
Declaratively Producing Data Mash-ups

Sudarshan Murthy §

Applied Research Group, Wipro Technologies
53/1 Hosur Main Road, Bangalore 560068 India

sudarshan.murthy@wipro.com

David Maier

Department of CS, Portland State University
PO Box 751 Portland, Oregon 97207-0751 USA

maier@cs.pdx.edu

Abstract

Mash-ups extract data fragments from disparate
sources, and combine and transform the ex-
tracted fragments for display. Currently, mash-up
developers tend to employ ad hoc representations
for mash-up data, view mash-ups as applications,
and use imperative scripts to extract and trans-
form data fragments. These approaches can make
mash-up development hard, and the mash-ups’
run-time performance poor. We address these
concerns with our infrastructure to declaratively
produce data mash-ups. In this paper, we intro-
duce three parts of this infrastructure: Sixml, an
XML language to uniformly represent a con-
densed mash-up; Sixml DOM, a means to ma-
nipulate and reconstitute mash-up parts on de-
mand; and Sixml Navigator, an alternative path
navigator to reconstitute and format a mash-up
using queries in existing languages. We also pre-
sent the highlights of an experimental evaluation.

1. Introduction
A mash-up [13] combines, transforms, and displays data
from heterogeneous sources, likely using only fragments
of each source’s content. A mash-up can be an application
that consumes data from different sources, or it can be
data that includes content from other sources. This paper
focuses on data mash-ups.

Consider an application that allows individual review-
ers to comment on arbitrary regions of any document (not
just HTML). In this setting, a review report of comments
over all documents, along with the excerpt of each com-
mented region, would be a data mash-up because the ex-
cerpts come from different documents. Figure 1 shows a
review report that includes excerpts from PDF and Micro-
soft® (MS) Word fragments.

This paper describes parts of our mash-up infrastruc-
ture designed to address two problem areas in producing
mash-ups such as that in Figure 1: At design time, repre-

sent, organize, and augment references to a mash-up’s
source fragments; and at run time, easily and efficiently
extract the referenced fragments, combine the extracted
fragments with augmentations, and transform the combi-
nation to different forms (such as a review report).

We have used our infrastructure to build both map and
non-map mash-ups. In this paper, we use a non-map
mash-up (the review report) for illustration. The tool
Mash-o-matic [13] uses the same infrastructure to produce
map-based mash-ups .

For simplicity, we limit the discussion in this paper to
the XML model, but we have used the techniques dis-
cussed in the relational model as well.

Figure 1: A data mash-up (top) and its information sources

In the rest of this section, we illustrate the problems
we address in mash-up production. Section 2 gives an
overview of our solution. Sections 3, 4, and 5, describe
Sixml, Sixml DOM, and Sixml Navigator (three compo-
nents of our mash-up infrastructure), respectively. Section
6 presents the results of an evaluation, Section 7 briefly
reviews related work, and Section 8 concludes the paper.

Representation issues: A developer should be able to
use the schema most appropriate for his application. He

§ Work done at Portland State University

International Conference on Management of Data
COMAD 2008, Mumbai, India, December 17--19, 2008
©Computer Society of India, 2008

should be able to associate any part of the mash-up’s data
with external sources, and optionally populate parts from
external sources. For example, Figure 2 shows a plausible
comment structure. In this structure, the developer should
be able to indicate that the comment is about an external
fragment, indicate that the run time value of the attribute
excerpt is the text excerpt of the commented region, and
allow the commenter to reference other external sources
in the comment text.

<Comment excerpt="">
 Contradicts prior work
</Comment>

Figure 2: A barebones comment structure

Currently, there is no means of expressing such struc-
tures: XLink [22] provides a means to express links in
XML documents, but it does not support transclusion [16]
(that is, inclusion by obtaining data via a reference to the
source). Active XML [1] supports transclusion from web
services, but only into elements, not into parts such as
attributes.

Run-time issues: A mash-up needs to extract, com-
bine, and transform external data at run time, but the cur-
rent suite of XML tools do not allow integrated access to
referenced fragments. For example, a developer can use
the Document Object Model (DOM) [4] or use an XPath
expression [23] to access document parts (such as the
attribute excerpt), but neither DOM nor XPath can auto-
matically assign the excerpt of a referenced fragment to
any part of an XML document. Thus, each developer
needs to implement the procedures to extract data from
heterogeneous sources.

Tasks such as listing comments in order of the page
containing the commented regions (or computing the
number of comments in each page) require information
that exists in the context of a referenced fragment, but is
not explicit in the fragment. Currently, there is no means
of representing and obtaining context information from
referenced fragments.

Development issues: If excerpts and context informa-
tion (such as page number) are available in the XML
document, a mash-up can be easily and efficiently con-
structed, manipulated, and transformed using existing data
management techniques. For example, with appropriate
changes in representation, comments structured as in Fig-
ure 2 can be declaratively transformed to the HTML re-
view report of Figure 1 using XSLT templates (such as
those shown in Figure 11).

However, developers tend to view mash-ups as appli-
cations, and use imperative client-side scripts (for exam-
ple, JavaScript [6] code running inside a web browser) to
extract, combine, and transform data. Also, developers
frequently implement their own version of common data-
base operators such as sort and aggregate. This approach
can increase development effort and hurt a mash-up’s run-
time performance.

2. Solution Overview
Our infrastructure to produce data mash-ups provides
declarative solutions to the problems illustrated thus far,
and allows developers to fully exploit the XML tools at
their disposal. We first describe a conceptual approach to
producing mash-ups, and then introduce the parts of our
infrastructure.

A conceptual approach: Figure 3 shows the three
steps in the conceptual mash-up production process. Dot-
ted arrows indicate data flow and solid arrows indicate
control flow. The boxes indicate process steps, likely per-
formed cooperatively by an application developer and an
application user. (For simplicity, we use only the term
developer in the following paragraph.)

Figure 3: The mash-up production process

In the Collect and Classify step, the developer collects
references to different data fragments, creates structures
over the collected references, and elaborates the collected
data. For example, the developer defines the comment
structure; a reviewer creates comments, adds references to
commented regions, and supplies comment text. A mash-
up produced in this step is in a condensed form because it
does not yet include data from each referenced source.

In the Extract and Combine step, the developer reconsti-
tutes the condensed mash-up data by extracting the vari-
ous external data and combines the extracted data with the
data added in. In the Transform step, the developer formats
the reconstituted data by transforming it to match display
needs. For example, the developer transforms the recon-
stituted comment data to an HTML review report.

We aim to help a developer easily and efficiently pro-
duce each of the three conceptual forms of data mash-ups:
condensed, reconstituted, and formatted.

The mash-up infrastructure: Figure 4 shows a refer-
ence model for our mash-up infrastructure. Arrows denote
inter-module dependency. A gray module is an existing
XML query processor. Modules filled with horizontal
lines are parts of our infrastructure described elsewhere.
The module filled with vertical lines uses our infrastruc-
ture. The modules with clear background are our new
contributions and are described in this paper.

Sixml (pronounced 'siks-m&l) [10] is an XML lan-
guage to represent a data mash-up. It provides a uniform
means to associate parts of an XML document with exter-
nal data fragments, including a way to declaratively spec-
ify that a part is populated with external data.

We call a reference to an external fragment a mark [3].
XML content associated with a mark is superimposed

Collect and Classify Extract and Combine

Transform Docs DBMS

Services Services

information (SI), because the use of a mark has the effect
of overlaying new information (content and structure) on
existing information fragments.

Figure 4: A reference model for the mash-up infrastructure

Sixml is SI represented as XML. A Sixml document is
an XML document some of whose parts are associated
with marks using instances of element types we define.
Section 3 describes Sixml.

Sixml DOM is an extension of DOM to manipulate
Sixml documents at run time. In Sixml DOM, if the value
of a part (such as an attribute and text) of a document is
declared to be the excerpt from a mark, it will be so popu-
lated, when that part is accessed. The external value is
retrieved automatically and on demand (that is, when the
value is first accessed). Section 4 describes Sixml DOM.

The Sixml Navigator is an alternative path navigator
for use with traditional query processors to combine XML
content with data retrieved from marks, and to query the
combined bi-level information using existing languages
unchanged. For example (as shown in Figure 11), with the
Sixml Navigator, the review report mash-up can declara-
tively include the page number of each commented re-
gion. Section 5 describes the Sixml Navigator.

Using our infrastructure, a developer prepares a con-
densed form of a mash-up using Sixml; reconstitutes the
mash-up using Sixml DOM; and reconstitutes and formats
the mash-up with traditional query processors that use the
Sixml Navigator. In our approach, little or no develop-
ment effort is needed to express the use of marks and to
extract data from marks. A mash-up executes more effi-
ciently because external data is obtained on demand and
because the amount of interpreted code is lower. (Our
components are compiled to executables.)

We now briefly discuss the parts of our infrastructure
not discussed in this paper. SPARCE [15] is our middle-
ware to interact with arbitrary mark types. Thus far, we
have used SPARCE to support marks of the following
types: HTML, PDF, XML, MS Office applications, and
several audio and video formats. Support for other types
can be easily added. The bulk accessor [14] efficiently
retrieves excerpts and other information from a large
number of marks. The cloaker selectively hides parts of
data from Sixml Navigator so that certain classes of que-
ries execute more efficiently.

3. Preparing Condensed Mash-ups
A developer prepares a condensed form of a mash-up us-
ing Sixml, our language to represent a data mash-up. This

process includes determining the overall structure for the
mash-up, and determining which parts of the mash-up are
associated with marks and which parts are reconstituted at
run time using data obtained from marks.

Encoding how a mark is associated with a mash-up
part is a key problem in representing a mash-up. The en-
coding should be amenable to validation using standard
schema constructs, it should not constrain the types of
content with which marks are associated, and its serializa-
tion should result in mark up that is uniform and compre-
hensible. One encoding solution is to develop conventions
(for example, use comments with specific structure and
contents) to encode the association, but conventions can-
not be validated using standard schema constructs.

We choose to encode a mark associated with a mash-
up part as an element because, as we will soon illustrate,
an element satisfies all three of the aforementioned encod-
ing needs.

Mark associations: A mark association is an element
of a type Sixml defines [10] to associate marks with
mash-up parts. The mark-association element types are
defined using XML Schema [25], and belong to the
namespace http://schema.sixml.org. In this paper, we
use the prefix sixml with this namespace, but, unless
needed, omit namespace information from the main text.
Also, for simplicity, we give an instance the same name
as its type, and describe the types using only instances.

Marks may be associated with six kinds of mash-up
content: element, attribute, text, CDATA, comment, and
processing instruction (PI). Mark association element
types are defined for each of these kinds, but, we present
only the types related to elements, attributes, and text.
<Comment excerpt="" xmlns:sixml="http://schema.sixml.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <sixml:TMark>Contradicts prior work
 <sixml:Descriptor xsi:type="sixml:XPointer">
 <pointer>http://www.w3.org/#element(/1/2)</pointer>
 </sixml:Descriptor>
 </sixml:TMark>

 <sixml:AMark sixml:target="excerpt" sixml:valueSource="true">
 <sixml:Descriptor xsi:type="sixml:SPARCE">
 <Agent>AcrobatAgents.PDFAgent</Agent>
 <Doc location="file://c:/ride-dom-final.pdf"/>
 <Subdoc page="3" startWord="395" endWord="439"/>
 </sixml:Descriptor>
 </sixml:AMark>

 <sixml:EMark>
 <sixml:Descriptor xsi:type="sixml:SPARCE">
 <Agent>OfficeAgents.MSWord</Agent>
 <Doc location="c:\abc.doc"/>
 <Subdoc startChar="45" endChar="53"/>
 </sixml:Descriptor>
 </sixml:EMark>

</Comment>

Figure 5: A condensed mash-up represented using Sixml

Figure 5 shows the data of Figure 2 represented as a
Sixml segment. It has a mark association each for an ele-
ment, an attribute, and text content. The element EMark
associates an MS Word mark with the element Com-
ment. The AMark associates a PDF mark with the attrib-

SPARCE Bulk Accessor

Sixml Navigator Sixml DOM

Mash-up Application

Sixml

XPath Processor

Cloaker

XSLT and XQuery Processors

ute excerpt (with the help of the AMark attribute tar-
get). The TMark associates a mark with the text content it
contains. (The variety of marks used in the document
serves to illustrate different aspects of our infrastructure.
In reality, the elements EMark and the AMark are likely
to use the same mark.)

Through the attribute valueSource of a mark associa-
tion, a mash-up developer declaratively specifies that an
attribute’s or a text content’s value is reconstituted at run-
time using marks. For example, by setting valueSource
to true for the AMark in Figure 5, the developer declares
that the run-time reconstituted value of the attribute ex-
cerpt is the text excerpt retrieved using the associated
mark. However, the run-time value of the text content
wrapped in TMark is not reconstituted from the associated
mark because the attribute valueSource is missing for
that mark association. (The default value of valueSource
is false.) Section 4 further discusses this attribute.

Figure 5 associates one mark each with an element, at-
tribute, and text, but any number of marks may be associ-
ated with any of the aforementioned six kinds of content.
(A schema can control the number of mark associations.)
For example, another EMark (AMark) added to Com-
ment associates another mark with Comment (excerpt).
We omit discussing multiple mark associations with text,
but the type definitions online [10] cover that case.

Typed mark associations: In Figure 4, a mark asso-
ciation has the same name as its type, but we provide two
means to give the association any valid XML name: As-
sociate a schema (available online [10]) with a mark asso-
ciation, or add the attribute sixml:type to denote the type
of the mark association. For example, the value
"sixml:EMark" for the new attribute means the associa-
tion is of type EMark. The type of a mark association that
does not use either of these alternatives is suggested by
the element’s qualified name (as in Figure 5).

Mark descriptors: Each element named Descriptor
in Figure 5 describes the external fragment a mark refer-
ences. This element, called a mark descriptor, typically
includes information such as the location of an external
document and the region (or regions) of interest within the
document. Generally, the constituents of a mark descrip-
tor vary according to the linking protocol (such as
SPARCE or XPointer [24]) used to identify the external
fragment, and also according to the type of information
linked (such as PDF and XML). SPARCE is mentioned in
Section 2. An XPointer pointer identifies regions of an
XML document.

A mark descriptor is of the abstract type Descriptor.
This type is typically derived once for each linking proto-
col. We do not constrain the internal structure of a mark
descriptor. Figure 5 shows instances of the example de-
scriptor types we have defined for SPARCE and
XPointer. The attribute xsi:type in each descriptor gives
the qualified name of the instantiated type. (XML
Schema, not Sixml, requires the use of this attribute.) The
elements EMark and AMark use SPARCE descriptors. In

these descriptors, the sub-element Agent names the soft-
ware component (called a context agent) that SPARCE
uses to access external fragments. The descriptor in
EMark references the Characters 45–53 in an MS Word
document. The descriptor in AMark corresponds to the
span of words 395–439 on Page 3 of a PDF document.

The descriptor in TMark uses the XPointer element()
scheme to address the second child (the element body) of
the document element (html) in the XHTML document at
http://www.w3.org/, the home page of W3C.

4. Reconstituting Mash-ups
We now present an overview of Sixml DOM, a means of
creating, manipulating, and reconstituting (all at run time)
a condensed mash-up. Figure 6 shows a simplified class
diagram for Sixml DOM. DOM defines the shaded classes
and the relationships among those classes.

A developer can use DOM to manipulate a condensed
mash-up, but that approach has several disadvantages:
DOM does not automatically reconstitute mash-up parts;
it requires the developer to be aware of mark-association
schemas; and, to create mark associations, the developer
would need to know where and how the mark-association
elements should be inserted into the DOM tree. Sixml
DOM addresses problems such as these without compro-
mising performance.

Figure 6: A simplified class diagram for Sixml DOM

Sixml nodes and documents: A node with which
marks may be associated is called a Sixml node, and is
represented by the class SixmlNode. A Sixml node that can
contain a value is a Sixml value node, represented by
SixmlValueNode. Per DOM, nodes of the following types
are allowed to have a value: attribute, text, CData, com-
ment, and PI.

Marks may be associated with elements and the
aforementioned value node types, but, for simplicity, we

MarkAssociation
valueSource

descriptor

co
nte

xt

Element

1 *
valueExpression

mark

createMarkAssociation(name, descriptor)
SixmlDocument

id
text

Mark

XPointer

Document name
value

Node

SixmlElement SixmlAttribute

childNodes

Element Attr

ownerDocument1
*

appendMarkAssociation(association)
getMarkAssociationsByName(iname)

SixmlNode

attributes

1
documentElement

1

target

markAssociations

1

*
createMark(descriptor)
descriptorType

MarkFactory

Creates

XPointerFactory

Creates

MarkContext MarkDescriptor
type

SixmlText

Text

1

*

SixmlValueNode

limit this discussion to elements, attributes, and text. The
classes SixmlElement, SixmlAttribute, and SixmlText represent
these node types, respectively. These classes respectively
extend the DOM classes Element, Attr, and Text. In addi-
tion, SixmlElement extends SixmlNode; SixmlAttribute and
SixmlText extend SixmlValueNode.

The class SixmlDocument extends the DOM class
Document. It overrides the factory methods for the types of
nodes with which marks may be associated. For example,
it overrides the method createAttribute to create an instance
of the class SixmlAttribute instead of the DOM class Attr.

Mark associations: A mark association pairs a target
Sixml node with a mark and assigns a name to the pairing.
A node may be associated with different marks using the
same name, but a name may be used only once for a node-
and-mark pairing. A node may be associated with any
number of marks, but the node’s schema determines the
number of marks with which a node may be associated.
The class MarkAssociation represents a mark association.

A mark association has no child nodes. It is attached
to a target node, but it is not a child of the target. This
relationship between a mark association and its target is
similar to the relationship between an attribute and its
owner element (as defined in DOM).

A mark association is created using the SixmlDocument
factory method createMarkAssociation. The mark associa-
tion thus created is added to the target node using the
method appendMarkAssociation in SixmlNode. Methods to
add a mark association at a specific location in the list of
mark associations, to replace a mark association, and to
remove a mark association are also defined.

The mark associations for a Sixml node can be re-
trieved using the relationship markAssociations. Mark asso-
ciations with a specific name can be retrieved using the
method getMarkAssociationsByName.

Marks and mark descriptors: The class Mark models
a mark created from a mark descriptor (included in a mark
association). A mark is created using a mark factory cho-
sen based on the type of the mark’s descriptor. (As seen in
Figure 5, the attribute xsi:type gives the descriptor type).
Typically, a mark factory class and a mark class are im-
plemented for each linking protocol. Figure 6 shows the
mark factory class and mark class for XPointer pointers.

The class MarkDescriptor models a mark descriptor
(that is, the element Descriptor in Figure 5). Though re-
trieved from a mark association, at run time, a descriptor
element does not have a parent. This constraint allows an
implementation (if it chooses) to return the same descrip-
tor element when a mark is used more than once in a
document.

Mark context: A mash-up occasionally uses informa-
tion besides the text excerpt of an external fragment. For
example, generating a review report in which comments
are listed in page order, needs placement information (not
text excerpt), for each commented region.

In general, a mash-up may use the text excerpt, page
number, font name, and any other information available in

the context of a mark (that is, in the original setting of the
referenced fragment).

What constitutes context information varies across
mark types, and even across marks of the same type. For
example, an audio mark has duration, but a PDF mark
does not. An MS Word mark to text in a table has a row
number; an MS Word mark to text not in a table does not.

We represent context information for a mark as a hier-
archy: A context kind collects related information (includ-
ing sub-kinds). Information at the leaf level of a context
hierarchy is a context element. This hierarchical represen-
tation allows the context information for any mark to be
modeled as XML. The root of context information is al-
ways the element sixml:Context, but a mark implemen-
tation determines the internal structure and content of this
element. Figure 7 shows the partial context information
retrieved from the PDF mark referenced by the element
EMark in Figure 5. The elements Content, Presenta-
tion, and Placement denote context kinds. Their sub-
elements represent context elements. The text content of a
context element is that element’s value.

The class MarkContext represents the context informa-
tion retrieved from a mark. Sixml DOM obtains context
information on demand from marks. Each mark imple-
mentation is responsible for retrieving context informa-
tion from its marks, possibly using appropriate applica-
tions (such as Adobe® Acrobat® for PDF marks).
<sixml:Context>
 <Content>
 <Text>provide … system</Text>
 </Content>
 <Presentation>
 <FontName>Times New Roman</FontName>
 <FontSize>11</FontSize>
 </Presentation>
 <Placement>
 <Page>3</Page>
 </Placement>
</sixml:Context>

Figure 7: Partial context information for a PDF mark

Reconstituting a node’s value: A mark association
attached to a value node (such as an attribute and text
content) may have the attribute valueSource. A target
node’s value is reconstituted at run time, if this attribute is
true for at least one of the mark associations of the node.
Specifically, the reconstituted value of a node is the con-
catenation of the values obtained from each of its mark
associations for which valueSource is true.

The attribute valueExpression of a mark association de-
cides which context value is contributed to a reconstituted
node. If this attribute is missing, or is empty, the text ex-
cerpt (obtained from the property text of Mark) is the con-
tributed value. Otherwise the value of this attribute is an
XPath expression over the context information. For ex-
ample, the path expression "Placement/Page" over the
data in Figure 7 contributes the value "3". The element
AMark in Figure 5 assigns a mark’s text excerpt to its
target attribute because valueExpression is missing.

Reconstituting a mash-up: Conceptually, a con-
densed mash-up is reconstituted in three steps. First, the
mash-up document is represented as a tree in DOM. This
step represents mark associations as regular elements.
Second, each mark association element is attached to it
target node. Third, each node that derives its value from
marks is reconstituted (lazily).

For example, Figure 8 shows the DOM tree (the result
of Step 1) for the condensed mash-up in Figure 5. Attrib-
ute names are prefixed by the symbol @; content of a text
node is placed in quotes. A solid edge denotes a parent-
child relationship; a dotted edge indicates a non-child
relationship. The mark association elements are shown as
children of the document element Comment. Mark de-
scriptors are omitted for brevity. The value of the attribute
excerpt is empty because DOM is unaware of mark asso-
ciation semantics.

Figure 8: A simplified DOM tree for the data in Figure 5

Figure 9 shows the Sixml DOM tree generated (after
Step 2) from the DOM tree in Figure 8. A dashed line
connects a mark association node with its target node. The
element EMark is now a mark association attached to
Comment. AMark is a mark association of the attribute
excerpt. The text node previously a child of TMark is
now a child of Comment and TMark is a mark associa-
tion attached to the text node. The reconstituted value of
excerpt (after Step 3) is shown partially.

The white nodes in Figure 9 represent reconstituted
data. The gray nodes represent mark associations and their
content.

Figure 9: A simplified Sixml DOM tree for Figure 5

Serializing a reconstituted mash-up: Serializing a
reconstituted mash-up document condenses the document.
Sixml DOM uses a special serializer to serialize a docu-
ment, because mark associations (for example, the gray
nodes in Figure 9) are not visible to the DOM serializer.

The Sixml DOM serializer can place the elements
EMark and AMark anywhere in the list of the children of
the parent element, but it must preserve the order of the
associations within a target node. For example, EMark
and AMark in Figure 9 may be serialized in any order, but
the order of the mark associations of the attribute excerpt

must be preserved. The tree ordering of mark associations
is necessary for a reconstituted node because the value of
such a node is the concatenation of the string values ob-
tained from its mark associations (and string concatena-
tion is not commutative.)

To ensure proper serialization, the Sixml DOM serial-
izer always writes mark associations for a target node in
tree order. Also, when serializing an element, it first seri-
alizes all child nodes (as in DOM) and their mark associa-
tion, followed by the mark associations of each attribute
in tree order, followed by the mark associations of the
element itself. For example, Figure 5 is a serialization of
the Sixml DOM tree in Figure 9.

Using Sixml DOM: A developer can manipulate both
XML and Sixml documents using Sixml DOM, because
Sixml DOM supports the complete DOM functionality
and it exposes the complete DOM interface. Also, he can
open a condensed mash-up using Sixml DOM, but access
the reconstituted parts (for example, the white nodes in
Figure 9) using only the DOM interface. The developer
needs to use the Sixml DOM interface only to explicitly
retrieve mark descriptors and context information.

The procedure WriteComment (to print comment de-
tails) in Figure 10 illustrates the ease with which a mash-
up can be manipulated and reconstituted using Sixml
DOM. The parameter c is of type SixmlElement so that
mark context can be explicitly accessed. Line 2 uses the
Sixml DOM interface to retrieve context information from
the first mark associated with the input comment. Line 3
retrieves the context element named Page, and Line 4
prints the page number. Line 5 uses the DOM interface to
retrieve the reconstituted excerpt of the commented re-
gion, and Line 6 prints the added comment text. The exe-
cution of this procedure can be traced starting with the
node Comment in Figure 9, and using the context infor-
mation in Figure 7.
1. procedure WriteComment(SixmlElement c)
2. XmlElement ctxt = c.markAssociations[0].context
3. XmlNode page = ctxt.getElementsByTagName("Page")[0]
4. Writeln("Page: ", page.firstChild.nodeValue)
5. Writeln("Excerpt: ", c.getAttribute("excerpt"))
6. Writeln("Comment: ", c.firstChild.nodeValue)

Figure 10: Printing reconstituted comment details

5. Formatting Mash-ups
In this section, we present a means of reconstituting and
formatting a condensed mash-up using declarative queries
in existing languages.

5.1 The Need for Declarative Querying

The procedure in Figure 10 illustrates that Sixml DOM
provides a developer an easy way to reconstitute a mash-
up, but its imperative approach can be both tedious and
inefficient for tasks such as printing comments in order of
the page containing the comments.

“Contradicts…” A
“excerpt”

@excerpt

Comment

TMark

true

@target

EMark

“”

AMark

@valueSource

A@valueSource

“provides…”

“excerpt”

@excerpt

true

@target

Comment

EMark

AMark

TMark

“Contradicts…”

An alternative approach is to use queries. The benefit
of this approach is that XML query languages tend to be
declarative, and XML query processors can process large
amounts of data efficiently.

For example, Figure 11 shows a pair of XSLT tem-
plates to format condensed comment data as an HTML
review report sorted by page number. Key parts of the
template are bolded. The template that matches elements
named Comment is similar to the procedure in Figure 10.

The template that matches the root node declaratively
invokes the template for each Comment, in order of the
page number containing the commented regions. (Section
5.2 discusses retrieving page number.) An equivalent im-
perative procedure (with or without our infrastructure)
would need more development effort, and likely executes
slower, especially if implemented as a client-side script.

The templates in Figure 11 use XSLT as is (that is, no
feature specific to bi-level querying is used), and they
access context information as if it is contained in the input
document (though it is not, as evidenced in Figure 5).
<xsl:template match="/">
 <xsl:apply-templates select="//Comment">
 <xsl:sort
 select="sixml:EMark/sixml:Context/Placement/Page"/>
 </xsl:apply-templates>
</xsl:template>

<xsl:template match="Comment">
 <P>
 <xsl:value-of select="concat('Page: ',
 sixml:EMark/sixml:Context/Placement/Page)"/>
 </P>
 <P><xsl:value-of select="concat('Excerpt: ', @excerpt)"/></P>
 <P><xsl:value-of select="concat('Comment: ', text())"/></P>
</xsl:template>

Figure 11: Formatting a condensed mash-up using XSLT

5.2 Expressing Bi-level Queries

We call queries such as those in Figure 11 bi-level queries
because they work on bi-level information, which is a
combination of reconstituted mash-up parts and informa-
tion from the context of referenced external data. We now
show how bi-level queries over a mash-up are expressed
in existing languages without using language extensions.

Bi-level queries in XPath: Any approach to facilitat-
ing bi-level queries must provide access to marks and
mark contexts. Also, the approach should make query
expression easy and aid efficient query execution.

One approach is to use the XPath data model (XDM)
[26] as is. For example, the Sixml data in Figure 5 would
be represented as a tree similar to that in Figure 8. In this
approach, the simple expression ./sixml:EMark navi-
gates from an element to mark association, but navigation
from an attribute to mark associations requires the expres-
sion ./sixml:AMark[@target=$name], where $name
is a variable bound to the name of the target attribute.
However, creating variable bindings requires the use of
XSLT or XQuery, making query expression hard.

Another approach is to extend XDM by attaching
mark associations to target nodes (as in Sixml DOM), and

introduce a new axis marks to navigate from a node to its
marks, and a function context to access mark context. This
approach extends both XDM and the XPath language.

Our approach is to extend only XDM as follows:
1. Allow child elements for any Sixml node.
2. Like Sixml DOM, attach a mark association to its tar-

get Sixml node, but unlike Sixml DOM, make a mark
association a child of its target node.

3. Unlike Sixml DOM, represent a mark descriptor and
mark context as children of a mark association.

4. Like Sixml DOM, reconstitute a Sixml node’s value
based on the attribute valueSource in the attached
mark associations.
Extensions 1 and 2 allow the mark associations for a

Sixml node to be selected simply by following the child
axis. For example, the mark associations for an attribute
can be selected using the simple XPath expression ./*.

Extension 3 allows the use of the child axis to select
mark descriptors and contexts. For example, the expres-
sion sixml:EMark/sixml:Context/Placement/Page
selects the context element containing the page number
for a commented region.

Extension 4 allows easy access to reconstituted data.
For example, the value of the attribute returned by the
expression @excerpt executed in the context of the ele-
ment Comment would be the text excerpt of the corre-
sponding commented region.

Bi-level queries in XSLT and XQuery: Both XSLT
and XQuery [27] only provide ways to manipulate parts
of an XML document already selected using XPath ex-
pressions. (For example, see Figure 11.) Thus, a mash-up
can be formatted in these languages without using exten-
sions as long as path expressions are executed over a tree
represented in our extended XDM.

5.3 Executing Bi-level Queries

We now give an overview of our architecture (shown in
Figure 12) for a bi-level query processor, based on an
alternative path navigator called Sixml Navigator.

In our architecture, an XPath processor is composed of
two classes: XPathNavigator defines an abstract path navi-
gator to traverse a document tree. XPathEvaluator uses a
path navigator to evaluate an expression.

For example, to evaluate the expression /Comment,
the XPath evaluator (evaluator for short) first moves the
path navigator (navigator for short) to the root node of the
document tree. It then moves the navigator to the first
child of the root node, then to the next sibling of the first
child, and so on until the navigator reports an element
Comment, or until navigation fails.

In this approach, the navigator freely determines what
nodes are exposed to the evaluator: It can report non-
existent nodes, and it can omit existing nodes. In Figure
12, the class SixmlNavigator is a navigator that exercises

this freedom. In the rest of this section, we describe how
SixmlNavigator supports bi-level querying.

Figure 12: Architecture of a bi-level query processor

Navigating mark associations, descriptors, and
context: We support access to mark associations, descrip-
tors, and contexts using the XDM extensions outlined in
Section 5.2. Specifically, when the evaluator seeks child
elements of a Sixml node, we include the mark associa-
tions attached to that node. Also, when the evaluator seeks
the child elements of a mark association, we include the
mark descriptor and context information.

We use the bulk accessor [14] mentioned in Section 2
to retrieve context information from a mark. The bulk
accessor improves the scalability of the bi-level query
processor by efficiently retrieving context information
from a large number of marks, or from marks into a large
number of documents. The bulk accessor uses the class
XMLContextTransformer to transform context information
into the XML model. For brevity, we omit the details of
the bulk accessor and the XML context transformer.

Cloaking data: Presenting a mark association as a
child of its target can reduce the performance of SI-only
queries (that is, queries that examine and return only re-
constituted data such as the attribute excerpt, and the
added data such as comment text). For example, the ex-
pression text(), intended to return only the comment
text, also returns mark associations because they are rep-
resented as child nodes of the comment text. Eliminating
mark associations requires the use of XSLT or XQuery
because XPath cannot remove a child node from a result
node. However, using XSLT or XQuery can slow down
execution because both languages always construct new
result nodes. Also, when evaluating this expression, the
navigator unnecessarily visits the EMark element.

We use the notion of query scope, modeled by the
property scope in class SixmlNavigator, to improve the per-
formance of SI-only queries (and other classes of queries
we omit for brevity). When query scope is SI, we omit
mark associations from navigation, thus examining and
returning only SI nodes. When the scope is Associations,
we navigate mark associations, but leave out the con-
tained mark descriptors. When the scope is Descriptors,
we include mark descriptors in the navigation.

Cloaking makes it easy to run ad hoc queries and to
perform data-exploration activities. The module Cloaker
in Figure 4 cloaks data based on query scope.

Bi-level queries in XSLT and XQuery: As stated in
Section 5.2, both XSLT and XQuery provide ways to ma-
nipulate data already selected using XPath expressions.
Thus, each XSLT and XQuery processor has an embed-
ded XPath evaluator. In our approach, XSLT and XQuery
bi-level queries are executed simply by embedding an
XPath evaluator that uses an instance of SixmlNavigator.

6. Evaluation
We have evaluated Sixml by using it to define the schema
of applications such as the Superimposed System Informa-
tion Browser (SSIB) [11] to manage information related
to networked computers; the Superimposed Scholarly
Review System (SISRS) [12], a tool to assist in reviewing
scholarly publications such as conference papers; and
Mash-o-matic [13], a utility to build map-based mash-ups.
The running example in this paper is based on SISRS.

We have evaluated Sixml DOM and Sixml Navigator
by implementing them, using the implementations to pro-
duce mash-ups in applications such as SSIB, SISRS, and
Mash-o-matic, and by running experiments.

We present here only the implementation and experi-
mental evaluation of Sixml DOM and Sixml Navigator.

6.1 Implementation

Sixml DOM and Sixml Navigator are implemented using
the .NET Framework [17]. The shaded classes in Figures
5 and 11 are included in the .NET Framework. We have
implemented the other classes in C#.

We have implemented Sixml DOM using two alterna-
tive strategies: extending DOM and revising DOM. The
extension strategy implements uses inheritance. In this
approach, both DOM and Sixml DOM are simultaneously
available. Nodes can be created using the document
classes Document and SixmlDocument, but marks can be
associated only with a node created from SixmlDocument.
Sixml nodes can be accessed using DOM interfaces, but
mark associations are accessible only with Sixml DOM.

The revision strategy adds Sixml capability to DOM
from the ground up. For example, the methods of the class
SixmlNode are added directly to the DOM class Node. In
this approach, all XML documents are Sixml documents.

The extension approach does not require access to the
source code of the base implementation, but run-time effi-
ciency can vary based on the availability of source code.
The revision approach requires access to the source of the
base DOM implementation, but the run-time performance
can be better than the extension counterpart.

We have just one implementation of Sixml Navigator,
but three implementations of Sixml DOM: an extension-
strategy implementation based on Microsoft’s distribution
of .NET; and an extension-strategy implementation and a
revision-strategy implementation based on Mono’s distri-
bution (Version 1.2.5.1) [8] of .NET.

We refer to the three Sixml DOM implementations as
Microsoft Extension (MSX), Mono Extension (MNX), and

BulkAccessor
transform(contextInfo)
XMLContextTransformer

scope
SixmlNavigator

0..1
*

Produces

apply(styleSheet)
XSLTProcessor

Node Evaluation Context
1 *

Embeds

Source *
*

moveToRoot()
moveToFirstChild()
moveToNextSibling()
moveToPreviousSibling()
moveToParent()

XPathNavigator

evaluate(expression)
XPathEvaluator

1 *
Uses

SixmlNode

Mono Revision (MNR). We refer to the base DOM im-
plementation for MSX as Microsoft Base (MS), and refer
to the base of MNX and MNR as Mono Base (MN). We
have the source code for MN, but not for MS. We used
the same source code for MSX and MNX and adapted
much of that source code in MNR.

We had initially implemented only the MSX version
of Sixml DOM, but its performance overhead (compared
to its base, MS) seemed excessive. We then implemented
MNX and MNR to test if the overhead can be reduced.

6.2 Experiments

All implementations were compiled using MS Visual Stu-
dio 2005. All experiments were run using the MS distri-
bution of the .NET Common Language Runtime (Version
2.0) running on an Intel® Core Duo 1.66 GHz processor
with 1 GB of main memory. The operating system was
MS Windows XP (Service Pack 2).

Table 1 summarizes the Sixml documents used in the
experiments. The first set of documents comes from the
SISRS application, the second set comes from the SSIB
application. The number against each document indicates
the size scale factor. For example, the document SISRS-2
has twice the number of mark associations as SISRS-1.
SSIB-8 has eight times the number of mark associations
as SSIB-1. The third column lists the number of external
documents each Sixml document references. The column
‘Total’ shows the number of external fragments refer-
enced. SISRS documents reference PDF fragments; SSIB
documents reference MS Excel fragments.
Table 1: Sixml documents used in the experiments
 #Mark associations

Sixml
doc.

Size
(MB)

#External
docs.

EMark AMark TMark Total

SISRS-1 0.2 53 1,908 53 0 1,961

SISRS-2 0.4 106 3,816 106 0 3,922

SISRS-4 0.8 213 7,668 213 0 7,881

SISRS-8 1.6 426 15,336 426 0 15,762

SSIB-1 3.2 18 0 25,922 12,961 38,883

SSIB-2 6.5 18 0 51,850 25,925 77,775

SSIB-4 13.0 18 0 103,710 51,855 155,565

SSIB-8 26.1 18 0 207,426 103,713 311,139

6.2.1 Sixml DOM

In general, MSX has the fastest response, and MNX the
slowest response. MSX is faster because its base, MS, is
faster than MN, the base of MNX and MNR [7]. MNR is
faster than MNX because it does not have the inheritance
overheads of MNX, and Sixml DOM capability is added
at optimal locations within the base implementation.

Scalability: In this experiment, we test how the run-
time performance scales up with the number of mark as-
sociations. Here, we open each document and traverse all
mark associations in the document (using the relationship

markAssociations in Figure 6). We then compute a speed
scale factor for each document in a set as the ratio of the
time to traverse mark associations in the document to the
time to traverse mark associations in the first document in
the set (SISRS-1 and SSIB-1).

Figure 13 plots the speed scale factor for both SISRS
and SSIB datasets for each Sixml DOM implementation.
For example, in MSX, traversing the mark associations in
SISRS-2 takes 2.3 times the time needed to traverse the
mark associations in SISRS-1. In MNR, the speed scale
factor for SISRS-2 is only 2. (SISRS-2 has twice the num-
ber of mark associations as SISRS-1.)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

SISRS-2 SISRS-4 SISRS-8 SSIB-2 SSIB-4 SSIB-8
Sp

ee
d

sc
al

e
fa

ct
or

MSX

MNX

MNR

Figure 13: Speed scale factor to traverse mark associations

The speed scale factor of MNR is always less than or
equal to that of MSX, for any document. We also com-
puted the speed scale factors to traverse SI. The trends
were similar to that for mark associations.

Savings from using Sixml DOM: Using Sixml DOM
to manipulate a Sixml mash-up at run time has several
benefits (such as automatic reconstitution), but we wanted
to test if using Sixml DOM also saves time over DOM.

56%

51%

46%
50%

45%

35% 34%

39%

55%
51%

46%

51%

0%

10%

20%

30%

40%

50%

60%

SISRS-1 SISRS-2 SISRS-4 SISRS-8Sa
vi

ng
s

fro
m

 u
si

ng
 S

ix
m

l D
O

M
 to

 a
cc

es
s

m
ar

k
as

so
ci

at
io

ns

MSX MNX MNR

Figure 14: Percentage time saved due to Sixml DOM over

DOM when accessing mark associations

In this experiment, we compute the percentage savings
(or overhead) in time to traversing mark associations and
SI using Sixml DOM over the time to traverse the same
data using DOM. For brevity, we report results for only
the SISRS dataset. The trends for SSIB were similar.

Figure 14 shows the savings due to Sixml DOM when
accessing only mark associations in the SISRS dataset:
Sixml DOM always saves time. MNX saves the least, and

the savings from MNR are comparable to that from MSX.
The savings from MNR drops four percentage points from
the first document to the last, but the drop is six percent-
age points for MSX. That is, MNR scales better.

Figure 15 shows the savings due to Sixml DOM when
accessing only SI in the SISRS dataset. Negative savings
denote overhead. In all cases, the savings decline as the
amount of SI increases. MSX and MNX have overheads
for SISRS-4 and SISRS-8, but MNR saves in all cases.
Also, as with mark associations, MNR scales better.

15%

8%

-2%

-8%

17%

13%

4%

-7%

22%
21%

17%

12%

-10%

-5%

0%

5%

10%

15%

20%

25%

SISRS-1 SISRS-2 SISRS-4 SISRS-8

Sa
vi

ng
s/

ov
er

he
ad

 fr
om

 u
si

ng
 S

ix
m

l D
O

M
 to

 a
cc

es
s

SI

MSX MNX MNR

Figure 15: Percentage time saved (lost) due to Sixml DOM

over DOM when accessing SI

Overhead to traverse XML data: We also tested the
performance of the Sixml DOM implementations when
traversing XML data containing no mark associations. We
report results for three XML documents: SIGMOD Re-
cord 1999, the XML index of issues of ACM SIGMOD
Record [2] for the year 1999; XMark, a document from
the XMark benchmark [19]; and MBench, a document
from the Michigan benchmark [18]. The salient features
of these documents are, respectively: Size 484 KB and
tree depth 4; 113.7 MB, depth 8; and 14.7 MB, depth 16.

-23%

-30%

-43%

-11%

-18%
-20%

-6%

-11% -11%

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

SIGMOD XMark MBench

O
ve

rh
ea

d
du

e
to

 u
si

ng
 S

ix
m

l D
O

M
 to

 a
cc

es
s

XM
L

da
ta

MSX MNX MNR

Figure 16: Percentage time lost due to Sixml DOM over

DOM when traversing pure XML data

Figure 16 shows the percentage overhead to traverse
the three XML documents. MNR has the least overhead
and MSX has the most overhead. In general, the perform-
ance of Sixml DOM when traversing an XML document
is similar to that of accessing SI in a Sixml document. (In

fact, we use the same code to access SI and XML data in
Sixml DOM.) For example, the trends in Figures 15 are
similar to those in Figure 15. (Figure 16 is oriented such
that it can be easily compared with Figure 15.)

Summary: MSX has the best absolute performance
when traversing mark associations, SI, and pure XML
data. MNR performs better with growing number of
marks and has the least overhead. MNX underperforms
MNR because it has inheritance overheads.

It is better to use Sixml DOM to access Sixml docu-
ments, but DOM is better for some pure XML documents.

Both the extension and revision strategies of imple-
menting Sixml DOM have merits. Sixml DOM can be fast
(as in MSX) and have low overheads (as in MNX and
MNR) if the base DOM implementation is fast and the
source code for the base is available. That is, the speed of
MNX and MNR could be improved by improving MN.
The overheads in MSX could be reduced with compile-
time access to the source code for MS.

6.2.2 Sixml Navigator

The Sixml Navigator makes it easier to query Sixml data,
but we wanted to test if the Sixml Navigator also saves
time compared to using the traditional navigator (that is,
the class XPathNavigator in Figure 12). In this experiment,
we compute the percentage savings in time to retrieve
mark associations and SI using the Sixml Navigator over
the time to retrieve the same data using the traditional
navigator. For this experiment, the two navigators were
used with the XPath and XSLT query processors included
in the .NET Framework.

0% 0% 0% 0% 0%

11%

18%

24%

50% 50% 50%
53%

63% 62% 63%
58%

0%

10%

20%

30%

40%

50%

60%

70%

SISRS-1 SISRS-2 SISRS-4 SISRS-8 SSIB-1 SSIB-2 SSIB-4 SSIB-8

S
av

in
gs

 fr
om

 u
si

ng
 S

ix
m

l N
av

ig
at

or

Mark associations SI

Figure 17: Percentage time saved by using Sixml Navigator

over the traditional navigator

The first set of bars in Figure 17 shows the percentage
time saved when traversing mark associations: The sav-
ings from the Sixml Navigator increases as the number of
mark associations increases. The second set of bars shows
the percentage time saved when retrieving SI: In all cases,
the Sixml Navigator provides considerable savings over
the traditional navigator.

The better performance of the Sixml navigator is due
to cloaking. For example, with query scope SI, the simple
XPath expression * suffices to retrieve SI using the Sixml
Navigator. However, with the traditional navigator, the

same task needs an XSLT style sheet with eight tem-
plates, involving 23 XPath expressions.

We have also conducted experiments specifically to il-
lustrate the benefits of cloaking (but omit presenting
them, for brevity). For example, retrieving all comment
text using the expression //text() saves 39% time with
query scope SI compared to using the scope Associations.
Section 5.3 discussed query scope.

In summary, the Sixml Navigator lets a developer ex-
ploit existing XML query languages and processors to
mash disparate data fragments, even if the fragments’
sources are not represented as XML.

7. Related Work
Damia [20] is a tool to produce data mash-ups from XML
sources and from sources that can be transformed to
XML. Each source is transformed to XML and repre-
sented using a variation of XDM, and parts of the trans-
formed XML are processed using special operators. A
mash-up may use only parts of a source, but the complete
source is transformed to XML.

In our approach, only the reconstituted fragments are
represented as XML, and the reconstitution is on demand.
A mash-up can be reconstituted and formatted using exist-
ing query languages and query processors unchanged.

Yahoo! Pipes [29] is a visual editor to assemble data
mash-ups using complete information sources, not frag-
ments. It supports operations such as sort and filter over
web feeds, but it does not support the expression and ma-
nipulation of a mash-up using standard XML tools. (Ya-
hoo! Pipes might internally represent a network of pipes
as XML, but that representation is not exposed.)

In general, both Yahoo! Pipes and Damia are designed
to assist non-technical people assemble mash-ups. Our
infrastructure allows a developer to produce mash-ups,
and might form the basis for a tool such as Yahoo! Pipes
and Damia.

Active XML (AXML) [1] provides a means to de-
scribe parts of an XML document intensionally using ser-
vice-call elements which encode calls to web services. No
special DOM is defined to manipulate an AXML docu-
ment, but a special query processor lazily executes service
calls, and replaces a service-call element with the results
of the call.

AXML data references programs (which are web ser-
vices), but Sixml data references data. In AXML, external
data (that is, the result of service calls) is not necessarily
related to the data specified extensionally, and it is not
possible to distinguish external data from extensional
data. In Sixml, the division between SI and the external
data is always apparent. AXML uses a schema language
extension to express the type of the result of a function
call, but the schema of a Sixml document can be ex-
pressed using only the standard XML Schema constructs.

An AXML service-call element can supply the content
of a regular XML element, but it cannot supply values of

parts such as attributes. In our approach, external values
can be assigned to attributes, text, and other document
parts. In this paper, we have not described a means to
supply the content of an element, but we do have the de-
signs for a mark association type called EContent to
achieve this goal.

Like Sixml, XLink [22] allows embedding of links in
arbitrary XML documents. A linked resource may be re-
mote (that is, external to the document that specifies the
link) or local. An element is a link element if it has the
attribute xlink:type, or if the element has the attribute
xlink:href. A sub-element of a link element, called a lo-
cator, addresses a resource using a URI or an XPointer.

An XLink locator is comparable to a mark descriptor.
The attribute xlink:type is similar to our attribute
sixml:type, but we also allow a mark association’s type
to be conveyed via a schema. The XLink specification is
silent about to which part of an embedding XML docu-
ment a link corresponds, but we can reasonably assume
that a link corresponds to an element. In contrast to
XLink, we make explicit the target of a link and support
links to both elements and non-elements. Also, we do not
restrict locators to URIs and XPointers. Finally, XLink
does not support deriving of XML content from linked
resources.

DOM extensions have been defined for MathML [5]
and Scalable Vector Graphics [21]. Both extensions de-
fine specialized classes for elements and attributes. A
factory method chooses a class to instantiate a node based
only on the node’s qualified name. For example, in
MathML DOM, an element named math (with the name-
space URI http://www.w3.org/1998/Math/MathML)
becomes an instance of the class MathMLMathElement, and
math is the top-level element in each MathML document
or segment. In our approach, a mark association element
can be detected both by its name and by its type, and a
mark association may be slipped into any element.

The XML query processors in the .NET Framework
allow the use of alternative path navigators. We have
come across code samples [9] illustrating alternative path
navigators, but are yet to encounter the use of alternative
path navigators as a part of a query-processing strategy.

8. Summary and Conclusions
We have identified three forms of a data mash-up: con-
densed, reconstituted, and formatted. We have described
three parts of our infrastructure to declaratively produce
XML data mash-ups and shown how each part helps work
with the different forms of a mash-up: Sixml helps create
a condensed mash-up by providing a means to embed in
arbitrary XML documents links to disparate data frag-
ments. Sixml DOM reconstitutes a mash-up by lazily re-
constituting the component parts. It also provides a means
to manipulate a mash-up. The Sixml Navigator provides a
means to reformulate and format a mash-up using declara-
tive queries in existing languages.

We have described two strategies to implement Sixml
DOM and outlined three implementations of Sixml DOM.
We have also presented the results from an experimental
evaluation of both Sixml DOM and the Sixml Navigator.
Experiments show that our implementations can effi-
ciently reconstitute and format even mash-ups that refer-
ence thousands of external fragments.

The schema for the Sixml element types, the interface
definitions for Sixml DOM, and the source code for the
implementations are available from http://www.sixml.org.

References
1. Abiteboul, S., Benjelloun, O., Cautis, B., Manolescu,

I., Milo, T., Preda, N. 2004. Lazy Query Evaluation
for Active XML. In Proceedings of SIGMOD 2004,
Paris, France.

2. ACM SIGMOD Online. ACM SIGMOD.
www.sigmod.org/sigmod/record/xml/index.html.

3. Delcambre, L., Maier, D., Bowers, S., Weaver, M.,
Deng, L., Gorman, P., Ash, J., Lavelle, M., Lyman, J.
2001. Bundles in Captivity: An Application of Super-
imposed Information. In Proceedings of ICDE 2001,
2001, Heidelberg, Germany.

4. Document Object Model. W3C.
http://www.w3.org/DOM/.

5. Document Object Model for MathML. 2003. W3C.
http://www.w3.org/TR/MathML2/appendixd.html.

6. JavaScript. Mozilla Foundation.
http://developer.mozilla.org/en/docs/JavaScript.

7. Jeswin, P. Xml Performance: XmlMark Revisited:
Java, Mono and .Net.
http://www.process64.com/articles/xmlmark1/.

8. Mono. Mono Project. http://www.mono-project.com/.
9. MSDN Library Archive. Microsoft Corporation.

http://msdn.microsoft.com/archive.
10. Murthy, S. 2007. Sixml.org. http://www.sixml.org.
11. Murthy, S., Delcambre, L., Maier, D. 2006. Explicitly

Representing Superimposed Information in a Con-
ceptual Model. In Proceedings of 25th International
Conference on Conceptual Modeling (ER 2006),
Nov. 6-9, Tucson, Arizona.

12. Murthy, S., Maier, D. 2004. SISRS: The Superim-
posed Scholarly Review System.
http://sparce.cs.pdx.edu/pubs/SISRS-WP.pdf.

13. Murthy, S., Maier, D., Delcambre, L. 2006. Mash-o-
matic. In Proceedings of Sixth ACM Symposium on
Document Engineering (DocEng 2006), Oct. 10-13,
Amsterdam, Netherlands.

14. Murthy, S., Maier, D., Delcambre, L. 2008. Speeding
up On-the-Fly Integration of DB and Exo-DB Data.
In Proceedings of Workshop on Information Integra-
tion Methods, Architectures, and Systems, Apr. 11-
12, Cancun, Mexico.

15. Murthy, S., Maier, D., Delcambre, L., Bowers, S.
2004. Putting Integrated Information in Context: Su-
perimposing Conceptual Models with SPARCE. In
Proceedings of First Asia-Pacific Conference of
Conceptual Modeling, Jan. 22, 2004, Dunedin, New
Zealand.

16. Nelson, T. H. 1999. Xanalogical Structure, Needed
Now More than Ever: Parallel Documents, Deep
Links to Content, Deep Versioning, and Deep Re-
Use. ACM Computing Surveys 31 (4).

17. .NET Framework Developer Center. Microsoft Cor-
poration. http://msdn.microsoft.com/netframework/.

18. Runapongsa, K., Patel, J.M., Jagadish, H.V., Chen,
Y., Al-Khalifa, S. 2006. The Michigan Benchmark:
Towards XML Query Performance Diagnostics. In-
formation Systems 31 (2).

19. Schmidt, A., Waas, F., Kersten, M., Carey, M.J.,
Manolescu, I., Busse, R. 2002. XMark: A Benchmark
for XML Data Management. In Proceedings of Pro-
ceedings of the 28th international conference on Very
Large Data Bases, Hong Kong, China.

20. Simmen, D. E., Altinel, M., Markl, V., Padmanabhan,
S., Singh, A. 2008. Damia: Data Mashups for Intranet
Applications. In Proceedings of SIGMOD 2008,
Vancouver, Canada.

21. SVG Document Object Model. 2003. W3C.
http://www.w3.org/TR/SVG/svgdom.html.

22. XML Linking Language (XLink) Version 1.0. 2001.
W3C. http://www.w3.org/TR/xlink/.

23. XML Path Language (XPath) Version 1.0. 1999.
W3C. http://www.w3.org/TR/xpath.

24. XML Pointer Language (XPointer) Framework.
2003. W3C. http://www.w3.org/TR/xptr-framework/.

25. XML Schema Part 0: Primer Second Edition. 2004.
W3C. http://www.w3.org/TR/xmlschema-0/.

26. XQuery 1.0 and XPath 2.0 Data Model (XDM).
2007. W3C. http://www.w3.org/TR/xpath-
datamodel/.

27. XQuery 1.0: An XML Query Language. 2005. W3C.
http://www.w3.org/TR/xquery/.

28. XSL Transformations (XSLT). 1999. W3C.
http://www.w3.org/TR/xslt.

29. Yahoo! Pipes. Yahoo! Inc. http://pipes.yahoo.com.

