
Runtime Optimization of Continuous Queries∗

Balakumar Kendai and Sharma Chakravarthy
IT Laboratory and Department of Computer Science & Engineering

The University of Texas at Arlington, Arlington, TX 76019.
sharma@cse.uta.edu

Abstract

In data stream processing systems, Quality of Ser-
vice (or QoS) requirements, as specified by users, are
extremely important. Unlike in a database management
system (DBMS), a query in a data stream management
system (DSMS) cannot be optimized once and executed.
It has been shown that different scheduling strategies
are useful in trading tuple latency requirements with
memory and throughput requirements. In addition,
DSMSs may experience significant fluctuations in in-
put rates. In order to meet the QoS requirements of
data stream processing, a runtime optimizer equipped
with several scheduling and load shedding strategies is
critical. This entails monitoring of QoS measures at
run-time to dynamically modify the processing of the
queries at runtime to meet the QoS requirements.

This paper addresses runtime optimization issues
for MavStream, a data stream management system
(DSMS). The runtime optimizer presented in this paper
matches the output (latency, memory, and throughput)
of a continuous query (CQ) with its QoS requirements.
Alternative scheduling strategies are chosen as needed
based on the runtime feedback. A decision table is used
to choose a scheduling strategy based on the priorities of
QoS requirements and their violation. The decision ta-
ble approach allows us to add new scheduling strategies
as well as compute the strategy to be used in an exten-
sible manner. Additionally, load shedders are activated
and deactivated by the runtime optimizer to meet QoS
requirements beyond adjusting scheduling strategies..

1 INTRODUCTION

Sensors and hand held devices generate ubiquitous
data. Furthermore, the size of this data is unbounded
and can be considered as a relation with infinite tu-

∗The work done in this paper is currently supported by NSF
IIS - 0534611, NSF IIS - 0326505 and NSF EIA - 0216500.

International Conference on Management of Data
COMAD 2008, Mumbai, India, December 17–19, 2008
©Computer Society of India, 2008

ples (not stored on a secondary device as in traditional
database management systems or DBMSs). This data
created by sensors are called data streams [9, 5, 13].
Examples of applications [7] that have streaming in-
put are network monitoring, stock tickers and variable
tolling in highways. Most stream based applications
require the results to be produced within a specific
amount of time (termed tuple latency). This and other
(such as memory usage and throughput) requirements,
known as Quality of Service (QoS), necessitate the need
for the data to be processed on the fly as they arrive.
The large amount of time required for secondary stor-
age access and lack of QoS support in DBMSs rule
out the possibility using a traditional DBMS. Though
main memory databases process data without storing
them on a secondary storage, they assume the data
to be readily available, which is not the case with
data streams. These characteristics of data streams
have entailed the development of specialized applica-
tions for handling stream data and are termed Data
Stream Management Systems (DSMS) [12, 2, 14].

Stream data can arrive at a very high rate and fur-
thermore, it can fluctuate quite over periods of time.
This necessitates buffering [15] as there may not be
enough capacity in a DSMS to process all incoming
data without buffering. Absence of buffering can lead
to loss of tuples. The amount of memory available in a
system is crucial for stream applications as most of the
data required for processing is stored in main memory.
Since main memory is always limited in a system, there
is always a possibility of memory overflow. Research
in this field has proposed techniques such as storing
excess tuples into secondary storage [2] and schedul-
ing strategies [18, 11, 16, 10, 4] aimed at reducing the
amount of tuples that reside in the memory. Mecha-
nisms have also been developed to reduce the memory
requirement of join and aggregate operators which op-
erate on windows by using histograms, timeout, slack,
and discarding tuples to reduce window sizes [3, 19].

The utility of results produced by a DSMS often de-
pends on the delay with which it is produced. These
constraints are generally specified as QoS requirements



for a query. The three QoS measures that are mainly
used in a DSMS are: tuple latency, memory utilization
and throughput. Tuple latency is defined as the differ-
ence between the arrival and departure time of a tuple
in the system. Memory utilization is the total memory
usage of the tuples that reside in the queues of opera-
tors. Throughput is defined as the rate at which output
is produced by the system. Various scheduling strate-
gies have been proposed that improve the performance
of a particular QoS measure given the unpredictable
nature of data.

The unpredictable nature of stream data and QoS
requirements of stream-based applications has nur-
tured research which has proposed various scheduling
and approximation techniques. Specialized scheduling
strategies [18, 11, 16, 10, 4] have been proposed for a
DSMS. A continuous query issued to a DSMS can have
multiple QoS constraints associated with it. Any par-
ticular strategy may perform exceedingly well for one
QoS measure but it may not be equally good for other
measures that can be part of the QoS requirements of
a query. Since the data rate of streams can fluctuate
drastically, it is not necessary to choose the best strat-
egy for a particular measure. For example, when the
memory utilization is within the QoS limits and ar-
rival rate is low, it would be better to run the query
in a strategy that tries to minimize tuple latency or
any other strategy that performs better in QoS mea-
sures which are not met by the current strategy. As
the choice of scheduling strategy and the arrival rates
of the stream affect the performance of QoS measures,
it is necessary to choose the best scheduling strategy
at different periods during the lifetime of a query.

The paper presents the design, implementation, and
experimentation of a runtime optimizer (RO) that
monitors the output and uses scheduling and load shed-
ding strategies to satisfy QoS requirements. The RO
supports changing of scheduling strategies at runtime.
The runtime optimizer also tries to minimize the num-
ber of switches between strategies based on heuristics.
The two mechanisms of runtime optimization and load
shedding, while not dependent on each other, work
well in conjunction to enhance the overall performance
of the system. A decision table is used to choose a
scheduling strategy based on the priorities of QoS re-
quirements and their violation. The decision table ap-
proach allows us to add new scheduling strategies as
well as compute the strategy to be used in an extensi-
ble manner.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. 3 describes the func-
tional architecture of MavStream. The design and the
details of the runtime optimizer is presented in 4.
Experimental analysis of the runtime optimizer is dis-
cussed in 5. 6 contains conclusions.

2 RELATED WORK

Stream [5] is a prototype implementation of a com-
plete data stream management system being developed
at Stanford. The system generates a query execution
plan on registration of a query that is run continu-
ously. Operators make use of synopsis (an internal
data structure at an operator) to store intermediate
results. Stream has a central scheduler that has the
responsibility for scheduling operators. The scheduler
dynamically determines time quantum of execution for
each operator. Period of execution may be based on
time, or on the number of tuples consumed or pro-
duced. Stream uses the chain scheduling strategy [4]
with the goal of minimizing the total internal queue
size. Load shedding techniques [6] proposed in Stream
focuses only on aggregation queries over sliding win-
dows. Aurora [2, 7] is a data flow system that uses
the primitive box and arrow representation. Tuples
flow from source to destination through the opera-
tional boxes. It can support continuous queries, ad-hoc
queries and views at the same time. The QoS evalu-
ator continually monitors system performance and ac-
tivates the load shedder, which sheds load until the
performance of the system matches user-specified val-
ues. Quality of Service is associated with the output.
It is specified in terms of a two-dimensional graph that
specifies the output in terms of several performance-
related and quality-related services. Aurora handles
high load situations by dropping load using a drop op-
erator. Load shedding [20] is treated as an optimiza-
tion problem and consists of determining when and
where to shed load and how much to shed. The QoS
requirements are specified as value utility graphs and
loss tolerance graphs. The load shedding algorithm
consists of load evaluation step where in system load
is determined using load coefficients. Borealis [1] is a
distributed stream processing engine that inherits the
core stream processing functionality from Aurora.

Telegraph [12] consists of an extensible set of com-
posable dataflow modules or operators that produce
and consume records in a manner analogous to the op-
erators used in traditional database query engines, or
the modules used in composable network routers. The
modules can be composed into multi-step dataflows,
exchanging records via an API called Fjords [17]. The
key advantage of Fjords is that they allow query plans
to use a mixture of push and pull connections be-
tween modules, thereby being able to execute query
plans over any combination of streaming and static
data sources. Cougar [8] is specifically targeted to meet
the requirements of sensor-based applications. Cougar
focuses on a distributed approach toward query pro-
cessing and determines the data that needs to be ex-
tracted from the sensors depending upon the workload.
Cougar is based on the Cornell Predator object rela-



Figure 1: MavStream Architecture

tional database system. NiagaraCQ [14] is a system
that mainly focuses on supporting continuous query
processing over multiple, distributed XML files. Nia-
garaCQ uses a novel incremental group optimization
strategy with dynamic re-grouping. It takes advantage
of the fact that many web-based queries share simi-
lar structures. Grouping similar structures can save on
the computation cost, memory used and the number of
I/Os. When a new query arrives, the existing groups
are considered as possible optimization choices instead
of re-grouping all the queries in the system.

3 MavStream ARCHITECTURE

MavStream is a DSMS for processing continuous
queries over data streams. MavStream is modeled as a
client-server architecture in which client accepts input
from the user and forwards it to the server. The various
components of MavStream are shown in Fig. 1. The
MavStream server upon receiving a query passes cre-
ates a query plan object. A query plan object is a tree
of objects that contain information about all the oper-
ators of a query. The input processor uses the instan-
tiator module to instantiate all the operators, paths,
and segments [11]. The instantiated objects are put
in to the appropriate ready queue based on the chosen
scheduling strategy. The operators are scheduled using
a scheduling strategy and output of the query is given
back to the client. Below, the working of the scheduler
is elaborated.

3.1 Scheduler
The scheduler is one of the critical components in

MavStream. Scheduling is done at the operator level
and not at the tuple level. It is not desirable to schedule
at a tuple level as the number of tuples entering the sys-
tem is very large. On the other hand, scheduling at the
query level loses flexibility, as the granularity offered
by the scheduler may not be acceptable. MavStream
schedules operators based on their state and priority.
The scheduler maintains a ready queue, which decides
the order in which operators are scheduled. This queue
is initially populated by the server. Operators must

be in a ready state in order to get scheduled. Opera-
tor goes through a number of states while it is being
scheduled. The following are the scheduling policies
[11] supported by MavStream:

1. Round-Robin: All the operators are assigned the
same priority (time quantum). Scheduling order is
from leaves to parent nodes at the next level and
is taken in the order stored in the ready queue.
This policy is not likely to dynamically adapt to
QoS requirements as all operators have the same
priority.

2. Weighted round-robin: Here different time quanta
are assigned to different operators based on their
requirements. Operators are scheduled in a round
robin manner, but some operators may get more
time quantum over others. For example, opera-
tors at leaf nodes can be given more quantum of
time as they are close to data sources. Similarly,
Join operator, which is more complex and time
consuming, is given higher priority than Select.

3. Path capacity scheduling: This strategy schedules
the operator path which has the maximum pro-
cessing capacity as long as there are tuples present
in the base buffer of the operator path or there ex-
ists another operator path which has greater pro-
cessing capacity than the presently scheduled op-
erator path. This strategy is good for attaining
the best tuple latency.

4. Segment scheduling: Schedule the segment which
has the maximum memory release capacity as
long as there are tuples present in the base buffer
of the segment or there exists another segment
which has greater memory release capacity than
the presently scheduled segment. This strategy is
good for attaining the lower memory utilization.

5. Simplified segment scheduling: The segments are
constructed differently from the above. Instead of
partitioning an operator path into many segments,
we partition it into only two segments. This strat-
egy takes slightly more memory than the segment
strategy giving improvement in tuple latency.

The execution of all schedulers is controlled by the
master scheduler. The master scheduler allocates time
quantum to each scheduler. At any instance of time
only one scheduler is allowed to run by the master
scheduler. Different queries can be scheduled using dif-
ferent strategies. Also, scheduling can be changed at
runtime to meet the output requirements.

3.2 Feeder
For experimental purpose, a feeder has been devel-

oped to feed tuples (given out by the stream sources) to



the buffers of leaf operators. If many streams from the
sources are combined and given as one stream to the
query processing system then the user should specify
the split condition (using a split operator supported by
MavStream) on the stream. Each stream is fed using
a separate thread. Feeder thread reads the tuples from
the secondary storage feeds the tuples to buffers as-
sociated with leaf operators. Presently there are no
real streams used directly from the sensors. Hence
we use flat files which contain synthetically generated
data. The mean rate of feeder is changed over time
and pauses to the feeding has also been introduced to
simulate bursty nature of streams. The characteristics
of feeding can be specified by a configuration file.

4 DESIGN OF RUNTIME OPTI-
MIZER

The primary goal of the runtime optimizer is to mon-
itor QoS measures to make sure that user specified QoS
values are met to the best extent possible. Based on the
monitoring, we choose the best (or optimal) schedul-
ing strategy for a query. In MavStream, the runtime
optimizer acts like the decision making component of
a closed loop feedback control mechanism, where ex-
pected QoS values of the reference output and mea-
sured QoS values representing the actual output are
used. Runtime optimizer consists of a System Moni-
tor, which monitors the values of QoS measures for a
query, and a Decision Maker, which chooses the best
scheduling strategy for a query and controls the load
shedders. In this section, we discuss the issues encoun-
tered and assumptions made while designing the run-
time optimizer.

4.1 Inputs to Runtime Optimizer

The goal is to match the user requirements with the
resources available on the system and to make optimal
use of available resources. Application requirements,
typically, determine QoS requirements and as the re-
sources available to a system vary, user-specified QoS
requirements will have to be diligently mapped to avail-
able resources on the system. This calls for the priori-
tization of QoS measures (first from application view-
point followed by available system resources viewpoint)
so that the right decision is made by the runtime opti-
mizer as per the QoS requirements of a query. Rather
than specifying priority for queries explicitly, the pri-
ority of a query in MavStream is inferred from the QoS
specifications.

4.2 Specification of QoS Measures

QoS is specified in Aurora using delay based, drop
based and value based graphs [9]. The graphs denote
the percentage utility of results for different values of
delay in results or percentage of tuples delivered or the
values produced. The QoS graphs are approximated as

Figure 2: QoS Graph

Figure 3: QoS Graph: Piecewise Approximation

piecewise linear function as it helps us to model com-
plex functions as shown in Fig.2. In MavStream each
QoS measure of interest is specified using a two di-
mensional graph. The QoS graphs are approximated
as piecewise linear functions and contain the absolute
values of the QoS measures as shown in Fig.3. The
x values of a QoS graph represent relative time from
the start of a query. The y values specify the ex-
pected value of QoS parameter for a time point. For
tuple latency, memory utilization, throughput y values
specified are time, size and tuples/sec, respectively, in
their appropriate units. As QoS measures are approxi-
mated as piecewise linear functions, for each interval in
a piecewise function only the start and end (x,y) val-
ues need to be specified. The usage of two dimensional
graphs and piecewise approximation provides the flexi-
bility to specify exact required values or relaxed values
for all QoS measures.

The expected QoS values for any time period inside
an interval of the piecewise function can be computed
using the slope and boundary values of that interval.
For a continuous query, it is infeasible to provide the
QoS values for the entire lifetime of query. Hence we
assume that the user provides few intervals that can
be of any length. The number of intervals specified is
presumed to be at-least one. The expected QoS values
for time periods between two intervals is extrapolated
from the border values of the preceding and succeeding
intervals. For time periods that lie outside all the in-
tervals provided, QoS value of the end time of the last
interval specified or the beginning time of the first in-
terval specified is extrapolated to obtain the expected
value. This allows the runtime optimizer to have an ex-
pected value for comparison at any point in the lifetime
of a query.



4.3 Priority of QoS Measures
Each QoS measure is presumed to have priority as-

sociated with it. The priority of a QoS measure deter-
mines what action should be taken when it is violated.
Also each level of priority carries a weight that will
be used while selecting a scheduling strategy. As the
runtime optimizer chooses scheduling strategies for a
query, we have categorized the QoS measures to fall
into one of the three classes of priority:

1. Must Satisfy: This is a critical QoS measure for
the query/application. Internally, this priority
class has the highest weight associated with it. If
QoS measures in this level are violated for any
query, runtime optimizer tries to find a better
scheduling strategy and if no better scheduling
strategy is available, it activates load shedders for
that query.

2. Best Effort: This class has medium weight. The
runtime optimizer does not invoke load shedders
for this priority class. This class of priority can
be used for applications that do not tolerate er-
rors in results (because of which load shedding is
not used). The scheduling strategy with the high-
est score is chosen for the QoS measures that are
violated.

3. Don’t Care: This class has the lowest weight. The
actions taken by the runtime optimizer are similar
to the Best Effort class except that when more
than one better strategy is available any one of
the scheduling strategies which has a higher score
than the current is chosen.

The algorithm used by the runtime optimizer is general
and can be extended to handle any number of priority
classes. The actual weights for each priority class can
be specified and the values of weights normalized to
the number of priority classes is used while selecting
scheduling strategy for any query.

4.4 Runtime Optimizer
The runtime optimizer is responsible for monitoring

QoS measures of a query, make decisions to alter the
scheduling strategy of a query and invoke load shed-
ders to drop tuples when it cannot meet the QoS re-
quirements. The parameters involved in deciding the
scheduling strategy of a continuous query are: extant
of violation of QoS measures and the weights of pri-
ority class to which they belong. The performance of
QoS measures of a query depends predominantly on
the scheduling strategy chosen for that query and ar-
rival rate of input streams. If the arrival rate of input
stream exceeds the processing capacity, tuple latency
and memory utilization are bound to increase. The
processing capacity of any system is fixed and can be

computed by monitoring query characteristics such as
selectivity and system characteristics such as memory
release capacity and operator processing capacity. The
runtime optimizer therefore can carry out decisions
based on the arrival rate of streams. As the input rates
of streams are bursty, any change in the arrival rates
of stream can potentially trigger a change in schedul-
ing strategy of queries depending on that stream. Such
an approach would also be ignorant of the actual QoS
requirements of the query and may end up taking de-
cisions to change scheduling strategy when it may not
be necessary. Hence we utilize the feedback obtained
by monitoring actual QoS measures and a static table
(termed the decision table).

4.5 Design Alternative

The performance on QoS measures of a query de-
pends predominantly on the scheduling strategy chosen
for that query and arrival rate of input streams. If the
arrival rate of input stream exceeds the processing ca-
pacity, tuple latency and memory utilization are bound
to increase. The processing capacity of any system is
fixed and can be computed by monitoring query char-
acteristics such as selectivity and system characteris-
tics such as memory release capacity and operator pro-
cessing capacity. The runtime optimizer therefore can
carry out decisions based on the arrival rate of streams.
As the input rates of streams are bursty, any change
in the arrival rates of stream can potentially trigger a
change in scheduling strategy of queries depending on
that stream. Such an approach would not take into ac-
count the actual QoS requirements of the query and
may end up taking decisions to change scheduling strat-
egy when it may not be necessary. Hence, we have
used the feedback mechanism which measures the ac-
tual QoS values and takes appropriate action to rec-
tify undesirable situations. This approach uses tech-
niques for choosing strategies using the feedback ob-
tained by monitoring actual QoS measures and a static
table called decision table.

4.6 Decision Table

Research in DSMS has proposed many scheduling
strategies each with its own characteristics to deal with
different QoS measures. For example Chain schedul-
ing [4] is an optimal strategy to minimize the mem-
ory requirement while Path Capacity Scheduling [16]
is an optimal strategy for tuple latency. The deci-
sion table encompasses and represents rank informa-
tion about the relative performance of strategies for
various QoS measures. Each row in the table holds
a relative rank of different strategies for a particular
QoS measure. The information about the rank can be
easily obtained by studying the performance charac-
teristics of each strategy for the measure being con-
sidered. The runtime optimizer uses the static infor-



QoS Round
Robin

PCS Segment Simplified
Segment

Tuple Latency 2 4 1 3
Memory Uti-
lization

2 1 4 3

Throughput 2 4 1 3

Table 1: Decision Table

mation provided in the decision table along with some
heuristics to choose a scheduling strategy for a query
violating its QoS measures. An example decision ta-
ble is shown in table 1. The motivation behind using
ranks for scheduling strategies is that by knowing the
relative performance of scheduling strategies for various
QoS measures better results can be obtained by choos-
ing scheduling strategies that favor measures that are
violated. A static decision table provides a low run-
time overhead for deciding the scheduling strategy of
a query. For a continuous query the overhead of deci-
sion making process will be insignificant compared to
gains achieved by changing the strategy. The alter-
native scoring policy for decision table considers using
binary values in the table where a value of one repre-
sents a favorable strategy for the QoS measure and zero
represents a non-favorable strategy. The runtime opti-
mizer will then choose a strategy that is favorable for
majority of QoS measures. This alternative can lead to
multiple strategies getting same scores. Also, it does
not provide any distinction between the performance
of strategies for any QoS measure.

4.7 System Monitor

The system monitor continuously (over intervals de-
termined by the runtime optimizer) monitors the out-
put of a query for QoS measures of interest. The
monitored QoS measures are compared against ex-
pected values obtained from the QoS input graph. The
runtime optimizer keeps track of the QoS measures
that are being violated and the percentage by which
the measures fall short or exceed the expected values.
Based on the QoS measures violated and their priority
class a score is computed for each scheduling strategy
available in the system using the ranks provided in the
decision table. The ranks used in the decision table are
normalized to the number of scheduling strategies when
scores for strategies are computed. The weight of the
priority class to which a QoS measures belongs is also
considered when computing the score of a strategy for
a particular QoS measures as shown in (1). The total
score for a strategy is computed by summing up scores
obtained from equation 1 for each of the QoS measures
that are violated. If any of the scheduling strategies
is determined to have a higher score for the violating
measures than the current scheduling strategy, runtime
optimizer chosen one among them and initiates action
to change the scheduling strategy.

Strategy Score = Priority Class Weight×Score in Decision Table

Number of Strategies
(1)

Since there is an overhead associated with changing
a query from one strategy to another, the algorithm
used by the runtime optimizer tries to strike a balance
between the number of times a strategy is switched and
the overhead incurred. If the strategy is re-computed
often and changed, the overhead will be high. On the
other hand, if the strategy is not changed for a long
period of time, the overhead will be low but if a QoS
measure is being violated, it will continue to violate it
for a longer period. Also, when a strategy is changed,
its effect becomes visible only after a period of time (as
the operators have to be scheduled sufficient number of
times to make a difference in the QoS measure value).
This necessitates the runtime optimizer to consider the
time it takes to effect changes to QoS measures as a
result of switching. The algorithm also involves some
of the policies to deal with how decisions will be taken
when multiple measures are violated.

4.8 Choosing the Best Strategy

We illustrate the possible transitions and actions
taken by the runtime optimizer. The strategy chosen
uses the scores given in table 1. The numbers 1, 0.5,
0.01 denote the weights used for Must Satisfy, Best
Effort and Don’t Care priority classes respectively. A
continuous query may have multiple QoS measures as-
sociated with it. At any instant of time either all mea-
sures are violated or satisfied or only some are violated
or satisfied. As violated measures can fall into the same
priority class or different priority classes the following
two scenarios needs to be handled: (i)Violated mea-
sures belong to same priority class and (ii) Violated
measures belong to different priority classes
Violated Measures Belong to the Same Priority
Class: The actions taken when all measures are vi-
olated depends on the priority class of QoS measures.
When only some of the measures are violated, the run-
time optimizer tries to find a better strategy for the
violating measures. As shown in table 2, when only
memory utilization is violated Segment strategy gets
the highest score (of 1) and is, hence, chosen by the run-
time optimizer. The scores obtained for various strate-
gies when multiple measures are violated are shown in
table 3. Using the scores in table 3 PCS or SS can
be chosen when all QoS measures are violated. If no
better strategies are found after choosing this strategy,
the decision maker starts activating load shedders if
the measures belong to must satisfy class. If the mea-
sures belong to best effort or don’t care priority class
the runtime optimizer takes no further action and con-
tinues monitoring.
Violated Measures Belong to Different Prior-



Memory Utilization Violated Scores
Round Robin 0.5
PCS 0 .25
Segment 1
Simplified Segment 0.66

Table 2: Single QoS Measure Violated

All Measures Vio-
lated

Scores

Round Robin 1*(2/4) + 1*(2/4) + 1*(2/4 =
1.5

PCS 1*(4/4) + 1*(1/4) + 1*(4/4) =
2 .25

Segment 1*(1/4) + 1*(4/4) + 1*(1/4) =
1.5

Simplified Segment 1*(3/4) + 1*(3/4) + 1*(3/4) =
2.25

Table 3: Multiple QoS Measures Violated

ity Classes: The runtime optimizer takes actions
for lower priority measures only if higher priority mea-
sures are satisfied. Therefore the runtime optimizer
considers QoS measures based on their priority and al-
terations to strategies for lower priority measures are
done only when the higher priority measures are sat-
isfied. Additionally if higher priority measures are not
satisfied, we would like to first satisfy the critical intent
of the user first and then satisfy the others as closely
as possible.

Reduction Percentage =
Expected V alue−Observed V alue

Expected V alue
(2)

Reduced weight = Initial Weight −
(Reduction Percentage ∗ Weight Range)

The priority-wise decision making scheme disallows
switching for lower priority measures until higher pri-
ority measures are satisfied. But when strategies are
chosen for lower priority measures, there arises a possi-
bility that the selection made is poor for the higher pri-
ority measures. This can lead to higher priority mea-
sures getting violated. For example if tuple latency be-
longs to must satisfy class and memory utilization be-
longs to best effort class, runtime optimizer will choose
Segment scheduling when tuple latency is satisfied and
memory utilization is violated. This can lead to degra-
dation of tuple latency. To prevent these situations,
higher priority measures are also taken into account
when decisions are taken for lower priority measures.
The disadvantages of taking this approach is that best
strategy for lower priority measures may never be cho-
sen. Because of the nature of priorities, this approach
is much better than choosing strategies that are unfa-
vorable for higher priority QoS measures.

Table 4 depicts an example where QoS measures
fall into different priority classes. As mentioned above
memory utilization will be considered only after satis-
fying tuple latency. For example, if the expected value

Measures Weights
Tuple Latency 1

Memory Utilization 0.5
Throughput 0.01

Table 4: QoS Measures and Weights

Latency satisfied
and Memory vio-
lated

Scores

Round Robin 0.75*(2/4) + 0.5*(2/4) = 0.625
PCS 0.75*(4/4) + 0.5*(1/4) = 0.875
Segment 0.75*(1/4) + 0.5*(4/4) =

0.6875
Simplified Segment 0.75*(3/4) + 0.5*(3/4) =

0.9375

Table 5: Measures Different Priority Classes

for tuple latency is 2 seconds and the observed value is
1 second the reduction percentage for the weight will
be 0.5 as per equation 3 shown above. The reduction
percentage is multiplied with the range of reduction to
obtain the reduced weight of 0.75. This reduce weight
is used to compute the scores for strategies as shown
in table 5.

4.9 Impact of Strategy Switching
The runtime optimizer, after selecting a strategy

for a query based on monitored measures, changes
the scheduling strategy of that query by removing
schedulable object (operators, paths, and segments in
MavStream system) from ready queue of current sched-
uler and placing then into ready queue of selected
scheduler; the new scheduler starts scheduling them.
To avoid unnecessary switches and to ensure that best
strategy is chosen we introduce the lookahead factor.
Lookahead factor specifies the period of time ahead of
the current time which the runtime optimizer uses to
obtain the expected values. By comparing the mea-
sured values to expected values of a future time run-
time optimizer ensures that it is ready to meet QoS
requirements that will be encountered. The usage of
lookahead factor avoids unwanted switches and makes
sure that the right strategy is chosen thereby curtailing
effect of switching delays. Lookahead factor should be
a value greater than the time required to schedule all
operators at least once and less than the monitoring
interval of the query.

4.10 Cycling Through Strategies
As a consequence of the bursty arrival rate of

streams and conflicting requirements of QoS measures,
there is a possibility that the runtime optimizer will
cycle through the same sequence of strategies. This
cycling through same sequence of strategies can occur
for two or more strategies. For example the runtime
optimizer might choose Path Capacity and Segment
strategies alternatively for a query to satisfy latency
and memory requirements if both measures are of same
priority. This may lead to a lot of unnecessary switches



that needs to be prevented.
The runtime optimizer handles such situation by re-

membering the decisions taken. Whenever runtime op-
timizer decides to change strategy it keeps track of the
QoS measures that are violated and satisfied. Before
making a change in scheduling strategy runtime opti-
mizer verifies whether it is changing to a strategy that
was utilized before the current strategy. If it is, run-
time optimizer compares the measures that were vio-
lated previously to measures that are satisfied currently
and vice versa. If they turn out to be the same, run-
time optimizer assumes it as an indication of a cycle.
To avoid cycling, the runtime optimizer tries to find
a new strategy by taking into consideration previously
violated and current violating measures. This method,
though prevents cycling, can sometimes prevent a gen-
uine change to an older strategy. But is much better
than cycling through strategies introducing unaccept-
able overhead.

4.11 Overhead
The addition of a runtime optimizer results in some

overhead in the form of monitoring, decision making,
and switching strategies. The monitoring overhead in-
cludes the computation of QoS measures. The over-
head for decision maker consists of computing expected
measures from the QoS graph, comparing expected val-
ues to monitored values and the decision making pro-
cess itself. Since the number of QoS measures and pri-
ority classes are fixed, the time taken for making de-
cisions can be considered as small and constant. The
number of times a query changes its scheduling strat-
egy will be, in the worst case, the number of times
the query output is monitored. Hence, the overhead
is directly proportional to the frequency of monitoring
which can be reduced by (i)Minimizing the frequency
of monitoring and (ii) Minimizing the number of strat-
egy switches.

4.12 Decision Maker
The algorithm for the Decision Maker is shown in

Algorithm 1. For each query, the details about the
current strategy, previous strategy and QoS graphs are
tracked by the runtime optimizer. The system moni-
tor provides the monitored values. The decision maker
considers each priority class and finds violating mea-
sures for the current priority class using the lookahead
factor. The decision maker chooses the best strategy
for violating measures taking into consideration the re-
duced weights of satisfied measures. Decision Maker
also conducts some checks to ensure that a query does
not cycle through strategies. The sequence of actions
for the Decision Maker is shown in Fig. 4

4.13 System Monitor
System Monitor monitors QoS measures of queries

and arrival rates of input streams. The System Moni-

Algorithm 1: Runtime Optimizer Algorithm
INPUT: current time, monitored QoS values
OUTPUT: next time to monitor

HigherPriorityClassSatisfied ← true;1

foreach PriorityClass do2

if HigherPriorityClassSatisfied == true3

then
foreach QoSmeasure in4

currentPriorityClass do
Compare monitored and expected values5

using lookaheadfactor;
if violated then add to6

violatingmeasureslist;
else7

Compute reduced weights using8

current expected values;
add to satisfiedmeasureslist;9

end10

end11

if violatingmeasureslist! = NULL then12

HigherPriorityClassSatisfied ← false;13

newstrategy ←get strategy using14

violatingmeasureslist ,
satisfiedmeasureslist;
if newstrategy == previousstrategy then15

result ←check with previous strategy details16

for preventing looping;
if result == false then17

newstrategy ← get strategy using18

previousviolatedmeasureslist
,violatingmeasureslist;
if newstrategy! = currentstrategy then19

previousstrategy ← currentstrategy;20

currentstrategy ← newstrategy;21

Record current strategy details and switch to22

new strategy;
end23

return get next time to monitor ;24



Figure 4: Runtime Optimizer Actions

tor cycles through all the queries that need to be mon-
itored and determines if it is time to monitor a partic-
ular query. If System Monitor determines that a query
needs to be monitored it obtains the QoS values and
provides it to the Decision Maker. The Decision Maker
compares QoS values and takes the appropriate actions
and returns the time the query needs to be monitored
next. The System Monitor updates the next time to
schedule for a query and also keeps track of the earli-
est time for monitoring a query among all that needs to
be monitored. This is used to determine the amount
of time the monitor should sleep. The algorithm for
runtime optimizer is described in Algorithm 2.

Algorithm 2: System Monitor Algorithm

while true do1

if no queries to monitor then2

wait;3

else4

foreach query to be monitored do5

if currenttime == timetomonitor6

then get currentQoSvalues;
provide currentQoSvalues to Decision7

Maker;
get next timetomonitor;8

if next timetomonitor <9

minnexttimetomonitor then
minnexttimetomonitor =
nexttimetomonitor;

end10

wait11

minnexttimetomonitor − currenttime;
end12

end13

4.14 Master Scheduler

The runtime optimizer recommends a different
scheduling strategy (than the current one) for a query

based on the measured QoS values. Changes to a
scheduling strategy of a query requires that the sys-
tem should have multiple active schedulers waiting to
accept new queries. At any time instant a particular
scheduling strategy may or may not have objects in its
ready queue for scheduling. Therefore, the runtime op-
timizer must notify the appropriate scheduler when it
decides to place a query into a new scheduling strat-
egy. Since potentially all the schedulers can be active,
each of them competes for CPU cycles. As the schedul-
ing mechanism of the operating system is unaware of
the availability of operators in ready queues, we need
a mechanism native to MavStream to control the var-
ious schedulers. Without a mechanism for controlling
schedulers it is possible that one of the schedulers al-
ways has some operators ready to be scheduled.

The Master Scheduler is similar to the two
level scheduling proposed in Aurora. However, in
MavStream, the first level selects the scheduler and
second level schedules the operators. The model fol-
lowed by Master Scheduler is the Master/Slave model
similar to the way schedulers control the various oper-
ators. Schedulers in MavStream are modeled as inde-
pendent threads. Master scheduler runs as a separate
thread allocating time for each scheduler to execute.
The master scheduler follows a fair scheduling scheme
by using a weighted round robin fashion through all
the schedulers. The time allocated for each scheduler
is determined by the number of operators in the ready
queue of each scheduler. Since each operators gets a
fixed quantum of time for execution, the master sched-
uler allocates enough time for all the operators in the
ready queue to execute. The master scheduler does not
get involved in the way operators get scheduled by each
scheduler. Further each scheduler notifies the master
scheduler if it finishes processing before the allocated
time quantum. In case the scheduler has not completed
processing the operators it is preempted by the master
after the operator or construct being scheduled cur-
rently completes execution. The algorithm for master
scheduler is shown in Algorithm 3.

5 EXPERIMENTAL EVALUATION

Effect of Runtime Optimizer on a Single QoS
Measure: The query used in this experiment con-
sisted of eight operators including two Hash Join op-
erators and three input streams. The window used for
the Hash Join was a tuple based window of five hun-
dred tuples. The QoS measure considered was tuple
latency and a single interval was specified with start
and end values of 1 second. By giving a single inter-
val with the same values for the start and end of an
interval, the given value is used through out the life-
time of a query. The priority was set to Best Effort
class. The three scheduling strategies considered were
PCS, Segment and SS. The mean input rates for the



Algorithm 3: Master Scheduler Algorithm

while true do1

process strategy change requests2

if all schedulerqueues empty then3

wait; else4

foreach scheduler do5

if readyqueue != empty then resume6

scheduler; wait operator timequantum
* number of operators in readyqueue
; suspend scheduler;7

end8

end9

end10

Time Vs Tuple Latency


6, 1.9285718


0


1


2


3


4


5


6


7


8


9


0
 200
 400
 600
 800
 1000
 1200


Time sec


L
at

en
cy

 S
ec




PCS
 Segment
 SS
 RTO


 


Figure 5: Latency: Single QoS Measure
poisson distribution was set to 2000, 1800 and 2200 tu-
ples/sec. Each input stream consisted of two million
tuples. Experiments were run by fixing each strategy
without the runtime optimizer and an experiment was
also run using the runtime optimizer with a starting
strategy different from the one expected to see whether
the decision maker will take the right decision. These
experiments are plotted on the same graph to com-
pare their effect of the QoS measure. Among the three
strategies, as PCS provides the best performance for
tuple latency, the runtime optimizer should choose PCS
as the scheduling strategy and the latency of the query
should be nearly equal to that of PCS. The initial strat-
egy of the query was chosen to be Segment, as it pro-
vides the worst tuple latency. The monitoring interval
for runtime optimizer and all other strategies were fixed
to three seconds for comparison. When a single QoS
measure is provided, the runtime optimizer chooses the
best strategy for the QoS measure. The runtime opti-
mizer cannot perform better than the best scheduling
strategy for a QoS measure when load shedding is not
allowed. As shown in Fig.5 the tuple latency is high
as the initial strategy given is Segment. The Segment
strategy schedules the operators that lie in the segment
with the highest memory release capacity first, hence
it does not produce any output initially. When out-

Figure 6: Latency: Single QoS Measure
put is produced the runtime optimizer determines that
tuple latency is higher than the expected value and
therefore changes the scheduling strategy of query to
PCS. The runtime optimizer does not make any fur-
ther changes as it does not find any better strategy to
improve tuple latency. Fig.6 shows the latency of the
query for a smaller period of time over the lifetime of
query. From Fig.6 it can be observed that the strategy
chosen by runtime optimizer (PCS) provides tuple la-
tency equivalent to the best strategy (which is PCS).
This experiment shows that the runtime optimizer is
able to provide optimal performance for tuple latency
in-spite of starting with an adverse strategy and mon-
itoring overhead.
Effect of Runtime Optimizer on Multiple QoS
Measures: The query used in this experiment con-
sisted of eight operators which includes two Hash Join
operators and three input streams. The window used
for the Hash Join was a tuple based window of five hun-
dred tuples. The QoS measures considered were tuple
latency and memory utilization. The three scheduling
strategies considered were PCS, Segment and SS.

QoS Measures With Different Priority: For
this experiment the QoS measures were given different
priorities. Tuple latency belonged to the Must Satisfy
class and a single interval was specified with a con-
stant value of 500 ms. Memory utilization belonged
to the Don’t Care class and the expected values were
10MB for the first 500 seconds and 1MB for the re-
maining time. The mean input rates for the poisson
distribution was set to 800, 950 and 500 tuples/sec.
Each input stream consisted of two million tuples and
the mean rates for the poisson distribution was doubled
at different points in time to simulate bursty nature of
input. As tuple latency has higher weight than mem-
ory utilization, runtime optimizer chooses PCS when
it is violated as shown in Fig.7. Due to the low weight
associated with the Don’t Care priority class the spec-
ification of memory utilization does not make any dif-
ference in the scores computed using the decision table.
QoS Measures With Same Priority:

The QoS intervals specified for this experiment was



Time vs Tuple Latency


24, 1.3882172


0


2


4


6


8


10


12


0
 500
 1000
 1500
 2000
 2500
 3000
 3500


Time sec


L
at

en
cy

 S
ec




PCS
 Segment


SS
 RTO


 


Figure 7: Latency: Measures With Different Priority

Figure 8: Memory Utilization: Measures With Dif-
ferent Priority

Time Vs Tuple Latency


RTO, 18, 1.1429381


RTO, 539, 0.52705055

0


1


2


3


4


5


6


7


8


9


0
 200
 400
 600
 800
 1000
 1200
 1400


Time sec


L
at

en
cy

 S
ec




PCS
 Segment


SS
 RTO


 


Figure 9: Latency: Measures With Same Priority

Time vs Memory


RTO, 536, 3454


0


1000


2000


3000


4000


5000


0
 200
 400
 600
 800
 1000
 1200


Time sec


M
em

o
ry

 K
B




PCS
 Segment


SS
 RTO


 


Figure 10: Memory Utilization: Measures With
Same Priority

same as that of the previous experiment. Both QoS
measures belonged to the Must Satisfy class. The
mean input rates for the poisson distribution was set
to 2000,1800 and 2200 tuples /sec. The initial strat-
egy chosen was Segment as it provides the worst tuple
latency. The memory requirement was kept high for
an initial time period of 500 seconds. As shown in
Fig.9 the memory requirement is satisfied initially and
hence the runtime optimizer chooses PCS to improve
latency. Later when the time period reaches the sec-
ond interval specified for memory utilization memory
requirement gets violated and the runtime optimizer
chooses SS when both tuple latency and memory uti-
lization are violated and Segment if only memory uti-
lization is violated. Since both QoS measures of inter-
est have the same priority the runtime optimizer favors
measures that are being violated and chooses the ap-
propriate strategy. As shown in Fig.9 and Fig.10 the
tuple latency and memory utilization provided initially
by the runtime optimizer is near to that provided by
PCS. When memory utilization starts getting violated
at time point 539, runtime optimizer chooses the Seg-
ment where the memory utilized decreases noticeably
as shown in Fig.10. As the tuple latency provided is
within the QoS limits the runtime optimizer contin-
ues execution in Segment strategy. Hence by choosing
strategy to improve the performance of violating QoS
measures, the runtime optimizer is able to provide bet-
ter performance for both measures of the query than
by executing the query in a single scheduling strategy.

6 CONCLUSION AND FUTURE
WORK

In this paper we have presented the issues involved
in the design, implementation, and evaluation of a run-
time optimizer. We have introduced a decision ta-
ble that stores information about performance of vari-
ous scheduling strategies. The runtime optimizer uses
this decision table to select the appropriate strategy.
Heuristics to reduce the overhead by reducing the num-



ber of switches and a way to avoid cycling between
strategies were also developed. Extensive experimen-
tal validation indicates the correctness of the RO under
disparate input characteristics.

7 ACKNOWLEDGEMENT

The authors would like to thank Aditya Telang for
his help in formatting the paper.

References

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazin-
ska, Ugur Çetintemel, Mitch Cherniack, Jeong-Hyon
Hwang, Wolfgang Lindner, Anurag Maskey, Alex
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,
and Stanley B. Zdonik. The design of the borealis
stream processing engine. In CIDR, pages 277–289,
2005.

[2] Daniel J. Abadi, Donald Carney, Ugur Çetintemel,
Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stanley B.
Zdonik. Aurora: a new model and architecture for
data stream management. VLDB J., 12(2):120–139,
2003.

[3] Arvind Arasu and Jennifer Widom. Resource sharing
in continuous sliding-window aggregates. In VLDB,
pages 336–347, 2004.

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev
Motwani, and Dilys Thomas. Operator scheduling in
data stream systems. VLDB J., 13(4):333–353, 2004.

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev
Motwani, and Jennifer Widom. Models and issues in
data stream systems. In PODS, pages 1–16, 2002.

[6] Brian Babcock, Mayur Datar, and Rajeev Mot-
wani. Load shedding for aggregation queries over data
streams. In ICDE, pages 350–361, 2004.

[7] Hari Balakrishnan, Magdalena Balazinska, Donald
Carney, Ugur Çetintemel, Mitch Cherniack, Christian
Convey, Eduardo F. Galvez, Jon Salz, Michael Stone-
braker, Nesime Tatbul, Richard Tibbetts, and Stan-
ley B. Zdonik. Retrospective on aurora. VLDB J.,
13(4):370–383, 2004.

[8] Philippe Bonnet, Johannes Gehrke, and Praveen Se-
shadri. Towards sensor database systems. In Mobile
Data Management, pages 3–14, 2001.

[9] Donald Carney, Ugur Çetintemel, Mitch Cherni-
ack, Christian Convey, Sangdon Lee, Greg Seidman,
Michael Stonebraker, Nesime Tatbul, and Stanley B.
Zdonik. Monitoring streams - a new class of data man-
agement applications. In VLDB, pages 215–226, 2002.

[10] Donald Carney, Ugur Çetintemel, Alex Rasin, Stan-
ley B. Zdonik, Mitch Cherniack, and Michael Stone-
braker. Operator scheduling in a data stream manager.
In VLDB, pages 838–849, 2003.

[11] Sharma Chakravarthy and Vamshi Pajjuri. Scheduling
strategies and their evaluation in a data stream man-
agement system. In BNCOD, pages 220–231, 2006.

[12] Sirish Chandrasekaran, Owen Cooper, Amol Desh-
pande, Michael J. Franklin, Joseph M. Hellerstein, Wei
Hong, Sailesh Krishnamurthy, Samuel Madden, Fred-
erick Reiss, and Mehul A. Shah. Telegraphcq: Con-

tinuous dataflow processing. In SIGMOD Conference,
page 668, 2003.

[13] Sirish Chandrasekaran and Michael J. Franklin.
Streaming queries over streaming data. In VLDB,
pages 203–214, 2002.

[14] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan
Wang. Niagaracq: A scalable continuous query system
for internet databases. In SIGMOD Conference, pages
379–390, 2000.

[15] Altaf Gilani, Satyajeet Sonune, Balakumar Kendai,
and Sharma Chakravarthy. The anatomy of a stream
processing system. In BNCOD, pages 232–239, 2006.

[16] Qingchun Jiang and Sharma Chakravarthy. Schedul-
ing strategies for processing continuous queries over
streams. In BNCOD, pages 16–30, 2004.

[17] Samuel Madden and Michael J. Franklin. Fjording
the stream: An architecture for queries over streaming
sensor data. In ICDE, pages 555–566, 2002.

[18] Vamshi Pajjuri. Design and implementation
of scheduling strategies and their evaluation in
mavstream. Master’s thesis, University of Texas at
Arlington, Arlington, 2004.

[19] Utkarsh Srivastava and Jennifer Widom. Memory-
limited execution of windowed stream joins. In VLDB,
pages 324–335, 2004.

[20] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik,
Mitch Cherniack, and Michael Stonebraker. Load
shedding in a data stream manager. In VLDB, pages
309–320, 2003.


