Topic Distillation using Support Vector Data Description

V. Vijaya Saradhi, Harish Karnick and Pabitra Mitra

TRDDC (Pune), IIT Kanpur and IIT Kharagpur

December 16, 2008

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Outline

Introduction

- Topic Distillation Algorithms
 - HITS
 - Bharat & Henzinger Algorithm (B & H)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

- Support Vector Data Description (SVDD)
- Experiments and Observations

HITS Algorithm

- Constructs a graph using web pages as vertexes and hyper-links as edges
- Each web page is associated with 'Authority' (sources of information) and 'Hub' (pages with collection of useful links) weights
- ► Authority and Hub weights are computed iteratively as follows $a_i = \sum_{j \in B(i)} h_j$; $h_i = \sum_{j \in F(i)} a_j$

うつん 川川 スポット エリット ふしゃ

▶ Top k weights correspond to good authority and hub pages

B & H Algorithm

- Addresses shortcomings of HITS
 - Equal weights to all the hyper-links
 - Well connected non-relevant web pages (known as topic drift)
 - Automatically generated links (also leads to topic drift)
- Proposes threshold based heuristic for overcoming the topic drift problem
- 'relevant' pages are obtained in the present work using SVDD

うつん 川川 スポット エリット ふしゃ

Support Vector Data Description (SVDD)

- Distinguishes one class from rest of the feature space
- Examples are from one class (target class)
- Aims at classifying target examples and non-target examples

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Constructs a hyper-sphere around given data points
- learns 'relevant' page to given query

SVDD Formulation

Primal Formulation:

$$\begin{array}{ll} \max_{R, \, O, \, \xi} & R^2 \, + \, C \, \sum_{i \, = \, 1}^N \xi_i \\ \text{subject to} & \|\varphi(X_j) \, - \, O\,\|^2 \, \leq R^2 \, + \, \xi_j \\ & \xi_j \, \geq \, 0, \, \forall \, j \, = \, 1, \, \cdots, \, N \end{array}$$

Dual Formulation:

$$max_{\alpha} \qquad \sum_{i=1}^{N} \alpha_{i} \langle \varphi(X_{i}), \varphi(X_{i}) \rangle - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} \langle \varphi(X_{i}), \varphi(X_{j}) \rangle$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

subject to
$$\sum_{i=1}^{N} \alpha_i = 1$$

 $0 \le \alpha_i \le C, \forall i = 1, 2, \cdots, N$

► The inner product ⟨φ(X_i), φ(X_j)⟩ is replaced with kernel function k(X_i, X_j)

Target Example Identification

- ► Radius of the hyper-sphere is computed using support vectors α_i > 0
- A new data point, say Z, is tested by SVDD for acceptance as follows:
 - Computer the distance of Z from the origin of the hyper-sphere O
 - If the above distance is less than radius R then Z is a target example; else it is not.

ション ふゆ アメリア イロア しょうくしゃ

Composite Kernel

- The kernel function k(X_i, X_j) is expressed as weighted linear combination of
 - Document similarity kernel
 - DD^{T} ; where D is a term-document matrix.
 - Co-citation matrix
 - If two documents X_i, X_j are cited by ℓ other documents, then the k(X_i, X_j) has a positive score of ℓ

ション ふゆ アメリア イロア しょうくしゃ

Topic Distillation using SVDD

- 1. Construct the root set S_R for query q
- 2. Construct the hyper-sphere using SVDD with p documents from S_R
- 3. Generate pruned set $S_r \subseteq S_R$ using target example identification rule
- 4. Run HITS on the pruned set S_r to obtain top k hubs and authorities

ション ふゆ アメリア イロア しょうくしゃ

Remarks:

- 1. Computational over heads
 - 1.1 Solving the QP using the set S_p
 - 1.2 Target object identification using the set S_R

Experimental Results

Abbreviation	Query
PA	Parallel Architecture
ZB	Zen Buddhism
VC	Vintage Cars
RE	Recycling Cans
TH	Thailand Tourism

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

- 1. SVDD is analyzed along 5 dimensions:
 - 1.1 Hyper-sphere radius
 - 1.2 Pruned set S_r
 - 1.3 Irrelevant pages
 - 1.4 Computational time
 - 1.5 Closeness of SVDD to HITS
- 2. Algorithms Compared: HITS and B & H
 - 2.1 Precision
 - 2.2 Relative recall

SVDD Analysis

Irrelevant page example

An example 'irrelevant' web page pruned using SVDD. recycling cans plaese help us to find about cans]

From: (no name) (*no email*) Date: Mon Mar 04 2002 - 12:02:44 EST

- Previous message: ewolfram@infinex.com: "Recycle tip for mesh bags"
- Messages sorted by: [date] [thread] [subject] [author] [attachment]
- Previous message: ewolfram@infinex.com: "Recycle tip for mesh bags"
- Messages sorted by: [date] [thread] [subject] [author] [attachment]

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

This archive was generated by hypermail 2.1.1 : Mon Mar 04 2002 - 12:02:45 EST

Precision and Relative Recall

 Precision and relative recall figures are obtained through volunteer evaluation

3

- Shortcomings
 - Number of volunteers is too small
 - No diversity among the volunteers
- SVDD competes with HITS and B&H algorithms

Summary

- Relevant pages from the root set are obtained using SVDD framework
- Authority and hub weights are computed on the pruned set of pages

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

- Competitiveness of SVDD is experimentally observed
- Computational time in obtaining pruned set is high