the
service provider and all the domains adopt a RBAC model
and are in database environments. Collaborations among
domains are achieved via the service provider by invoking
domain roles. The roles at the service provider carry out
across-domain access controls for integrated applications.
The direct communication and operations between differ-
ent domains are prohibited. Models with a mediator that
satisfy these design criteria have been studied in many re-
search papers on data integration since the paper of [4].

In a large dynamic distributed enterprise environment,
the service provider may receive many requests within a
very short time. Obviously change requests to the RBAC
model are usually much less frequent than query/access re-
quests. The processing of authorization or rejection of a
query/access request need to verify roles’ reachability and
can be expensive if it is done from scratch by checking the
existence of a path from the user role to the domain roles.
Contributions: In our settings, the (enterprise) RBAC
model is represented as a Directed Acyclic Graph (DAG).

1In this paper, we use the term of privacy in its general sense.



Figure 1: Domain role and global role graphs

The transitive closure(TC) relation on a DAG depicts
roles’ reachability. To alleviate this problem of accessi-
bility, we propose to pre-compute the reachability between
roles, i.e., the TC relation on role graph, to simplify the
evaluation process on query requests and incrementally
maintain the TC online under changes such as adding a
new domain or updating an existing role. We provide
first-order algorithms on the maintenance of role accessi-
bility in the (enterprise) RBAC model that can be used for
centralized models such as the models of [3, 13, 15]. Our
technique implies that the maintenance can be done with a
bounded number of join operations regardless of the size
of a role graph. Our main contributions on the algorithms
are three folds: (a) We provide two core first-order (SQL)
algorithms that extend the maintenance ofTC under aTC-
closed set(Definition 3.1) update. Since aTC-closed set is
not first-order expressible2 from the sets that were previ-
ously studied on updates such as an antichain or a cartesian-
closed set [7, 5], the extension is not obvious and not deriv-
able from these sets. (b) We also show that many updates
on a role graph can be decomposed into a bounded num-
ber of TC-closed sets and, therefore, can be maintained by
executing the core algorithms up to a bounded number of
times. The update operations that are supported in the pa-
per are3: inserting/deleting a cross-domain access arc, in-

2Intuitively, it means that aTC-closed set can not be represented by
antichains and/or cartesian-closed sets under a bounded number of join
operations.

3Since the update on an arc or a node can be implemented by first
deleting the arc or node then inserting a new arc or a node, we will only

serting/deleting a domain, inserting/deleting a role, andin-
serting/deleting a privilege into/from a role. (c) Our main-
tenance algorithms are localized: they achieve maintenance
by using partial information. This mechanism ensures bet-
ter local security and privacy and allows domain roles to
be hidden from the service provider. To the best of our
knowledge, our maintenance algorithms, which are highly
efficient, are a first attempt to use SQL for managing and
maintaining role reachability in RBAC models.

In terms of maintaining RBAC models, our algorithms
are distinct in several aspects. (a) Our first-order algo-
rithms may not be applicable to the mediator-free model
(SERAT) of [19] as the global role graph in a SERAT may
have cycles and therefore making it hard to maintain the
role accessibility with first-order queries [14]. Thus, hav-
ing a central service provider mediating the services from
all domains can reduce the cost for maintaining global role
accessibility. (b) Since most of the conflict constraints re-
late to the constraints of user groups or the assignment from
user groups, we only discuss the role-to-role conflicts in
the paper. A role-to-role conflict means that two roles are
never accessible from one to another. (c) A redundant arc
in a role graph is a redundant expression on roles’ sub-
sumption and can be expressed transitively through other
roles’ subsumption. Redundancy in a role graph may cause
difficulty in managing access roles and may make it error
prone [13, 18]. Our algorithms also support the operations
of redundancy detection/elimination and conflict checking.

study insertion and deletion operations in the paper.



In addition to redundant arcs we also introduce the notion
of reducible nodes (See Section 4). Papers of [2, 10, 12]
provide recursive (not first-order) algorithms for removing
redundant arcs. The use of TC on checking conflict con-
sistency and redundancy in 3-graph model has been exten-
sively studied in [15].

The practical and theoretical significance of using a
first-order language for maintaining recursive database
views has been intensively addressed in [8, 9, 11, 14, 16],
and the algorithms have constant parallel complexity [1,
11]. Our algorithms maintain the roles’ reachability rather
than the path from one role to another [19], which could
be exponential to the size of the underlying graph. Our ap-
proach maintains the transitive closure of a minimal secure
role graph which can be quadratic to the number of nodes
in size.

2 Secure Role Graph

We describe our RBAC model in a service-based dis-
tributed environment that supports role hiding. In our
model, the service provider manages the inter-operations
among domains. The data of a domain cannot be fetched
from other domains except from the service provider. To
improve security and privacy in a collaborating environ-
ment, some roles in a domain can be hidden from the ser-
vice provider. In reality, the hidden roles of a domain can
be the roles the domain does not wish to be seen by the ser-
vice provider. Therefore, each local domain can expose a
portion of role set and their relation to the service provider,
but hide the rest of the role set and hierarchical relations
unknown to the service provider. We first introduce some
necessary terminologies and notations used in the graph
theory. We assume the reader is familiar with first-order
logic or SQL. Throughout the paper, each graph is a di-
rected acyclic graph (DAG).

A directed graphis a pairG= (V,A), whereV is a finite
set of nodes andA⊆V×V is a set of ordered pairs orarcs.
We will use G(a,b) or G(e) to denote “arce = (a,b) is
in G”, V(a) to denote “nodea is in G”. We useG+E (or
G+E or G∪E) to denote the graph resulted from inserting
a set of arcsE to G, and useG−E (or G−E) to denote the
graph resulted from deletingE from G. Let G = (V,A) be
a graph. SupposeS andT are two subsets ofA. S⊲⊳ T =
{(s,t)|(∃u)S(s,u)∧T(u, t)∧ (s 6= t)}.

Let TCG be the transitive closure ofG, i.e., TCG =
{(x,y) | there exists a path fromx to y in G}. Since arcs
of the form (u,u) in a digraph contribute only in a triv-
ial way to its transitive closure, we will only consider di-
graphs without such arcs. Specifically, for binary relation
S, Ŝ= S∪{(u,u)|u is a node inS}. The transitive reduc-
tion [2] of DAG G = (V,A) is the (unique) minimum sub-
graphGr = (V,Ar) of G such thatAr ⊆ A andTCGr = TCG.
In this case, an arc ofA−Ar is called redundant. Arc
e= (u,v) ∈G is redundant if and only if there exists a path
from nodeu to nodev in G−e.

In our model, the roles of domaini is modelled as DAG

Symbol Meaning
Gi = (Vi ,Ai) role graph at local domaini.
G0, Ga service (role) graph.
Gg = (Vg,Ag) global role (GR) graph.
Gs, Gms a SGR graph, a minimal SGR graph.

G(n)
ms the newGms after update.

L the set of cross arcs.
Li the set of cross arcs adjacent toGi
VLi the node set ofLi in Vi
R, Ri a restricted-access relation onGs, Gi
Pu,[xy..z] the set of privileges of nodeu
RedG the set of redundant arcs ofG
Ŝ S∪{(u,u)|u is a node inS}

Table 1: Notations

Gi = (Vi ,Ai) where the nodes setVi represents roles and the
arcs setAi represents the dominant relationship between
roles. A role is viewed as a set of privileges or permissions.
An arc(u,v) ∈ Ai , which is defined on the subsumption re-
lation on permissions, means that roleu can access rolev.
Such role-to-role relationships are inherited transitively in
the role hierarchies. We call the role graph formed by the
service roles theservice graphand denote it asG0 or Ga.
We denote domaini with Gi . A role of Gi is denoted by
the domain nameconcatenating with therole name. For
example, node 10 of domainGb is denoted asb10. The
inter-operation among domains is achieved by introducing
cross arcsthat make roles in domains accessible from the
service provider. The set of such arcs is denoted asL. A
cross arc starts from a service role and terminates at a do-
main role, which means that the service role can access the
domain role. An non-cross arc is also called ahierarchi-
cal arc. Theglobal role graph(GR-graph)Gg = (Vg,Ag)
on Gi (i = 0,1, ...,n) is the graph whereVg = ∪n

i=0Vi and
Ag = (∪n

i=0Ai)∪L. Since any arc ofL starts from a node
of G0 and terminates a node ofG1∪G2∪ ...∪Gn, the GR-
graphGg is a DAG.

In our model, some domain conflict constraints can be
automatically enforced inGg. Let Ri be the restricted ac-
cess relation on domainGi , a subset ofVi ×Vi such that
Ri ∩TCGi = /0 holds.Ri(u,v) means that nodeu is prohib-
ited from reaching nodev in Gi . In GR-graphGg, Ri con-
straints are inherently held as long asRi ∩TCGg = /0 holds.
This suggests that, whenGi becomesG′i , Ri ∩ TCG′g = /0
holds if Ri ∩TCG′i

= /0 holds whereG′g = (Gg−Gi)∪G′i .
Similar results can be derived for the restricted access
R′i(u,v), which expresses that two nodesu and v are not
accessible at the same time inGi . Furthermore, in a do-
main, some roles and role relation (domain arcs) may not
contribute to the inter-operational service: they are not ac-
cessible from the service providerG0. For example, for
reasons such as security requirements, these roles and their
role-to-role relations may not be known to other domains,
including the service provider. These security/privacy re-
quirements lead to the following definition.

Definition 2.1 Let R be a set of a restricted access rela-



% INPUT: E(Start,Tail), G(Start,Tail), TC(Start,Tail).
% OUTPUT: Modified TC(Start,Tail).
%
% TABLE E(Start,Tail):
% The set of arcs to be inserted.
% TABLE graph G(Start,Tail):
% A role graph. For each node x, (x, x) is in G.
% TABLE TC(Start,Tail):
% For each node pair (s,t) of TC, there is a path from s to t.
% For each node x, (x,x) is in TC.
% TABLE Susp:
% The suspect node pairs need to be updated when G is modified.
%
% When inserting E(Start,Tail), all paths from x through a node pair
% of E to y are affected and are stored in Susp.

INSERT INTO Susp(Start,Tail)
SELECT DISTINCT X.Start, Y.Tail
FROM TC X, TC Y, E
WHERE X.Tail=E.Start AND Y.Start=E.Tail;

% The result: Update TABLE TC

INSERT INTO TC(Start,Tail)
SELECT * FROM Susp;

Table 2: Algorithmadd(G,TC,E)

tions. Thesecure global rolegraph (SGR-graph) Gs =
(Vs,As) is a graph such that (1) Vs⊆Vg, L⊆ As⊆ Ag and
G0⊆Gs; (2) TCGs∩R= /0; (3) Every node on a path of Gg
which starts from a node of G0 going through a cross arc
of L is in Vs; and (4) Every arc on a path of Gg which starts
from a node of G0 going through a cross arc of L is in As.

Intuitively, Condition 1 means thatSGR-graphGs is a
subgraph ofGg that containsG0 andL; Condition 2 indi-
cates thatGs satisfies the conflict constraintsR; Condition
3 and 4 imply that each domain role or arc that can be ac-
cessed from a role ofG0 is in Gs.

Two nodesu andv of the same domain arereducibleif
u andv have different role names but have the same set of
privileges. A reducible role ofGi is functionally redundant
and can be produced by update operations. For instance, in
Figure 1(ii), the removal of privilegeu from rolea3 makes
rolesa3 anda6 reducible. Unlike redundant arcs of a DAG
that can be deleted entirely without affecting the graph’s
reachability, the reducible nodes need to be merged to pre-
serve the graph’s integrity and simplicity (Details will be
discussed in Section 4). Reducible nodes lead to the fol-
lowing definition of minimalSGR-graph.

Definition 2.2 Graph G isminimal if it does not have re-
dundant arcs and reducible nodes. We denote the minimal
SGR-graph Gs by Gms.

When a request on update occur, we maintainTCGms

at the service provider andTCGi at domainGi , the transi-
tive closure ofGmsandGi respectively. MaintainingTCGms
andTCGi rather than the entire reachable relationTCGg can
be more efficient than that ofTCGg as the former can be
smaller than the latter. It can also reduce the bottleneck
caused by update operations at the service provider, as the
updates on a domain will not affect other domains and the
updates on the global service is minimized withinGms. The
major advantage of such a approach is the support of “local
role hiding” and explained in the following section.

Example 2.3 Refer to Figure 1(i). The global role graph
Gg = Ga∪Gb∪Gc∪Gd∪L. L = Lb∪Lc∪Ld is the set of
cross arcs of Gg where Lb = {(a4,b4), (a6,b7), (a8,b9)},
Lc = {(a9,c2), (a10,c4), (a5,c5)} and Ld = {(a10,d7),
(a11,d4)}. The SGR-graph Gs = (Vs,As) includes all solid
arcs, which is, all arcs in the service provider Ga, all the
cross arcs L, and the domain arcs of{(b7,b11), (c2,c5),
(c4,c7), (c4,c8), (c7,c9), (c7,c10), (c8,c10), (d4,d7)}.
The minimal SGR-graph Gms= Gs−{(a5,c5)}. Each do-
main node that links with sole dotted arcs is not accessible
from Ga and therefore, is not in either Gs or Gms. Clearly,
Gms is smaller than the global role graph Gg.

For easy reference, the symbols used throughout this pa-
per is summarized in Table 1.



% INPUT: E(Start, Tail), G(Start, Tail), TC(Start, Tail).
% OUTPUT: Modified TC(Start,Tail).
%
% TABLE E(Start,Tail): The set of arcs to be deleted.
% TABLE graph G(Start,Tail):
% A role graph. For each node x, (x,x) is also in G.
% TABLE TC(Start,Tail):
% Each tuple (s,t) represents a path from s to t. For each node x, (x,x) is in TC.
% TABLE Susp:
% The suspect access paths to be deleted. When deleting E(Start,Tail),
% any path from x through a node pair of E to y are affected and stored in Susp.

INSERT INTO Susp(Start,Tail)
SELECT X.Start, Y.Tail
FROM TC X, TC Y, E
WHERE X.Tail=E.Start AND Y.Start=E.Tail;

% TABLE Trust: the node pairs not using the deleted arcs of E.
INSERT INTO Trust(Start,Tail)
SELECT A.Start, A.Tail
FROM TC A
WHERE NOT EXISTS (SELECT * FROM Susp X

WHERE X.Star=A.Star AND X.Tail=A.Tail);

% TABLE Temp: new node pair (u,v) represents a path from u to v.
INSERT INTO Temp(Start,Tail)
SELECT A.Start, B.Tail
FROM TRUST A, G, TRUST B
WHERE A.Tail=G.Star AND G.Tail=B.Star AND

(NOT EXISTS (SELECT * FROM E
WHERE E.Star=G.Star AND E.Tail=G.Tail)) AND

(EXISTS (SELECT * FROM Susp X
WHERE X.Star=A.Star AND X.Tail=B.Tail));

% The result: Update TABLE TC.
DELETE FROM TC;
INSERT INTO TC(Start,Tail)
(SELECT Start, Tail FROM Trust)
UNION
(SELECT A.Start, A.Tail FROM Temp A);

Table 3: Algorithmdel(G,TC,E)

3 Updating cross-domain Arcs
To maintainTCGms andTCGi , we assume that the service
provider storesG0, Gms andTCGms while each domainGi
storesGi andTCGi . In this way, the service provider will
not be able to see the full picture of its local domainsGi
and each local domainGi cannot obtain all the information
of G0, Gms or TCGms. This is a very desirable property in
privacy preserving as it gives guidance to each of the par-
ticipants in the system in terms of what and how they can
provide their data to the services. We also assumeGi is
minimal and satisfies secure requirement ofTCGi ∩Ri = /0.

We will use G(n)
i or G(n)

ms to denote the new graphs after
updatingGi or Gms respectively. For each operation de-
scribed in this section, a secure/conflict check should be
performed after the updates. That is, ifTC

G
(n)
i
∩Ri = /0 and

TC
G

(n)
ms
∩Ri = /0 hold fori = 1, ...,n, then the operation isle-

gal. Otherwise, the operation isillegal. To save space, we
assume that such checks are implicitly performed routinely
after each operation and we will not discuss this aspect any
further in the paper.

Our technique on maintenance is based on the con-
cept of “TC-closed” that will be explained in this section.
Roughly speaking, our idea on maintenance is to convert
an update request into the update of a bounded number of
TC-closed sets. This guarantee that maintenance can be
achieved by performing a bounded number of join opera-
tions that is irrelevant to the operated data size. For exam-
ple, we will show that update a cross arc can be decom-
posed into twoTC-closed sets.

In this section, we introduce the core algorithms and
their applications on the maintenance of inserting/deleting
a cross arc.



3.1 The Core Algorithms

The core algorithms are add(G,TCG,E) and
del(G,TCG,D) whereD⊆A andE⊂V×V for G=(V,A),
which are listed in Table 2 and Table 3. Similar algorithms
have been previously studied [5, 6, 14] for an antichain
deletion4. The algorithms employ one common technique
as the basis: A set of node pairs that depends on the
deleted arcs are deleted first; this step may delete more
than necessary. Then the wrong deletions are corrected
through joining the result of the first step with the modified
graph twice. In this section, we extendadd() anddel() to
a TC-closedset insertion/deletion.

Definition 3.1 A nonempty arc set D is called TC-closed
for graph G= (V,A) if (1) For any arc(u,v) of D, if there
exists an arc(w,v) in G−D, all arcs on the path of G∪D
starting from v are not in D; (2) For any two arcs(u1,u2)
and (u3,u4) of D, if (u2,u3) is in TCG+D , each arc on the
paths from u2 to u3 of G∪D is in D; and (3) TCD = D.

Example 3.2 (Continued from Example 2.3). Let D1 =
{(c4,c7), (c4,c8), (c7,c9), (c7,c10), (c8,c10)}. The tran-
sitive closure of D1 is ~D1 = {(c4,c7), (c4,c8), (c7,c9),
(c7,c10), (c8,c10), (c4,c9), (c4,c10)}. ~D1 is TC-closed
in Gms and in Gc− {(c3,c7)} but not in Gc and Gg be-
cause of the existence of arc(c3,c7) that violates condition
(1) of Definition 3.1. Similarly, the transitive closure~D2
of D2 = {(a6,b7), (b7,b11)} is TC-closed in Gms but not
in Gg. Let E1 = {(d4,d6),(d6,d9)}; the transitive clo-
sure~E1 of E1 is TC-closed in Gms but not in Gd. From this
section’s result, we have TCGms+E1 = add(Gms,TCGms,

~E1)

and TCGms−Di = del(Gms,TCGms,
~Di), for i = 1,2.

Clearly, a single arc in a graph isTC-closed. We can
prove that each antichain5 is TC-closed. We also have the
following property for aTC-closed set.

Property 3.3 If D is TC-closed in G and G′ ⊆G, then D is
TC-closed in G′.

As the key concept in the paper, aTC-closed set is a set
that can be inserted/deleted in one go during the mainte-
nance as depicted in the core algorithms. When a request
on update occur, we will convert it into a bounded number
of TC-closed sets and then execute the core algorithms on
each set subsequently to achieve the maintenance. It should
be noted that converting an update request into antichains
or cartesian-closed sets can be unbounded [5, 7].

The core algorithms are add(G,TCG,E) and
del(G,TCG,D) whereD⊆A andE⊂V×V for G=(V,A),
which are listed in Table 2 and Table 3. Similar algorithms
have been previously studied [5, 6, 14] for an antichain

4A nonempty set of arcsD is called anantichainin G if, for every pair
of (possibly identical) arcs(u1,u2) and(u3,u4) in D, there is no path from
u2 to u3.

5A nonempty set of arcsD is called anantichainin G if, for every pair
of (possibly identical) arcs(u1,u2) and(u3,u4) in D, there is no path from
u2 to u3.

Figure 2: Proofs

deletion. The algorithms employ one common technique
as the basis: A set of node pairs that depends on the
deleted arcs are deleted first; this step may delete more
than necessary. Then the wrong deletions are corrected
through joining the result of the first step with the modified
graph twice. We extendadd() anddel() to aTC-closedset
insertion/deletion, as shown in Theorem 3.5.

Lemma 3.4 will be used to prove Theorem 3.5.

Lemma 3.4 Let D be TC-closed on G. Each path of G∪D
can then be formed through the concatenation of two paths
in G, possibly through a path in D.

Proof: Assuming there exists a pathpath(x,y) in G∪D,
which goes through at least two paths,path(u1,v1) and
path(u2,v2) of D as depicted in Figure 2(1) wherev1 6= u2
andui 6= vi for i = 1,2. SinceD is TC-closed onG and path
path(v1,u2) is in G−D, by Definition 3.1, pathpath(u2,v2)
is in G. Therefore, pathpath(v1,y) is in G. 2

Theorem 3.5 The algorithm of add(G,TCG,E) in Table 2
and the algorithm of del(G,TCG,D) in Table 3 are correct
when E and D are TC-closed on DAG G.

Proof: Sinceadd(G,TCG,D) can be easily proven using
Lemma 3.4, we only prove the result ofdel(G,TCG,D).

Let G′ denoteG−D. Let Γ(x,y) express the fact that
there is a walk fromx to y using some node pairs(u,v)∈D.
That is,

Γ(x,y) = ∃z1z2(TCG(x,z1)∧D(z1,z2)∧TCG(z2,y)).

Let Ω(x,y) be G′(x,y) ∨ TCG(x,y) ∧ ¬Γ(x,y). That is,
Ω(x,y) iff either (x,y) is an edge inG′, or there are walks
from x to y in G and no walk uses any node pairs inD.

We now show thatTCG′ can be constructed fromΩ by
two “joins”. That is, for all(x,y), TCG′(x,y) iff

∃uv(Ω(x,z1)∧ Ĝ′(z1,z2)∧Ω(z2,y)). (1)

Clearly, it can be seen thatΩ(x,y) impliesTCG′(x,y). So
the “if” becomes obvious. For the “only if”, suppose
TCG′(x,y) holds. If this is the case, formula (1) holds for
someu andv.



Assume that pathpath(x,y) is a path inG′ as depicted in
Figure 2(2). Letv be the left most node on pathpath(x,y)
such that there exists a pathx...a...b...v where subpatha...b
is in D. Let arce= (u,v) be an arc ofG′ on pathpath(x,y).
From the choice ofv, subpathx...u is in Ĝ′ and Ω(x,u)
holds. On the other hand, by Definition 3.1, all subpaths
from v to y are inĜ′. ThereforeΩ(v,y) holds. So the “only
if” is proven. 2

Let G = (V,A) be the GR-graph onGi = (Vi ,Ai) (i =
1,2, ...,n) and the cross arcs setL. We will defined some
SD-antichain sets used for the update. LetTC→Li be the
subset ofTCG where each arc are inGi∪L and on a shortest
path terminates to a cross arc adjacent toGi . Similarly, let
TC←Li ⊆ TCG where each each arc are inGi ∪L and on a
shortest path starts from a cross arc adjacent toGi . Clearly,
TC→Li andTC←Li ⊆ TCG are SD-antichain.

In the following, we give the general steps of computing
Gms, Gi , TCGi andTCGms when a cross arc is inserted or
deleted. The update of a cross arc will not change eachGi
but may alterGms.

3.2 Inserting a Cross-domain Arc

The insertion of cross arce = (u,v) does not require the
subsumption (u.P⊇ v.P) on nodesu andv as a cross arc
merely indicates its accessibility. Redundancy must be
checked after insertions. The insertion of a cross arc may
require inserting a set of domain arcs intoGms in addition
to the cross arc itself.

Example 3.6 In Figure 1(i), The insertion of cross arc
(a6,b3) into Gms requires inserting A←a6 = {(a6,b3),
(b3,b7), (b3,b8), (b8,b11)} into Gms and removing arc
(a6,b7) from Gms as arc(a6,b7) becomes redundant in the
new graph. A←a6 and its transitive relation TC←a6 can be
computed from TCGb, TCGms, Gb and Gms. TC←a6 is TC-
closed in Gms. Refer to the following general steps for de-
tails.

The following steps are required when inserting cross
arce= (u,v) where(u∈V0)∧ (v∈Vi)∧ (0 < i ≤ n) holds.
In this situation,Gi andTCGi are not changed (0≤ i ≤ n).
Only GmsandTCGms may be updated. IfTCGms(u,v) holds,
thene is redundant inGmsand the process stops. Therefore,
assume thate 6∈ TCGms holds.

1. At the DomainGi , let A←u be the set of arcs that need
to be inserted. ComputeA←u and its transitive closure
TC←u through the following:

A←u = {e} ∪ {(x,y)|T̂CGi (v,x) ∧ Gi(x,y) ∧
¬Gms(x,y)}

TC←u = {(u,y)|T̂CGi (v,x)∧A←v(x,y)}

∪{(x,y)|T̂CGi (v,x) ∧ TCGi (x,y) ∧
¬TCGms(x,y)}.

2. SendA←u andTC←u into the service providerG0.

3. At the service providerG0, do the following:

(a) It can be proven6 that TC←u is TC-
closed in Gms. Therefore, TCGms∪A←u =
add(Gms,TCGms,TC←u).

(b) Red+A←u, the set of redundant arcs ofGms∪A←u,
is

Red+A←u = {(x,y)|Gms(x,y)∧TC
G

(n)
ms

(x,w1)

∧TC←u(w1,w2)∧TC
G

(n)
ms

(w2,y)}.

(c) Set G(n)
ms, the new Gms, to be Gms∪ A←u−

Red+A←u.

For details on redundant elimination, refer to Section 4.
It should be noticed that there is one call ofadd() in the
above procedure.

3.3 Deleting a Cross-domain Arc

The deletion of cross arce= (u,v) from Gms means that,
in addition to removinge from Gms, the arcs ofGms− e
that are not accessible fromG0 also need to be removed.
Operations on redundant elimination and checking are not
necessary after removing a cross arc. The maintenances of
Gms andTCGms after deletinge= (u,v) involve the follow-
ing steps at the service providerG0:

1. LetH = del(Gms,TCGms,e) andG′ = Gms−e.

2. LetCK←v denote the set of arcs that are reached from
v in G′.

CK←v = {(x,y)|Ĥ(v,x)∧G′(x,y)}.

3. Let A←v be the set of arcs inGms−{e} that need to
be removed. For arc(x,y) of A←v, x is not reachable
from a node ofV0 (the set of nodes ofG0). TC←v is
the transitive closure ofA←v.

A←v = CK←v−{(x,y)|(∃w)CK←v(x,y)

∧V0(w)∧H(w,x)}. (2)

TC←v = A←v∪{(x,y)|(∃w1w2)A←v(x,w1)

∧A←v(w2,y)∧ Ĥ(w1,w2)}. (3)

4. SinceTC←v is TC-closed inG′, setG(n)
ms beG′−A←v

andTC
G

(n)
ms

= del(G′,H,TC←v).

In the above procedure,del() is called twice: once for
derivingA←v and again for obtainingTC

G
(n)
ms

.

Example 3.7 Continued from Example 3.2, the deletion
of arc (a10,c4) causes the deletion of A←a10 = D1 ∪
{(a10,c4)} from Gms. TC←a10, the transitive closure of
A←a10 is TC-closed in Gms−(a10,c4) and is used to derive

TC
G(n)

i
where G(n)

i is (Gms−A←a10).

6In this situation,TC←u may not beTC-closed inGg



4 Updating Privileges on a Role

In this section, we study the maintenance ofGms, TCGms,
Gi and TCGi after adding or removing a single privilege
to/from a role ofGms or Gi .

An access role has a set of privileges associated with
it. Adding/removing a privilege to/from a role can be in-
terpreted in two different ways: (i) Un-propagating update.
That is, adding/removing a privilege to/from the role only.
Other roles will not be affected; (ii) Propagating update.
That is, adding a privilege to a role requires insertion of the
same privilege to each of its ancestor roles; deleting a priv-
ilege from a role requires the deletion of the same privilege
from each of its descendant roles.

Since the un-propagating update can be operated by first
deleting the role then inserting a new role and can be eas-
ily supported with our methods. In this subsection, we will
discuss the propagating update. Such an update may pro-
duce some roles that have the same set of privileges or no
privileges at all. These are called reducible roles and null
roles respectively. Furthermore, the update of a privilege
on a role may also cause the updates on hierarchical arcs.

Example 4.1 Refer to Ga in Figure 1(ii). In the prop-
agating update, the deleting privilegez from node a4
will cause privilegez be removed from all nodes of
{a4,a7,a8,a9,a10}. This results in node a10 becoming
a null node. Similarly, the deleting privilegew from node
a4 will cause the deletion of the same privilege from nodes
{a4,a7}, resulting in node a7 and a9 being reducible. The
insertion of privilegea into node a9 will cause the inser-
tion of the same privilege into all nodes of{a4,a7,a8,a9}
and, subsequently, adding arc(a9,a5) into Ga.

In general, the major operations involved in the update
of a privilege on a role may include: merging reducible
roles; removing redundant arcs; inserting and/or deleting
arcs that are induced by the merging process. The newTC
is obtained from those operations and the calls ofadd()
and/ordel(). We will study these in detail in the follow-
ing. Instead of just giving the relevant algorithms, we ex-
plore the properties related to each operation to maximize
the constraints on operand sets, which we believe can be
beneficial for the efficiency of execution. The proof on the
correctness of the procedure is omitted due to space limita-
tion.

1. Finding the affected roles. The update(insertion or
deletion) of privilegep on role u of Gi may cause other
nodes ofGi to be updated. Such updates cannot be ex-
tended into another domain such asG j for j 6= i. This is
because that domainGi can only be accessed fromG0 via
cross arcs, where the adjacent roles of a cross arc imply
that one role can access another, rather than indicate the
subsumption on their privilege sets. Assume that a new
privilegeq is added to rolev∈ Gi (0≤ i ≤ n). The privi-
legeq should be added to each role of{u|TCGi (u,v)} if q
does not belong to it. Letα denote the set of affected nodes
on whichq needs to be added,

α = {u,v|Vi(v)∧TCGi (u,v)∧¬Pv(q)∧¬Pu(q)}.
Similarly, in the case of deleting privilegep from role
u∈ Gi (0≤ i ≤ n), let β denotes the set of affected nodes
on whichp is removed,

β = {v,u|Vi(u)∧TCGi (u,v)∧Pu(p)∧Pv(p)}.
With the obtainedα or β , deriveG′i , G′ms, TCG′i

andTCG′ms
by updating the affected nodes ofGi andGms. The process
can generate reducible or null roles.

2. Processing null and reducible roles.We first show
how to remove null roles fromG′i , G′ms, TCG′i

andTCG′ms
.

We will then discuss the merge of reducible nodes.

- Removing null roles: Null roles can be induced by the
removal of a privilege from a role. SinceGi is minimal,
the removal of a single privilege can produce at most one
null role in G′i (It will otherwise end up withGi having re-
ducible roles). Let the set of arcs adjacent to the null role
of G′i beλ . Since there is no out-going arc starting from a
null role,

λ = {(u,v)|(Pv = /0)∧ (G′i(u,v)∨L(u,v))}.
The removal of the null nodev from G′i and G′ms can be
achieved by deletingλ from G′i andG′ms respectively.7 Let
G” i = G′i − λ andG”

ms = G′ms− λ . It can be proven that
λ is antichain. Therefore,TCG” i = del(G′i ,TCG′i

,λ ) and
TCG”

ms
= del(G′ms,TCG′ms

,λ ). To simplify notations, after

removing a null node, we still useG′i andG′ms to denoteG”
i

andG”
ms respectively.

- Merging reducible roles: In G′i (or G′ms, it can be proven
that for each node, there exists at most one different node
that is reducible with it. That is, reducible nodes are pair-
wise. LetVn beV ′i −Vi, the set of (new) nodes ofG′i which
are not found inGi . Each node ofVn is updated from an
affected node inGi (in α or in β ). Let Vo beVi ∩V ′i , the
set of (old) nodes ofG′i which are found inGi . Similarly,
Wn = V ′ms−Vms andWo = Vms∩V ′ms. When adding a privi-
lege into a role, the set of reducible node pairs are:

µ(u,v) = G′i(u,v)∧Vn(v)∧Vo(u)∧ (Pv = Pu),

ν(u,v) = G′ms(u,v)∧Wn(v)∧Wo(u)∧ (Pv = Pu).

When removing a privilege from a role, the set of reducible
node pairs are:

µ(u,v) = G′i(u,v)∧Vn(u)∧Vo(v)∧ (Pv = Pu),

ν(u,v) = G′ms(u,v)∧Wn(u)∧Wo(v)∧ (Pv = Pu).

Where µ is the set of reducible node pairs ofG′i and
ν is the set of reducible node pairs ofG′ms. We use

G(1)
h = (V(1)

h ,A(1)
h ) to denote the DAG after merging all

reducible nodes ofG′h (h = i,ms), whereG(1)
h andTC

G
(1)
h

can be obtained from:

V(1)
i = V ′i −{v|µ(u,v)}, (4)

7Since a graph is expressed by its arc set relation, a node ofG that is
not connected to any arc ofG is not in its arc set.



A(1)
i = {(x,y)|A′i(x,y)∧¬µ( ,y)}

∪{(x,u)|A′i(x,v)∧µ(u,v)}

∪{(u,y)|µ(u,v)∧A′i(v,y)}− µ , (5)

TC
G

(1)
i

= TCG”
i
− ({(x,v)|µ(u,v)∧TCG”

i
(x,v)}

∪{(v,y)|µ(u,v)∧TCG”
i
(v,y)}), (6)

V(1)
ms = V ′ms−{v|ν(u,v)},

A(1)
ms = {(x,y)|A′ms(x,y)∧¬ν( ,y)}

∪{(x,u)|A′ms(x,v)∧ν(u,v)}

∪{(u,y)|ν(u,v)∧A′ms(v,y)}−ν, (7)

TC
G

(1)
ms

= TCG”
ms
− ({(x,v)|ν(u,v)∧TCG”

ms
(x,v)}

∪{(v,y)|ν(u,v)∧TCG”
ms

(v,y)}). (8)

where G”
i = G′i ∪ {(u,v)|µ(v,u)} and G”

ms = G′ms∪
{(u,v)| ν(v,u)}. It can be proven that{(u,v)|µ(v,u)} and
{(u,v)|ν(v,u)} areTC-closed inG′i andG′ms respectively.
Therefore,

TCG”
i

= add(G′i ,TCG′i
,{(u,v)|µ(v,u)})

TCG”
ms

= add(G′ms,TCG′ms
,{(u,v)|ν(v,u)}).

The next step is to remove redundant arcs fromG(1)
i and

G(1)
ms.

- Eliminating redundancy: As we know, the insertion of
arcs into a minimal graph may induce new redundant arcs,
but it is not so for deletion. The possible steps of causing

redundant arcs inG(1)
i and G(1)

ms are the inserted compo-
nents expressed in formulae (4)-(7). LetC→U andC←U be
components, of (4) and (5) respectively. That is,

C→U = {(x,u)|A′i(x,v)∧µ(u,v)}.

C←U = {(u,y)|µ(u,v)∧A′i(v,y)}.

We can prove that (i) each arc ofC→U is not redundant

in G(1)
i and; (ii) the insertion of a non-redundant subset of

C←U will not induce any redundancy inG(1)
i . These prop-

erties can be used to reduce the operation cost and improve
efficiency.

Example 4.2 In domain Gb of Figure 1(ii), merging node
b9 to node b6 results in the deletion of{(b9,b8), (b9,b12),
(b10,b9)} and the insertion of{(b6,b8), (b6,b12),
(b10,b6)}. Thus, the set of redundant arcs in the result-
ing graph is{(b6,b8), (b7,b6)}. That is, the insertion of
C→U = {(b10,b6)} causes(b7,b6) to become redundant;
arc (b6,b8) of C←U = {(b6,b8), (b6,b12)} is redundant
and should not be inserted.

It can be proven thatC→U andC←U are antichains in

G(1)
i . The following steps are used to remove redundant

arcs inG(1)
i throughH.8

8Rather than usingH, we can also useH′ = G′i − {(v,x)|G
′
i (v,x) ∧

µ(u,v)} to computeRedC←U .

1. Let H = G(1)
i −C→U ∪C←U . ComputeTCH using

del() twice onC→U andC←U .

2. Find redundant arcs ofC←U in H:

RedC←U (u,v) = C←U (u,v)∧TCH(u,v).

3. InsertC =C←U −RedC←U into H and letH1= H∪C.
ComputeTCH1 = add(H,TCH ,C).

4. InsertC→U into H1 and letH2 = H1∪C→U . Here
TCH2 = TC

G
(1)
i

.

5. Find the redundant arcs ofH2,

RedH2(x,y)= H2(x,y)∧TCH2(x,u)∧C→U (u,v)∧TCH2(v,y).

6. LetG(2)
i = H2−RedH2 andTC

G
(2)
i

= TCH2.

7. Similary we can deriveG(2)
ms andTC

G(2)
ms

where redun-

dant cross arcs may exist.

3. Subsumption induced by merging roles.As shown in
Example 4.1, adding a new privilege into a node can gen-
erate new subsumptions on roles and therefore, require the
insertion of new arcs. In the case of adding a privilege, the
newly added arcs should start at the affected nodes and ter-
minate at unaffected nodes. These unaffected nodes have
the added privilege but are not ancestors of the affected

nodes. The set of new arcs to be inserted intoG(2)
i are:

Ins = {(x,y)|α(x)∧ (¬α(y))∧ (¬TC
G(2)

i
(x,y))

∧(Py⊂ Px)∧ (6 ∃u,v)(u 6= x∨v 6= y)

∧(Pv⊂ Pu)∧TC
G

(2)
i

(x,u)∧TC
G

(2)
i

(v,y)}.

It can be proven thatIns is antichain. LetG(3)
i beG(2)

i ∪ Ins

andTC
G(3)

i
= add(G(2)

i ,TC
G(2)

i
, Ins). The redundant arcs of

G(3)
i are:

Red
G

(3)
i

(x,y)=G(3)
i (x,y)∧TC

G
(3)
i

(x,u)∧Ins(u,v)∧TC
G

(3)
i

(v,y).

We therefore have the results:G(n)
i = G(3)

i −Red
G

(3)
i

and

TC
G

(n)
i

= TC
G

(3)
i

. Similarly,G(n)
ms andTC

G
(n)
ms

can be derived.

In the case of deleting a privilege, the added new arcs
should start with the unaffected nodes and terminate at af-
fected nodes. The steps of computingG(n)

i and G(n)
ms are

omitted here as they are quite similar to the case of adding
a privilege.

In the above process of inserting a privilege,add() (or
del()) can be called up to 6 times. The same measures hold
for the process of deleting a privilege.



Figure 3: Runtime: The core algorithmsadd() anddel() vs. recomputation

5 Experiments
As described in Section 3, the maintenance under dif-

ferent changes is based on the core algorithmsadd() and
del(). We conducted experiments to evaluate the efficiency
of these two algorithms. Our experiments were performed
on a Sun SPARC machine with Oracle 9.2. Random graphs
were generated to simulate the role graphs in distributed
applications. The reachability among nodes (roles) for a
graph was implemented as a transitive closure relation. We
focused on that a set of nodes (as percentages of vertices
in graphs) were added/deleted to/from random graphs. We
tested the performance of theadd() anddel() incremental
maintenance algorithms on maintaining transitive closures
in comparison to recomputation.

In Figure 3 the experimental result was plotted for
the algorithms on a random graph with 100 nodes, each
with an average degree of 10, and 500 edges. The in-
crement/decrement ranges from 50 edges (10%), to 250
edges (50%). Obviously, the incremental maintenance al-
gorithmsadd() and del() are orders of magnitude faster
than the recomputation algorithm (denoted as Static TC).
In contrast to the rapid growth in computation time with
respect to more edges in the graph, our incremental algo-
rithms remain almost constant time for more edges. Par-
ticularly, in our experiments, the recomputation algorithm
took from 49.73 seconds for an initial graph with 500 edges
to 4:14.05 minutes for a graph with 750 edges. We have
only plotted the execution time for StaticTC until the 20%
increment/decrement, because its execution time for larger
graphs are too large. In contrastadd() took 0.06–0.10 sec-
onds anddel() took 0.34–1.49 seconds.

6 Concluding Remarks
We have studied service-based interoperation in a multi-
domain environment. A centralized architecture is consid-
ered whereby a central party, called service provider, keeps
information about the sharable roles of all domains and the
accessibility relations on such roles. This information is
stored as a transitive closure of the global role graph. Ac-
cordingly, a user request for a given service first comes to

the service provider, which evaluates the authorization of
this request by checking if there is connection from the
user role to the domain role in the transitive closure. We
propose to support role hiding, which can enforce the secu-
rity and privacy of domains and can reduce the size ofGms,
lower the maintenance cost and diminish bottleneck at the
service provider. In order to obtain the maximal number
of access roles hiding from the service provider, a domain
must assign the roles linked by cross arcs carefully.

We have proposed maintenance algorithms for the tran-
sitive closure of the role graphs under various update oper-
ations. The maintenance results can be extended to mod-
els where there are multiple service providers that satisfy
acyclicity. The updates supported by our algorithms in-
clude the addition/deletion of a role, addition/deletion of a
cross arc, addition/deletion of a privilege into/from an ex-
isting role, addition/deletion of a domain to/from the ser-
vice, detection and deletion of redundant arcs, detection
and merging of reducible nodes, and checking for conflicts
on updates. Due to space limitation, many of them are not
included in this paper.
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