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Abstract

We propose an efficient sampling based outlier de-
tection method for large high-dimensional data. Our
method consists of two phases. In the first phase, we
combine a “sampling” strategy with a simple random-
ized partitioning technique to generate a candidate set
of outliers. This phase requires one full data scan
and the running time has linear complexity with re-
spect to the size and dimensionality of the data set.
An additional data scan, which constitutes the second
phase, extracts the actual outliers from the candidate
set. The running time for this phase has complexity
O(CN) where C and N are the size of the candidate
set and the data set respectively. The major strengths
of the proposed approach are that (1) no partitioning
of the dimensions is required thus making it partic-
ularly suitable for high dimensional data and (2) a
small sampling set (0.5% of the original data set) can
discover more than 99% of all the outliers identified by
a full brute-force approach. We present a detailed ex-
perimental evaluation of our proposed method on real
and synthetic data sets and compare our method with
another sampling approach.

1 Introduction and Related Work

Historically, two schools of thought have existed re-
garding the utility of detecting outliers in data.
The first school argues that outliers are instances of
“noise”, generated because of instrumentation errors
(machine or human) and must be identified and dis-
carded before the data is seriously analysed.

The second school of thought, to which probably
most of the data mining researchers belong, has rela-
tively more faith in the underlying fidelity of the data,
and argues that outliers are indicative of events which
were not anticipated, or which lie outside the norm.
For example, a relatively large body of research has
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focused on applications of outlier detection for net-
work intrusion [9]. Here the argument is that mali-
cious events, like hacking, are outside the norm, and
the underlying signature of such events could be in-
dicative of the intent. Since the underlying signature
is typically multivariate the emphasis has always been
on the development of techniques for outlier detection
in high-dimensional data.

Statisticians had extensively studied the problem in
the context of a given distributional model. The text-
book approach [6] works as follows. Let M be a given
model of the underlying data and let t be a realiza-
tion of M , then if p(t|M) is smaller than a threshold
then t is deemed an outlier. The shortcoming of this
approach is of course that for high-dimensional data it
may be very hard to pin down a suitable candidate for
M .

Knorr and Ng [4] were the first to propose a
distance-based definition of outliers which was free of
any distributional assumptions and was readily gener-
alizable to multi-dimensional data. An object O in a
dataset T is a DB(p, D)-outlier if at least fraction p of
the objects in T lie at a greater distance than D from
O. The authors then go on to prove that this defini-
tion of outliers generalizes the folk definition of outliers
“three standard deviations away from the mean”. For
example, if the dataset T is generated from a normal
distribution with mean µ and standard deviation σ,

and t ∈ T is such that |t−µ|
σ

> 3 then t is a DB(p, D)
outlier with p = 0.9988 and D = .13σ. Similar exten-
sions were shown for other well known distributions
including the Poisson.

Ramaswamy et. al [5] have proposed the following
extension which will remain our working definition for
the rest of the paper: Outliers are the top n data el-
ements whose distance to the kth nearest neighbor is
greatest. Such outliers will be called DBk

n outliers.
Based on the above DB(p, D) and DBk

n definitions
several algorithms [1, 3, 4, 5, 12] have appeared in
the literature. The simplest algorithm to detect all
DB(p, D)(even DBk

n) outliers is a nested loop ap-
proach. Each point in the database is examined with
all other points until it no longer can possibly be an



outlier, i.e., when more than “p percent of the points
lie within a distance D of the point being examined”.
For the low dimensional data sets, spatial index struc-
tures like R∗ trees can be used in the nested loop ap-
proach. However as several authors have noted that in
high-dimensional space these data structures are ineffi-
cient and a search (for the k-nearest neighbor) reduces
to a sequential scan. Similarly, partition-based meth-
ods suffer from the “curse of high dimensionality”. Of
particular interest is the paper by Ghoting et. al. [12],
which builds on the paper by Bay et. al. [1]. This pa-
per uses divisive hierarchical clustering to effectively
partition the data sets into clusters using distance sim-
ilarity.

One of very few existing sampling based approaches
that we are aware of is the biased sampling technique
reported by Kollios et. al [2]. The authors design
a sampling strategy such that the probability that a
point will be drawn into the sample depends on the
local density of the data set. The points will be sam-
pled only if they are located in the region with density
smaller than a predefined threshold. The core of this
technique is to build a density estimator for the data
set using a kernel-density method. We will introduce
this method in detail in a later section and compare it
with our proposed sampling method.

Another sampling based approach is the work of Wu
and Jermaine [11]. The idea is that for each point in
the dataset, a random sample set of size α is drawn
and the kth-nearest neighbor distance from the point
to its sample is calculated. The outliers are reported
as the top λ points whose such distance is the great-
est. The authors also provide a strategy to speed up
distance computation, which is to uniformly replicate
the distances computed by their sampling algorithm to
create a full-size estimated distance matrix for all data
points. Although this algorithm has a linear running
time (Ω(αn)), it is often the case that α needs to be
large enough to produce an accurate result. The ap-
proach described works well for cases where distance
computations are prohibitively large.

The rest of the paper is presented as follows. In Sec-
tion 2 we briefly introduce our contributions. Section
3 is the core of the paper and is devoted to devel-
opment of the algorithm and its analysis. In Section
4 comprehensive experiment results are reported and
discussed. In Section 5, a comparison with another
sampling based approach is presented. We conclude
in Section 6 with a summary and directions for future
work.

2 Our Contributions

In this paper we show that by strategically sampling
in the data space, DBk

n outliers can be identified with
high accuracy. The basic idea of our sampling strategy
is to sample in stages and at each stage purge regions
of high density since they are not likely to contain

*

*

* *

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

Figure 1: Four sampled points and their top ten near-
est neighbors. the sampling and purging process is re-
peated until the number of points remaining go below
a specified threshold. The points left are the candidate
outliers.

outliers. What is left are the candidate outliers and
another single-pass through the data can be used to
extract all legitimate DBk

n outliers from the candidate
set.

Figure 1 shows an example in a two dimensional
space. Four points are sampled and each point is a
center of a circle which exactly contains its ten near-
est neighbors. All the points in two smaller circles,
including the two sampled points, will be eliminated,
but the points in two bigger ones will be retained as
possible sample candidates in the next round. The
main idea behind this method is that since all circles
contain the same number of points the smaller ones
are relatively more densely packed and therefore are
less likely to contain outliers.

Specifically, our main contributions are:

1. We propose a sampling strategy based on succes-
sive sampling [8] to discover DBk

n outliers with
high accuracy. Our sampling strategy does not
require the partitioning of the underlying data
space and thus gracefully handles one aspect of
the “curse of high dimensionality”. As far as we
know this is the only sampling-based outlier de-
tection algorithm which can scale to large high-
dimensional data.

2. The algorithm is disk-based and, after random-
ization, requires only two data scans.

3. We have carried out an extensive experimental
evaluation, on real and synthetic data sets, to test
the scalability, accuracy and dependence on pa-
rameters, of our proposed algorithm.

4. We have compared our method with another sam-
pling method proposed in [2] by using real data
sets. The results show that our method is better
from the points of efficiency and accuracy.



3 Algorithm and Complexity Analysis

The proposed algorithm for outlier detection consists
of two phases. In phase one a set of candidate outliers
is generated. In phase two a full scan through the data
is used to extract DBk

n outliers from the candidate set.
Phase one is the core of the algorithm and is sim-

ilar to the successive sampling technique introduced
by Mettu and Plaxton [8] who use it to design an
approximation algorithm for the k-median problem.
Phase one proceeds as follows. We randomly sample
a pre-defined fraction(α) of points from the dataset,
and then, for each sampled point, construct a hyper-
ball which can exactly hold its M nearest neighbors
in the current data. These hyper-balls are then sorted
based on their radii and the smaller hyper-balls, those
with radii smaller than the median of the radii in this
round, are purged. This procedure is carried on re-
cursively on the remaining points until a threshold (β)
is reached. The points that remain are the candidate
outliers.

By applying sampling in stages, we save a huge
amount of running time for outlier detection compared
with, say the nested-loop approach. However, this is
not enough, because the complexity of this method is
still quadratic in the size of dataset. We will prove this
in the next section.

In order to address this problem, we first randomize
the data set and break it into equal or near equal size
partitions (chunks) according to a pre-defined parame-
ter, and then we apply the sampling technique to each
partition. Although the running time for sampling in
each partition is quadratic with respect to Np, the size
of the partition, we can set it to a small value so that
it will make a trivial contribution to the overall com-
plexity. Now the complexity for candidate generation
becomes linear with the number of partitions, i.e. the
size of whole data set.

The partitioning is carried out after randomization
so that all the partitions have the same distribution as
the whole data set. If a point in a partition is a candi-
date outlier, it is also a candidate for the whole data
set. Another advantage of the partitioning approach
is that the data for each partition is small and can be
held in memory, so expensive disk access operations
are minimized.

If the data set has been randomized, only two full
data scans are required to enumerate all the outliers:
one scan for candidate generation and one for outlier
verification. In the remainder of the paper, we assume
that the data sets have been pre-processed and ran-
domized.

Randomizing a file can be done in O(N) time and
constant main memory with a disk-based shuffling al-
gorithm [1]. Normally, we can combine this procedure
and data preparation together without adding any ex-
tra cost. In the complexity analysis section, we don’t
count the cost of randomization.

The value of container size, M , plays a crucial role
in phase one and may appear to be hard to set. How-
ever, in practice, we can change the value of M and
make it adapt to the size of the dataset that is left af-
ter each sampling round. In the experiment section we
will show how to judiciously set an appropriate value
for M. We will demonstrate the effect of adapting M
to the size of remaining data set in Section 5.

3.1 Algorithm

The algorithm for Phase One is shown in Table 1. The
algorithm begins by loading a portion of U into Up,
and choosing a random sample S of size α|Up|. For
each point s ∈ S, a container Cs of size M is initial-
ized. for each point p(p 6= s) in Up, assign it to a Cs

such that D(p, s) is the smallest for each s∈S and Cs is
maintained such that it contains the M current near-
est neighbors of s in Up. Associated with each Cs is a
hyper-ball containing exactly M nearest neighbors of
s in Up. The hyper-balls are sorted based on the radii
and those balls whose radii is smaller than the me-
dian of the radii in this round are purged of all their
points including the sampled points. This process(of
sampling and purging) is repeated within each parti-
tion Up till the number of points in Up falls below the
threshold βNp where Np is the size of the partition.
The whole process is carried out till all the partitions,
dN/Npe of them, are examined.

The algorithm for Phase Two is shown in Table 2.
The input to this algorithm is U , the full data set and
U ′, the candidate set of outliers. Each element of U ′

is examined with respect to U to verify if it is a DBk
n-

outlier. The result is a set of top n outliers

3.2 Complexity Analysis

For each step of successive sampling of a partition,
we list the size of the population, number of points
sampled, and the computational cost in table 3. We
have N/Np partitions (ignoring ceiling function), so
the total cost of phase one is:

(
2dN2

p

M

αM

2
(1+ (1−

αM

2
)2 + ...+(1−

αM

2
)2(k−1))

N

Np

(1)
In step k+1, sampling will stop when (1− αM

2 )kNp =
βNp. Thus:

αM

2
= 1− β

1
k (2)

Combining (1) and (2), the total cost of phase one
becomes:

2dNpN

M
(1+(β

2
k )1+(β

2
k )2+...+(β

2
k )k−1)(1−β

1
k ) (3)

Now, let S = 1 + (β
2
k )1 + (β

2
k )2 + ... + (β

2
k )k−1



Input: U, M, α, β
Output: U

′

(candidate set of outliers)
U

′

← ∅
For (i=0; i ≤ dN/Npe; i++)

read a partition of data from disk into Up

While |Up| > βNp

construct a set of points S by sampling α|Up| points from Up;
for each point s in S, initialize a container Cs of size M
for each point p(p 6= s) in Up, assign to it Cs such that D(p, s) is the smallest for each s∈S and Cs is

maintained such that it contains the M current nearest neighbors of s in Up

for each Cs, define a hyper ball, which contains exactly its top M nearest neighbors in Up and the center is s;
remove all the points, include the sampled points themselves, in the smaller hyper balls from Up;
compute a new value for M according to the size of Up;

End while

U
′

← U
′

∪ Up

End for

Table 1: The Algorithm for Phase One. A sampling strategy to generate the candidate set of outliers.

Input: U, U
′

(candidate set of outliers)
Output: top n outliers
For (i=0; i ≤ dN/Npe; i++)

read a partition of data from disk into Up;

for each point in U
′

, compute the distance to each point in Up, and keep tracking the distance to its kth nearest
neighbor in U ;

End for
Sort all the candidates of outliers according to the distances calculated;
Output top n outliers.

Table 2: Algorithm for Phase Two. The candidate set of outliers are examined and only the DBk
n outliers are

retained.

Then, Sβ
2
k = (β

2
k )1 +(β

2
k )2 + ...+(β

2
k )k−1 +(β

2
k )k

S − Sβ
2
k = 1− (β

2
k )k = 1− β2 −→ S =

1− β2

1− β
2
k

When β is small (but fixed) and k large we get:

limk→∞
1−β2

1+β
1
k

= 1
2 . Thus , the cost of Phase One

(formula (3)), becomes
dNpN

M
, leading to the following

lemma.

Lemma 1: The cost of phase one is O(
dNpN

M
)

when k is large (this means sampling ratio α is small)
and β is small.

When the sampling ratio α is small, we remove
fewer points in each step, so we need more iterations to
finish the sampling. Since the data of a partition can
be held in memory and all the sampling operations can
be done within the memory, we can use a very small
α, i.e. large k, without degrading the efficiency of our
algorithm.

In phase two, we have to compute the distance be-
tween each point in U and each point in U

′

, so the

complexity is O(βdN2). Typically, β takes on a very
small value, e.g. 0.005, causing the cost for phase two
to be only 1/200 of the comparisons with the nest-loop
algorithm, which has the complexity of O(dN2). Ex-
perimental results on real and synthetic data sets in
section 4 show that 0.005 is a suitable value for β. If
the size of dataset is very large, β can take on even
smaller values.

3.3 Discussion

We give a short motivation for the likelihood of Phase
1 purging a true outlier being small in the average case.

Notations:
Let D(t) be the set of points that are left at time t.

For each point p ∈ D(t), let kNN (t)(p) be the set of
p-nearest neighbor of p in D(t) and knn(t)(p) be the
distance from p to the pth-nearest neighbor of p in D(t)

Assumption:
It is natural to assume that an outlier in the

original dataset D(0) will have knn(t)(p) significantly
large (compared to knn(0) of normal points)



Step Population Size Number of Sampled Points Computational Cost
1 Np αNp αdN2

p

2 (1− αM
2 )Np α(1 − αM

2 )Np α(1 − αM
2 )2dN2

p

... ... ... ...

k (1− αM
2 )k−1Np α(1 − αM

2 )k−1Np α(1 − αM
2 )2(k−1)dN2

p

k+1 (1− αM
2 )kNp

Table 3: The Cost of Each Step in Phase One

Argument/discussion:
Consider an outlier p, then p will be purged if either

1. p is picked at time (t) and knn(t)(p) is small
enough compared to knn(t) of the other M − 1
picked points at time t, or

2. p is in kNN (t) of some picked point at time (t)
and the ball corresponding to the picked point is
small enough compared to those of other picked
points at time t

• Consider (1):
We assume M

2 of the balls surrounding the M picked
points will have their points removed in each step.
Suppose the other picked points are p1, . . . , pM−1, then
(1) can happen if and only if knn(t)(p) is less than or
equal to at least M

2 knn(t)(pi).

Moreover, knn(t)(p) ≥ knn(0)(p)
Therefore, at least M

2 points in in {p1, . . . , pM−1}

has knn(t)(pi) ≥ knn(0)(p)
Based on our assumption that knn(0)(p) is signifi-

cantly large, this mean there exists at least M
2 pi such

that knn(t)(pi) is significantly large.
Now, suppose pi is in a cluster (possibly dense

one). In order to have knn(t)(pi) large, we must have
removed the majority of pi’s close neighbors, and
must have not removed pi before time (t). This is
unlikely to happen, and it is even more unlikely to
have M

2 points for these events. So the probability
that (1) can happen is very small.

• Consider (2):
Suppose that p ∈ kNN (t)(p1) and knn(t)(p1)

and kNN (t)(p1) is purged. Let kNN (t)(p1) =

{p, q1, . . . , qk−1}. We have

knn(t)(p) ≤ max{d(p, p1), d(p, q1), . . . , d(p, qk−1)} ≤ 2knn(t)(p1)

Also
knn(t)(p) ≥ knn(0)(p)

Therefore knn(t)(p1) ≥
knn(t)(p)

2
Using a similar argument as when considering (1),

we also see that this event is very unlikely to happen.
In summary, the probability that Phase one purges

an outlier is very small.

4 Experimental Results

In this section we carry out very relative experiments
on real and synthetic data sets to verify the accuracy
and efficiency of our proposed approach. Since phase
one of the algorithm involves several parameters we
also carry out experiments to show how they affect
the results. For example, the experiments will confirm
the result of Lemma 1 that the running time of phase
one is independent of the sampling ratio (α) and the
sampling threshold (β) when both of these parameters
are small.

The real data set we used is the KDDCUP 1999
(KDD) data which we downloaded from the UCI data
mining repository [7]. This data set is a raw TCP
dump for a local-area network (LAN) and includes a
wide variety of intrusions simulated in a military net-
work environment. The data has already been pro-
cessed and each record consists of 34 continuous at-
tributes. Several data sets, of varying size and dimen-
sionality, were created by sampling different number
of attributes and rows.

For synthetic data we used a Gaussian data gener-
ator to produce a series of synthetic datasets (SYN)
with different size and dimensionality. Each synthetic
dataset consists of 20 hyper-spherical clusters with
outliers peppered around each cluster.

We implemented the algorithm in Java and all our
tests were run on a Pentium 4 machine equipped with
a 2.53GHz CPU and 1 G main memory. The size of the
memory is not crucial as our algorithm is disk-based.
We were able to process very large data sets with only
64M memory.

4.1 Scalability

We tested the scalability of our algorithm with respect
to the size and dimensionality of the data set. The size
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of the data set was varied from 100K to 1 million, the
dimensionality was varied from 5 to 60 for SYN and 5
to 34 for the KDD data set respectively. For these ex-
periments the sampling ratio (α), sampling threshold
(β) and the initial container size (M) were kept fixed
as 0.005, 0.005 and 20 respectively.

Figure 2 shows the result of how the running time
varies with the size of the data set. Phase one, which is
the core of our proposed approach, scales linearly with
respect to the data size (KDD ph1 and SYN ph1). As
the size of the data set increases the ratio of run-
ning time of phase one and the total running time
(KDD total and SYN total) decreases by a factor pro-
portional to the size of the data set. This is because
we are using a brute-force approach to test whether
the candidate outliers are actual outliers. In fact the
running time of phase two is O(βdN2), where β is the
sampling threshold, and normally takes a value smaller
than 0.01.

In order to decrease the running time of phase two,
we must make the value of β as small as possible. This
requires a small set of candidate outliers and later we
will discuss how the parameters in phase one can be
tuned to achieve this goal and retain high accuracy.

Figure 3 shows how the running time scales with the
dimensionality of the data set. Clearly the running
time scales linearly with both phase one (KDD ph1,
SYN ph1) and the total running time (KDD total,
SYN total). This is one of the key strengths of our
approach. We were able to achieve linear scalability

with respect to the dimension of the data set without
resorting to a partitioning of the data (feature) space.
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Figure 4: The running time is independent of small val-
ues of sampling ratio α. This result validates Lemma
1
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4.2 Parameter Performance

In this section we evaluate the effect of three parame-
ters: sampling ratio α, sampling threshold β and con-
tainer size M on the accuracy and running time of the
algorithm. We will focus on phase one of the algo-
rithm and all running times shown in the remainder of
the paper are the times of phase one. In the following
experiments, the number of outliers is set to 100, the
size of data set is 250K and the dimensionalities are
34 and 60 for KDD and SYN respectively.

4.2.1 Varying Parameter α:

From Lemma 1, we already known that the running
time is independent of small values of the sampling
ratio α. The experimental results in Figure 4 confirm
this. Interestingly, the size of α also has little effect on
the accuracy of our algorithm. In Figure 7, as the value
of α changes, the accuracy of dataset KDD and SYN
oscillates around a specific value with a very narrow
range. This characteristic of α makes it simple for us
to tune our algorithm, as we can set a small value for
α.



4.2.2 Varying Container Size M:

Parameter M is very important because it affects both
the efficiency and accuracy of the algorithm. We have
tested two situations. One is using a constant value for
M in all the iterations of phase one (KDD non adapt
and SYN non adapt in Figure 5 and 6). The other is
making the value of M adaptive to the size of dataset
left after each sampling iteration (KDD adapt and
SYN adapt in Figure 5 and 6). For example, if in
the first step, the size of the data set is 5000 and the
value for M is 100, after removing some points, the size
of dataset becomes 4000, the parameters M adapts to
size 80. The initial value of M is set such that no more
than 10 percent of points are removed in the first iter-
ation. The general formulae we use are

M0 =
0.2

α
, Mk+1 = max{10,

Uk+1

Uk

Mk}

where Uk is the size of the partition in step k.
Figure 5 shows significant improvement in accuracy

by making the value of M adaptive. As the value of
M increases, the accuracy of non-adaptive method de-
creases rapidly, while the accuracy of adaptive method
decreases marginally and stays at a high level. This
improvement gives us the flexibility of using even a
smaller value for β. This in turn provides precious
savings in the running time of phase two, which domi-
nates the total running time, without loss of accuracy.
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Figure 7: The sampling ratio α has little effect on the
accuracy
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Figure 8: The threshold β has no effect on the running
time of phase one when it takes a small value, the total
running time scales linearly with β
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Figure 9: The accuracy increases as the threshold β in-
creases, but when β reaches to a specific value, there is
no significant improvement

4.2.3 Varying Parameter β:

From Lemma 1, we know that β has no effect on the
running time of phase one when it takes on a small
value. The experimental results shown in Figure 8 also
illustrate this. However, β has strong influence on the
total running time, because when we double the value
of β, the size of the candidate set is doubled, and as a
result, the running time of phase two is also doubled.

The parameter β also has some influence on the
accuracy. As Figure 9 displays, when β takes on a
small value, the accuracy is low for both KDD and
SYN datasets. As its value increases, the accuracy
also increases. But after it reaches a certain value, e.g.
0.004, the improvement in accuracy is minor, even we
double its value. Because when β takes a value of
0.004, the candidate sets are large enough for KDD
and SYN to contain nearly all of the outliers.

When more outliers need to be reported, we have
to use a larger value for β. Extensive experiments
show that when the size of candidate set is 6 to 10
times larger than the number of outliers reported, our
algorithm can retain high accuracy. We may refer to
this to select a value for β.
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Figure 10: The running times of our method and density-
based method
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Figure 11: The accuracy of our method and the density-
based method

5 Comparison with a Density-based
Sampling Method

In this section, we compare our method with the one
proposed in [2], which uses some sample points to build
a density estimator based on the Epanechnikov kernel
function, and then selects candidates for outliers ac-
cording to this estimator. The functionality of this
algorithm is similar to our method since it also se-
lectively chooses low density regions to inspect with
greater detail. Points with low density value are nat-
ural candidates for outliers. Their key contribution is
the use of the biased sampling technique as opposed
to random sampling, once the estimator is built.

In [2], the procedure of outlier detection is also
divided into two phases, and the second phase is
exactly the same as ours. They use the definition
of DB(p,D) outlier. In order to compare easily, we
modified their method slightly to solve the DBk

n

outlier problem as follows:

Phase One
• First sample some points to build the density model
(This step is the same as original method);
• For each point in the dataset, calculate the density
value by using the kernel density model;
• Sort all the points by density value, and use the
points with a small density value as candidates.

Phase Two
• Verify the candidates.

The dataset used for comparison is the KDD

CUP1999 data as described in section 4, with 494,000
points. The number of points used for building the
density model is 1000 as recommended in [2]. If we
use more points then phase one takes more time.

5.1 Efficiency

Figure 10 compares the running times of Phase one
of the density-based and our method. Both methods
produce the same number of candidates, so in phase
two, both methods will need the same amount of time
to prune the candidates to get the top n outliers. It
is clear that our method uses less time. Both run-
ning times change linearly with the dimensionality but
the density-based method has a higher rate of increase
(bigger slope).

5.2 Accuracy

Figure 11 shows how accuracy varies with the dimen-
sionality. Both methods work well when the dimen-
sionality is low. However, when the dimensionality
increases, the accuracy of our method continues to re-
main at a high level with little decline. However, the
accuracy of the density-based method becomes very
unstable.

6 A method for reducing false outliers
in the candidate set

6.1 Analysis

The idea of having Phase two in the algorithm is that
we would like to remove all false outliers (false posi-
tives) that remain after purging in Phase one by val-
idating each remaining point. Often, however, the
number of false outliers in this candidate set is quite
large. Therefore a reduction in the size of this set will
greatly speed up the polynomial-time Phase two stage,
especially for larger datasets.

We observe that if a point p is in a cluster C then
the probability that p is reported to be an outlier when
it is not an outlier (false positive case) is very similar
to any other point in the same cluster C. Therefore
the false positives in the candidate set resulting from
Phase one are somewhat randomly picked. We can
exploit this fact if the running time of Phase two is
much larger than of Phase one, as is the case in larger
datasets, by running Phase one multiple times and tak-
ing the intersection of the resulting candidate outlier
sets. Because the false positives in the candidate set
tend to be randomly selected, the false positives in
the two candidate sets resulting from the running of
Phase one twice tend to have only a small amount of
data points in common, leading to a large reduction
in false positives if the intersection of the two candi-
date sets are taken. Of course, since each running of
Phase one is not guaranteed to find all top outliers,
it is more likely that a true outlier is dropped in one



running of Phase one and therefore dropped from the
final intersected set if this method is used. However,
in our experiments we found that this case was very
rare.

The following lemmas show the expectation and
variance of the number of false positives in the inter-
section set. For simplicity, we consider the case where
our data has one cluster with a few distinct outliers,
and Phase one is run two or three times. A similar
analysis can be carried out for more complicated
datasets or with more than three runs of Phase one.

Lemma 2 (For two runs of Phase one):
Given set S = {1, 2, . . . , n}. We randomly picked
S1, S2 ⊂ S such that |S1| = |S2| = m. Then

1. E[|S1 ∩ S2|] = m2

n

2. V ar[|S1 ∩ S2|] = m2(m−1)2

n(n−1) + m2

n

We have

E[|S1 ∩ S2|] =

m
∑

i=0

iP (|S1 ∩ S2| = i)

Now, for each set T ⊂ S such that |T | = i, the number
of pairs (S1, S2) ⊂ S×S such that S1∩S2 = T is equal
to the number of ways we can partition the set S\T
into two subsets of equal size m− i, which is

(

n− i
2(m− i)

)(

2(m− i)
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)
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Now,
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We have
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∑
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Now

V ar[|S1 ∩ S2|] =
m
∑

i=0

i2P (|S1 ∩ S2| = i)

=

m
∑

i=0

iP (|S1 ∩ S2| = i) +

m
∑

i=0

i(i− 1)P (|S1 ∩ S2| = i)

= E[|S1 ∩ S2|] +
m
∑

i=0

i(i− 1)P (|S1 ∩ S2| = i)

Using similar techniques as when calculating E[|S1 ∩
S2|], we have

m
∑

i=0

i(i− 1)P (|S1 ∩ S2| = i) =
m2(m− 1)2

n(n− 1)

Therefore,

V ar[|S1 ∩ S2|] =
m2(m− 1)2

n(n− 1)
+

m2

n

Lemma 3 (For three runs of Phase one):
Given set S = {1, 2, . . . , n}. We randomly picked
S1, S2, S3 ⊂ S such that |S1| = |S2| = |S3| = m. Then

E[|S1 ∩ S2 ∩ S3|] = O

(

m2

n2
+

m4

n3

)

Note that the scalability for finding the intersection
result is min{O(n), O(m log m)} because:

1. If we map each set to a bitmap vector S 7→
(x1, x2, . . . , xn) : xi = 1 if i ∈ S, 0 otherwise
then |S1∩S2| is the sum

∑n
i=1 xiyi where (xi), (yi)

is the bitmap representation of S1, S2 respectively
(this takes O(n) time).

2. If we sort each set then we can find intersection
by allocating a pointer to each sorted set (thus
the complexity is O(m log m).



In practice, the size of the candidate set is usually
much smaller than n, so the time required to carry out
the intersection is negligible. When this approach to
reduce false outliers is applied between Phase one and
Phase two of our approach, the number of points being
taken as input to the polynomial-time Phase two is
minimised. This therefore greatly reduces the overall
runtime in cases where n is large.

Figure 12: False positive reduction after repeating Phase
one and intersecting the result. The lines shown cor-
respond to datasets of varying size. The size of each
dataset is given in the legend, where for example 10k
means that the dataset contains 10,000 points. From
this graph it can be clearly seen that in all cases the re-
duction is of exponential magnitude after each run and
intersection.

Figure 13: False positive reduction after repeating Phase
one and intersecting the result. The lines shown corre-
spond to datasets of varying dimensionality. The di-
mensionality of each dataset is given in the legend. This
graph shows that the reduction in the number of non-
outliers remains of an exponential magnitude indepen-
dent of the dimensionality.

Therefore, when this additional step is applied the
running time of the overall algorithm becomes near
linear in complexity in most cases where the param-
eters can be suitably chosen. In some datasets, how-
ever, this requirement of linear running time can force
a choice of parameter values which can cause a sig-

Figure 14: Runtime for varying dataset size. Phase 2 is
not included in these results. Our results for two and
three runs of Phase 1 plus the intersection of the can-
didate set is shown compared to the Bay-Schwabacher
algorithm.

Figure 15: Runtime for varying dataset dimensionality.
Phase 2 is not included in these results. Our results
for two and three runs of Phase 1 plus the intersec-
tion of the candidate set is shown compared to the Bay-
Schwabacher algorithm.

nificant loss in accuracy. A tradeoff between desired
runtime complexity and accuracy can be made.

6.2 Experimental results

In this section, we compare our result with the Bay-
Schwabacher algorithm which has near-linear runtime
[1]. We ran experiments using randomly generated
datasets with a single cluster containing n data points
plus outliers. We varied n from 10,000 to 100,000 while
keeping the dimensionality set to 10, and then varied
the dimensionality from 10 to 50 while keeping n set
to 25,000. The other parameters of sampling ratio (α),
sampling threshold (β) initial container size (M), and
partition size were kept fixed as 0.001, 0.005, 50 and
5000 respectively. Figure 12 and Figure 13 show the
magnitude of the false positive reduction after carrying
out the intersection of the candidate sets of multiple
Phase one runs, for varying N and D respectively. In
all of our experiments we experienced no cases of legit-



imate outliers being missed (false negatives), as well as
no true outliers being lost in the intersection process.

Figures 14 and 15 show the runtime of our exper-
iments over varying dataset size and dimensionality,
compared to the Bay-Schwabacher algorithm. Our re-
sults show the runtime for running Phase 1 two and
three times, intersecting the candidate set between
each run.

While it is difficult to find when the process of re-
peatedly running Phase 1 and intersecting the can-
didate sets will converge to a solution, in practice the
largest benefit occurs only after a few runs, after which
Phase 2 can be run on the much smaller resulting can-
didate set to find the final solution. We carried out
an experiment to calculate the expected accuracy loss
in cases where it is difficult to distinguish between a
legitimate outlier and a member of the cluster.

7 Conclusions and Future Work

We have presented a sampling-based outlier detection
method based on the concept of top n distance-based
outliers. This method is especially designed for large
(disk-based) high-dimensional datasets. Only two full
data scans are required after randomizing the dataset.
No partitioning on dimensions is involved, so the prob-
lem of sparseness in high-dimensional space is solved
intrinsically. Both the complexity analysis and exper-
imental results showed that this method scales well
with respect to the size and dimensionality of the
datasets.

For future work we would like to provide theoretical
guarantees about the accuracy of our proposed method
under reasonable conditions. Furthermore we would
like to test the accuracy of the sampling approach
under proximity-preserving random projections into
lower dimensional spaces.
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