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Abstract 
This paper presents a simple, yet novel, approach 
to address the problem of spike detection. The 
definition of a spike varies with the domain 
under study. This results in domain-specific 
solutions that are often rendered unusable in 
other domains. Moreover, the spike detection 
algorithms proposed in the past are effective only 
when suitably tuned. This often limits their 
usability in real-life scenarios. In this paper, we 
present a generic approach to address the 
problem. We propose various spike definitions 
and present a computationally light-weight 
algorithm that can cater to all these definitions. 
The algorithm can automatically adapt itself to 
changing data characteristics. We demonstrate 
the soundness of our approach by experimental 
evaluation. We also compare the proposed 
algorithm with the existing implementations. We 
then present an application of spike detection in 
the domain of performance and capacity 
management in enterprise systems by presenting 
real-life case-studies. 

1. Introduction 
Detection of spikes (peaks and troughs) has been a subject 
of interest across diverse fields such as mass spectrometry 
[13], signal processing [11], image processing [3], bio-
informatics [2] to name a few. The subject has found such 
widespread applicability owing to its ability to highlight 
deviations, in an otherwise routine scenario.  

A close examination of such deviations can lead to 
interesting insights relevant to the applicable domain. 
Some such examples are shown in Figure 1. Figure 1a 
shows the price of oil exhibiting divergence from routine 
trend at times of recession in the economy. Figure 1b 
shows a musical signal that suddenly intensifies for a 
short time at places of high pitch. Figure 1c shows a 

signal that slowly intensifies as the breath is inhaled 
during respiration process. Figure 1d shows an EEG 
signal that starts to fluctuate fiercely at times of increased 
brain activity. 

The problem of spike detection is challenging due to 
various reasons. One of the biggest challenges is the 
ambiguous definition of a spike. It is hard to formalize the 
problem in one single definition. One key reason for the 
absence of a common definition is the tight coupling of 
the definition to the applicable domain as shown in Figure 
1. In Figure 1a, a spike is a sudden rise or fall at certain 
point in time (start or end of recession period). It can also 
be a gradual pattern spread across the entire recession 
period. In Figure 1b a spike is a sudden rise followed by a 
sudden fall. The shape of the spike is symmetric on both 
sides and the spike occurs periodically. Moreover, the 
true spikes are hidden in the underlying noise. In Figure 
1c, a spike is a gradual rise followed by a gradual fall. 
The shape of the spike is symmetric and the occurrences 
are periodic. However, the fall sustains for relatively 
longer duration than the rise. The signal here is free of 
noise. In Figure 1d a spike is a sudden rise followed by a 
sudden fall. However, the shape of the spike is 
asymmetric and the spike occurs at non-periodic intervals. 
From these examples it can be seen that it is very difficult 
to derive a single definition. The existence of such a wide 
category of applicable domains, each with its own 
problem definition, has resulted in various spike detection 
algorithms. Nevertheless, there exist a set of common 
challenges that restrict the accuracy of the existing spike 
detection algorithms. Some of these challenges are as 
follows:  
1. Noise in the underlying data: Figure 2a shows high 

level of noise in the data. It is imperative to estimate 
the right level of noise to avoid detection of many 
spurious spikes (high rate of false positives). 

2. Criteria for setting threshold(s): Figure 2c shows a 
signal with true spikes depicted by numbers 1 to 5. A 
solid threshold (bold line) to detect spikes prevents 
many true spikes (#4 and #5) from getting detected. 
An adjustable threshold (dotted line) does a better 
job (captures #5 but still leaves #4). A robust 15th International Conference on Management of Data 
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criterion for dynamic threshold determination is 
crucial to achieve high rate of accuracy. 

3. Presence of both strong and weak spikes: Figure 2b 
shows a data-series where both strong and weak 
spikes co-exist. In some scenarios, it is necessary to 
detect both strong as well as weak spikes. 

4. Minimal tuneable parameters: Existence of wide 
range of highly unpredictable data characteristics 
demands different settings of algorithm parameters. It 
is highly cumbersome and impractical to manually 
tune the algorithm depending on the situation. 
Therefore, reliance on minimal tuneable parameters 
is a foremost necessity. 

 

 
Figure 1 (a) Spikes in price level of oil (b) Spikes in a musical 
note (c) Spikes in a signal depicting human respiration 
behaviour (d) Spikes in an EEG signal 

 
In this paper, we present a spike detection algorithm 

that caters to these challenges. We formalize various 
spike definitions and show the generic nature of our 
algorithm across these definitions. We present a technique 
to estimate the level of noise in the underlying data. We 
then propose an algorithm that dynamically derives the 
threshold value based on input data characteristics. The 
algorithm is capable of detecting both strong as well as 
weak spikes. Moreover, we rely on minimal tuneable 
parameters while producing consistently sound results 
across wide range of data characteristics. 

We also present an application of the proposed spike 
detection algorithm in the area of performance and 
capacity management in enterprise systems. Many 
operations in this domain require analysis of various 
system, workload, and performance metrics. Spike 
detection proves to be a very useful tool in such analysis. 
A few relevant instances are listed below: 
• Identification of points of interest: One of the first 

steps in the ‘as-is’ analysis of the system involves 
identification of points of interest. For instance, these 
points could be specific days in a week when system 
workload shoots up. Spike detection in such 
scenarios can identify these points that become the 
focus for further analysis. We applied spike detection 

on data gathered from a real-life batch processing 
system and successfully identified such points of high 
workload and low performance. We present such a 
scenario in Section 6.2. 

• Capacity planning: Spike detection can also be a 
useful tool in assessing the capacity of a system. For 
instance, consider a scenario of an online shopping 
service. Here, an increase in the number of users can 
cause abnormal spikes in metrics such as available 
memory, CPU utilization and response time. These 
spikes can be a useful indicator of the saturation and 
instability of the system. We present such a scenario 
in Section 6.3. 
 

 
Figure 2 (a) A series with high level of noise with no true 
spikes. (b) A signal with true spikes marked by numbers 1 to 5 
along with solid and adjustable threshold values. (c) A series 
where both strong (solid circles) and weak (dotted circles) 
spikes co-exist.  
 
The main contributions of this paper are as follows. (1) 
We propose a spike detection algorithm that is 
computationally light weight and caters to various spike 
definitions. (2) We propose a novel approach that 
automatically tunes the algorithm parameters based on the 
input data characteristics. Thus, the algorithm shows high 
accuracy over a wide range of input data. (3) We present 
an application of the proposed spike detection algorithm 
in the area of performance and capacity management in 
enterprise systems. We present experimental evaluation of 
the proposed algorithm on various real-life case-studies. 

The rest of this paper is organized as follows; Section 
2 talks about the related work. The proposed approach is 
discussed in Section 3, followed by the pseudo code in 
Section 4. Section 5 presents the experimental evaluation 
of the proposed algorithm. In this section, we validate the 
effectiveness of our approach and compare the proposed 
algorithm with spike detection algorithms proposed in the 
past. In Section 6 we show the application of spike 
detection algorithm in the domain of performance and 
capacity management through various real-life case-

(a) (b) 

(c) (d) 

(a) (b) 
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studies. Section 7 presents the conclusion. Open issues 
and future work are discussed in Section 8. 

2.   Related work 
Spike detection has been a subject of interest across 
diverse domains. Several algorithms have been proposed 
in context of each applicable domain [1, 2, 3, 5, 7, 8, 9, 
11, 13]. Although, all the algorithms cater to the same 
conceptual problem, the algorithm’s design is tightly 
coupled to the domain. This is evident from the existence 
of a variety of spike definitions as discussed in Section 1. 
This coupling restricts their re-use in other domains. 

A few mathematical formalizations have been 
proposed [12], however, they result in large number of 
false positives unless specifically tailored for the intended 
domain.  

In general, a common approach to address the problem 
includes Smoothing followed by Baseline correction and 
finally Peak Identification [13]. Smoothing involves 
capturing the important patterns in the data, while leaving 
out noise or other fine-scale structures. Baseline 
correction then flattens the baseline of the smoothed data. 
It attempts to average the baseline to zero. This improves 
the accuracy in the Peak Identification phase which sets a 
threshold on the baseline corrected data to produce the 
final result. Each spike detection algorithm incorporates 
either all or a subset of these functions in its lifecycle.  

Moreover, many spike detection algorithms rely on 
the usage of a single or multiple threshold values. This 
notion plays a decisive role in evaluating the effectiveness 
of any algorithm. In some way or the other, this notion 
prevails at each phase of spike detection. The amount of 
desired Smoothing might depend on the amount of noise 
in the underlying data, and so does the amount of 
Baseline correction, which might depend on the nature of 
overall data. Also, the final criterion that decides whether 
a point is a spike or not, is always some comparison 
against a threshold value. It is therefore imperative for 
each algorithm to incorporate a dynamic criterion for 
threshold determination while producing consistent 
results across wide range of data characteristics. In the 
past, some work has been done in dynamically computing 
these thresholds [6]. Most of these algorithms work under 
some assumptions such as absence of outliers in the data 
[6], reliance on a minimal threshold [4], etc. In addition, 
some algorithms require additional input parameters, such 
as window size [10], algorithm-specific parameters (such 
as minimum momentum as in [4]), for which a constant 
value might not work in every situation. 

Adding to the complexity of an already volatile 
situation, are unpredictable data characteristics, justifying 
an indispensable need for an algorithm to be self-
tuneable. 

3.   Proposed approach 
Our approach for detection of spikes (peaks and troughs) 
in a time-series is a sequence of six steps. At each step 
some data-points are filtered based on certain criteria. The 
selected data-points are passed onto successive steps to be 
rinsed further. Here we will explain our approach to 
detect peaks. Detection of troughs follows a conceptually 
similar approach, which will be a part of Section 4.  

We will use the term data-point to refer to the value at 
some time-instant. Also, we use the term data-series to 
refer to a collection of data-points. Below, we explain 
each of the six steps used in our approach. 

3.1   Removal of non-candidate data-points 

Intuitively, a spike would resemble a data-point as shown 
in Figure 3a; a data-point (solid) with both left and right 
neighbours (hollow) having a significant lower value.  In 
this step, we identify such data points that are candidates 
for further processing. 

For the sake of simplicity, we adhere to certain 
limitations in this step: 
• We consider only immediate left and right neighbours.  
• The distance from the neighbouring points 

(significance) is not a concern here.  
However, this basic definition can be extended to 

include a few more scenarios, as explained using Figure 
3.  
• A spike can be a data-point where the left neighbour 

possess a lower value, while the right neighbour can 
have an equal value as shown in Figure 3b. 

• A spike can be a data-point where the left neighbour 
possess a lower value, while the right neighbour can 
have a higher value as shown in Figure 3c. 

Such extensions are important since they add more 
flexibility in matching varying set of expectations. As a 
whole, we derive four possible spike definitions from 
Figure 3, as listed in Table 1.  

Our algorithm, by default, adheres to definition D2. 
Therefore, as our first step, we consider only those points 
in the original time-series, which adhere to definition D2. 
By doing this, we are removing all those data-points from 
the original time-series which can never be spikes. This 
reduces the probability of detecting a false positive, 
thereby contributing to the accuracy rate. Note that, the 
algorithm is flexible enough to adapt to the other spike 
definitions (listed in Table 1). This aspect will be 
highlighted in Section 4. 
 
 

Figure 3: Examples of spike shapes  
(a) (b) (c)



 
 (a) (b) (c) 

D1 Included - - 
D2 Included Included - 
D3 Included - Included 
D4 Included Included Included 

Table 1: Spike definitions 

3.2   Bifurcation 

The selected set of data-points is now bifurcated into two 
data-series. The first data-series is composed of the 
‘difference’ between the data-points with their immediate 
left neighbours. We will refer to this series as left-data-
series. Similarly, the other data-series is composed of the 
‘difference’ between the data-points with their immediate 
right neighbours. We will refer to this series as right-
data-series. 

Each data-series is now analyzed independently. This 
simple step gives bountiful of advantages: 
• We have achieved baseline correction without the use 

of any explicit baseline correction method. Figure 4a 
shows the original time-series. Baseline correction is 
noticeably visible in Figure 4b and Figure 4c. 

• The original time-series characteristics (such as 
precise amplitude of spikes, amount of noise) are still 
preserved in the data-series pair. Figure 4b and Figure 
4c collectively reflect the original characteristics of the 
time-series (Figure 4a). 

• It provides greater flexibility in deciding the outcome 
of a data-point (spike or not). Consider the encircled 
data-point in Figure 5a. The data-point is a candidate 
spike as per definition D2. However, the distance of 
the data-point with its left neighbour is negligible 
when compared to its distance with the right 
neighbour, as encircled in Figure 5b and Figure 5c 
respectively. Such uneven scenarios become apparent 
due to independent analysis of the data-series. A 
flexible criterion can then be applied to decide the 
outcome of such data-points (spike or not). This 
argument will be supported by a discussion in Section 
3.5.  
Note that this step can be altered to consider k 

neighbouring points, instead of just the immediate 
neighbour as per our definition of a spike. Criterion for 
formation of data-series in such case will be explained in 
Section 4. 

Both the data-series are now independently processed 
in the next step. We will use the term data-series to refer 
to each series obtained as a result of bifurcation. 

 
Figure 4: (a) Original time series, (b) Left data-series, (c) Right 
data-series 
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points about the mean. Figure 8a shows the 
density estimate of such uneven distribution. The 
data-points are mainly concentrated below the 
mean (dotted line).      

• In a high noise data-series (Figure 7c & Figure 
7d), the distribution of the data-points about the 
mean is relatively even. Figure 8b shows the 
density estimate of an even distribution. The 
data-points are evenly distributed about the mean 
(dotted line). 

We calculate the density of data-points (in terms of 
population) around the mean for the data-series shown in 
Figure 6. Statistically, for the low noise data-series, this 
population is approximately 93 percent on one side of the 
mean. This is unlikely the case with the high noise data-
series where almost 50 percent of data-points evenly fall 
on each side of the mean. On the basis of the above 
observation, we deduce that the density distribution of 
data-points about the mean is a promising indicator of 
noise in a data-series (a result of bifurcation process). We 
argue that low noise in a data series leads to an uneven 
density distribution and vice-versa. We validate this 
argument by experimental evaluation in Section 5.1 where 
we show the effect of increase in noise on the flattening 
of the density curve. In this section, we use these concepts 
to compute the noise estimate and the threshold. 

3.4  Determination of the threshold value 

Our algorithm auto-computes the threshold value based 
on the level of noise in a data-series; the higher the noise 
level, the higher is the threshold required to avoid 
detection of spurious spikes. We use the threshold to 
further trim the set of candidate spikes by rejecting all the 
data-points that lie below the threshold value. 

 

 
 
 
Figure 7: Categorization of data-series on the basis of noise and 
standard deviation. (a) Low noise and low standard deviation (b) 
Low noise and high standard deviation (c) High noise and low 
standard deviation (d) High noise and high standard deviation. 
 

 
Figure 8: Density estimates of low (a) and high (b) noise data-
series of Figure 6 

 
Formally, we define the threshold value (λ) for a data-

series with mean (µ) and standard deviation (σ) as: 
λ = µ + (β * σ)  (1) 

where β is the noise estimate for the data-series. 
As already discussed in Section 3.3, standard 

deviation alone is not a sufficient criterion for spike 
detection. Therefore, we compute the noise estimate β 
based on the technique discussed in Section 3.3, and use β 
to compute the threshold value λ. We next present a 
technique to compute β. 

In accordance to the noise estimation technique 
discussed in Section 3.3, we argue that the density 
distribution about the mean is a promising indicator of 
underlying noise. We have supported this argument by 
calculating the population of data-points (percentage) 
about the mean value for both low and high noise data-
series. We will use this notion to derive the noise estimate 
β. Formally, we define the noise estimate β as: 

β = ƒ (ρ)   (2) 
where ρ is the percentage population on either side of the 
mean, with the higher density estimate. 

We observed that a linear equation is not the right 
representative of the relationship between β and ρ. The 
reason for this inference arose from experimental 
analysis. We observed that the threshold bar β should be 
raised more aggressively levels below ρ ~ 80 to avoid 
detection of spurious spikes. The β value in the range 80 
< ρ < 100 was found to work well with lower increments. 
Hence, we empirically derived an approximate 
polynomial curve of second degree to represent the 
relationship between β and ρ. Figure 9 shows the 
relationship between β and ρ.  The goodness of fit can be 
judged by a near one R2 value of 0.9928. Equation 1 thus 
governs the dynamic value of threshold across varying 
level of noise in a data-series. 

We extended the above concept to introduce the 
notion of noise sensitivity.  We define noise sensitivity as 
the ratio of β to ρ. The higher the ratio, higher is the noise 
sensitivity. Providing noise sensitivity as a parameter 
adds more flexibility in customizing the algorithm’s 
sensitivity to noise, as per user expectations. In 
accordance, we deduce three levels of noise sensitivity, as 
shown in Figure10. 

 

(a) (b) 

(c) (d) 

(a) (b) 



 
Figure 9: Relationship between β and ρ 
 

The coefficients and R2 values of equation of type y = 
ax2 + bx + c, for all three levels are listed in Table 2.  

Thus, we have derived a novel approach to 
dynamically determine the threshold value depending on 
the noise estimate of the data-series. In addition, the 
concept of noise estimate when encapsulated within the 
notion of noise sensitivity, gives more flexibility in 
customizing the algorithm as per user expectations. We 
present an experimental evaluation of this concept in 
Section 5.1. 

 

 
Figure 10: Noise sensitivity levels 

 
Noise 

Sensitivity a b c R2 

Low 0.0007 - 0.1369 6.5232 0.998 
Medium 0.0024 - 0.4407 20.455 0.993 

High 0.0015 - 0.3293 17.732 0.997 
Table 2: Coefficients and R2 values of polynomial equations 

3.5 Spike selection criterion 

Independent analysis of each data-series in the previous 
step results in two sets of candidate spikes. By default, 
our algorithm takes the union of candidate spikes in both 
the sets. Thus a data-point is a spike, if individual analysis 
of either of the data-series considers it to be a spike. This 
is supported by a scenario in Figure 5.  

Note that this step is flexible enough to consider the 
intersection of candidate spikes in the two sets.  This step 
is useful in deciding the desired shape of the spike. 

3.6 Comparison with spike intensity 

The resultant set of candidate spikes undergoes the final 
step of filtering. This is a simple, yet efficient step that 
addresses one of the major challenges already discussed 
in Section 1. The intensities (amplitudes) of the candidate 
spikes are now compared against a user-desired intensity 
value, if any. We calculate the intensity of a data-point 
relative to the maximum value in the original time-series. 

This gives the flexibility to either accept or reject weak 
spikes. The co-existence of weak and strong spikes has 
been a subject of discussion in Section 1. The resulting set 
of data-points forms the final set of spikes 

4.   Proposed algorithm 
In this section, we present the pseudo-code of the 
proposed spike detection algorithm. We will explain its 
working against the default spike definition, D2 in Table 
1. For the sake of simplicity, the pseudo-code that we 
present here makes the following assumptions; it will 
detect only the peaks and it considers only the immediate 
neighbours for analysis. 

The generic nature of the algorithm across various 
aspects such as adapting to other spike definitions, 
criterion for considering k immediate neighbours, and 
detection of troughs will be a subject of discussion at the 
end of this section.  

Consider a univariate uniformly sampled time-series 
T = <x1, x2, x3…xN> of length N. The time-instants are 
assumed to be 1, 2…N. The value at the ith time-instant is 
represented by x[i]. We will use symbol N for noise 
sensitivity and S for spike intensity.  

 
procedure spike.detection (T, N, S) do 
   variables P, lds, rds 
    for each data-point in T, do 
         if the data-point matches the spike definition D2 do 
            # add the data-point to the left-data-series 
            lds = the difference between the data-point and  its immediate left 

neighbour   
            # add the data-point to the right-data-series 
            rds = the difference between the data-point and  its immediate 

right neighbour 
end  

     end    

if (standard deviation of both lds and rds is zero) do 
          return ‘No Spike’ 

end 

Compute density estimates (ρ) for both lds and rds do 
          ρ = density on either side of the mean, whichever is higher 

end 

Compute noise estimate (β) for both lds and rds using   Table 2 do 
          β = a*ρ2 + b*ρ+ c [Equation depends on N] 

end 

Compute the threshold (λ) for both lds and rds do 
            λ = µ + (β * σ) 

end 

Select only those data-points from lds and rds that are above the 
threshold value (λ) do 

 P = union (data-points above the threshold λ) 
end 
Select only those points from P that exceed the spike intensity value 
(S) do 

P = {P} – {data-points in P with intensity less than S} 
end 

end 
   The above pseudo code follows certain assumptions that 
have already been discussed in this section. We will now 
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discuss the generic nature of the algorithm across various 
aspects.  
• Adapting to a different spike definition: By default, 

the algorithm follows spike definition D2 of Table 1. 
We will now explain the approach to customize the 
algorithm for other spike definitions (listed in Table 
1). This aspect of generality is a concern in the first 
step of our approach (Section 3.1). In accordance to 
Section 3.1, we consider only those data-points in the 
time-series that follow the spike definition rules. These 
rules are now formalized in Table 3 for all the four 
definitions. We will present the interpretation of these 
rules for one of the spike definition, D3. The same 
interpretation is applicable to all the other definitions. 
We will interpret the definition rule (D3) for the 
selection of candidate peaks (in Section 3.1). The 
interpretation of the rule is as follows; Any data-point 
x[i] is considered to be a candidate peak only if, x[i] is 
higher than its immediate left neighbour (x[i-1]) and 
x[i] is not equal to the immediate right neighbour 
(x[i+1]). Similarly, rules applicable to trough detection 
are listed in the third column of Table 3. 

 
x[i] (Peaks) x[i] (Troughs) Definition x[i-1] x[i+1] x[i-1] x[i+1] 

D1 > > < < 
D2 >= >= <= <= 
D3 > != < != 
D4 >= none <= none 

Table 3: Spike definition rules for peaks and troughs 
 
Table 3 thus governs the rules that should be 

followed in order to customize the algorithm for a 
different spike definition. 
 
• Considering neighbouring k data-points:  In the 

bifurcation phase of our approach (Section 3.2), the 
algorithm (by default) considers only the immediate left 
and right neighbours for construction of the data-series 
(left-data-series and right-data-series). This aspect 
however can be extended to consider k neighbouring 
data-points, instead of just the immediate neighbour. 
We will first explain the approach to construct left-
data-series. The criteria for selecting the appropriate 
data-point (among k neighbouring data-points on either 
side of x[i]) differs for both peak and trough detection. 
For peak detection, we consider the data-point 
possessing the minimum value among the k neighbours. 
Conversely, for trough detection, we consider the data-
point possessing the maximum value among the k 
neighbours. 

Similar approach applies to the construction of the 
right-data-series. The criterion of selection of the 
appropriate data-point (among k neighbouring data-
points) in this case is listed in Table 4, for both peak 
and trough detection. 

• Deciding the shape of a spike: By default, in the spike 
selection criteria (Section 3.6), the algorithm takes the 
union of both the sets (of candidate spikes) that has 
resulted from independent analysis of both the data-
series. The algorithm can also be customized on this 
aspect to consider the intersection of both the sets. This 
aspect governs the desired shape of a spike. 

 
Peaks x[i] Troughs x[i] 

min  (x[i-k]:i) min  (i: x[i+k]) max (x[i-k]:i) max(i: [i+k]) 
Table 4: Bifurcation rules to construct left-data-series and right-
data-series in case of k neighbours. 

5.   Experimental evaluation 
In this section we present the experimental evaluation of 
the proposed algorithm. We first evaluate the correctness 
of the proposed approach to detect spikes and the auto-
tuning behaviour of the algorithm across changing data 
characteristics. We validate the proposed auto-tuning 
approach by running the algorithm with and without auto-
tuning support. We show the effectiveness of auto-tuning 
across a wide range of time-series varying in their level of 
noise. Section 5.1 covers this aspect of evaluation. 

We then compare the proposed algorithm with two 
widely used spike detection algorithms: (1) entropy-based 
algorithm [10] (2) a mathematical formalization [10]. We 
identify the strengths and weaknesses of these algorithms 
and show that the proposed algorithm outperforms the 
existing algorithms in various aspects. Section 5.2 
presents this evaluation.  
 
5.1 Effectiveness of auto-tuning 
Test-bed description 
For evaluating the effectiveness of auto-tuning, we 
generate artificial noise in a synthetic time-series. We 
started with an almost steady time-series of 100 data-
points. All the data-points, except one (spike), are at the 
zero level (Figure 11a).  We slowly increment the amount 
of artificial noise over a span of fifteen time-series 
(increments). The number of expected (true) spikes 
increases for the first seven time-series. However, with 
increase in noise at further levels, most of them begin to 
get buried in the noise. Thus, the number of expected 
spikes increases up to the middle and then gradually 
reduces towards the fifteenth time-series. 

In order to achieve comprehensive evaluation of our 
technique, we plant both strong and weak spikes. Figure 
11b shows the presence of both weak (encircled) and 
strong spikes in an intermediate time-series. 

In order to give a visual feel of our test-bed, Figure 
11a and Figure 11c show the initial and final state of the 
synthetic time-series. Time-series in Figure 11a is free of 
noise, with a prominent spike. An intermediate time-
series shown in Figure 11b contains both strong and weak 
spikes. Figure 11c shows the final state of the time-series. 
A high level of noise is visually apparent.  



Also, to justify our criterion of noise estimation, we 
present plots of the density estimates of four intermediate 
time-series in order of increasing noise, see Figure 12. 
The first density plot clearly shows a high density 
estimate below the mean (a dotted line, almost at zero 
level), with just a small bump at 0.4 level (corresponding 
to spike at 0.4 in Figure 11a). With increment in the noise 
level, this curve starts to flatten as apparent in the fourth 
density plot, for time-series in Figure 11c. 
 

 
Figure11: Sample time-series from the test-bed (a) Initial state 
(b) Intermediate state with weak spikes (c) Final state with noise 
 

 
Figure12: Density plots of sample time-series in increasing order 
of noise. 
 
Parameter tuning 
We validate our technique by running the algorithm with 
and without auto-tuning support. In the active mode, the 
algorithm automatically computes β. The algorithm is 
tuned to noise sensitivity of medium level, which is the 
default. The spike intensity is set to the default value of 
five percent. 

In the inactive mode, the noise estimate β is fixed at 
value one. 
 
Evaluation criteria 
We evaluate the algorithm on the basis of three simple 
parameters; detected spikes, false positives and false 
negatives. We refer to the set of actual spikes as the 
expected set. The unexpected set comprises of all data-
points other than the expected set. 

As apparent, detected spikes is the number of data-
points detected as spikes by the algorithm. False positives 
are the number of data-points detected as spikes, from the 

unexpected set. False negatives are the number of data-
points not detected from the expected set. 
 
Results 
Figure 13a shows the detected spikes during ‘active’ and 
‘inactive’ mode, against all fifteen time-series in order of 
increasing noise. The dotted curve shows the behaviour in 
inactive mode. The solid curve shows the behaviour in the 
active mode.  

As apparent from the figure, with the increase in noise 
level, the inactive mode detects more data-points as 
spikes. However, the active mode senses the increase in 
the noise level, and the effect of auto-tuning is apparent 
by the downward motion of the curve (solid) beyond the 
seventh time-series.  

Although this parameter does not anyhow point to the 
accuracy of the algorithm in either of the modes, it does 
however show the effect of auto-tuning. The observation 
that the active mode curve remains above the inactive 
mode curve till the seventh time-series produces an 
interesting insight. Both modes detect the strong spikes in 
the initial stages. The higher curve of active mode shows 
that, unlike the inactive mode, the auto-tuning was 
effective in detecting even the ‘weak spikes’ present in 
the initial stages. 

Figure 13b shows the false positives produced in both 
modes. In the inactive mode, with increase in noise level 
the algorithm started to detect spurious spikes (dotted 
curve). However, in the active mode, the algorithm kept 
the false positives at a significantly lower level (solid 
curve). It shows the effectiveness of our approach across 
varying time-series characteristics. 

Figure 13c shows the false negatives produced in both 
modes.  In the inactive mode, the algorithm produces low 
false negatives for the initial stages having low noise. 
With further increase in noise, the inactive mode fails to 
capture weak spikes resulting in increase in false 
negatives. The decrease in false negatives after a point is 
attributed to the increase in false positives (Figure 13b). 
With high noise, the algorithm detects both true spikes as 
well as spurious spikes resulting in low false negatives 
but high false positives. In the active mode however, the 
algorithm maintains low false negatives over the entire 
range (solid curve, Figure 13 c). 

The above experiments validate the effectiveness of 
auto-tuning. The results clearly indicate that auto-tuning 
correctly captures the time-series properties and provide 
effective spike detection over a wide range of time series. 

 
5.2 Comparison with other algorithms 
In this section, we compare the proposed algorithm with 
two widely used spike detection algorithms; (1) entropy 
based algorithm [10] (2) a mathematical formalization 
(mf based) [10]. Both the algorithms are based on the 
sliding-window concept. The entropy based algorithm 
first computes the entropy in the window size of 2k data-
points (k on each side of the ith data-point). It then 

(a) (b) (c)



includes the ith data-point and re-computes the entropy 
now in the window size of 2k+1. It computes the 
probability density of the window as an intermediate step 
while computing the entropy. The difference in the 
entropy with and without the ith data-point reflects the 
significance of the ith data-point in the region. On the 
other hand, the mathematical formalization first computes 
(i) the average of the distances of ith data-point from its k 
left neighbours and (ii) the average of the distances of ith 
data-point from its k right neighbours. Then it takes the 
average of (i) and (ii). This value reflects the significance 
of the data-point in the region. The output of both the 
algorithms then undergoes a common post-processing 
step to filter out spurious spikes. Moreover, both the 
algorithms use an additional parameter h to adjust the 
threshold that decides the significance of a spike. 

 

 
 
Figure13: Evaluation results against (a) Total number of 
detected spikes (b) False Positives (c) False Negatives 
 
Parameter settings: For evaluation of these algorithms, 
we use the default settings of their arguments. The 
purpose of this exercise is not to evaluate their behaviour 
across different set of arguments. Therefore, they are 
evaluated with the default setting which is expected to 
produce the best results. We choose window size (k) as 15 
and h as 1.5. The proposed algorithm is also evaluated 
against its default setting of arguments; noise sensitivity 
at medium level and spike intensity of five percent. 
 
Test-bed description: The test-bed used for this section 
comprises of thirteen time-series. In order to achieve a 
comprehensive review of all the three algorithms across 
wide range of data characteristics, the time-series differ in 
various aspects; such as amount of noise, standard 
deviation, length, presence of weak as well as strong 
spikes, etc. to name a few. We will evaluate all the three 
algorithms in their ability to detect only the peaks. The 
data-points that are expected to be spikes are chosen on 
the basis of their visual appeal. This is necessary due to 
the absence of an optimal solution. In cases where weak 
spikes were present, they are included in the expected set 
of spikes. 
 
Comparison criteria: The algorithms are compared on 
the basis of three metrics; false positives, false negatives 
and execution time. False positives and false negatives in 

a time-series are calculated in terms of percentage as 
follows: 
 

 
 
An additional parameter, execution time (seconds) is the 
time taken by the algorithm to complete its entire process 
of spike detection. The foremost expectation from these 
algorithms was to keep minimal false negatives. Detection 
of almost all the true spikes is of paramount importance. 
Low false positives are undoubtedly another necessity, 
but it is not expected to be achieved at the cost of an 
increase in the false negatives. 
Results:   
o In terms of false negatives (Figure 14), the proposed 

algorithm turns out to be a clear winner. It was able 
to detect all the true spikes. Both entropy-based and 
the mf-based were unable to detect many true spikes 
in a substantial number of time-series (8 out of 13). 
The set of time-series where these algorithms failed 
had a common characteristic; they were all low 
noise time-series with half of them having presence 
of weak spikes (3, 8, 12 and 13). The proposed 
algorithm detected all the true spikes in one of the 
time-series of just 29 data-points, where the 
window-based algorithms failed.  

o Figure 15 shows the false positives produced by the 
three algorithms. It can be seen that the entropy-
based algorithm generates smallest number of false 
positives. However, note that these low false 
positives come at the cost of high false negatives, as 
shown in Figure 14. The mf-based algorithm is 
prone to high noise and hence generates high false 
positives in many cases (7 out of 13). The high false 
positives account for low false negatives in Figure 
14, allowing the algorithm to detect true spikes even 
in high noise time-series (1, 5). The proposed 
algorithm produces significantly lower number of 
false positives than the mf-based algorithm. It 
produces higher false positives than the entropy-
based algorithm in four cases (1, 4, 6, and 12). In 
most of these cases the number of false positives is 
not very high. The data-points detected as false 
positives had a peculiar behaviour; the significance 
of fall on the sides of the data-point was highly 
uneven. The proposed algorithm caters to such 
shapes by default, and therefore detected existence 
of such spikes.  Note that, due to its generic nature, 
the algorithm can be customized to prevent 
detection of such spikes. 

o In terms of execution time (Figure 16), both the 
proposed algorithm and the mf-based algorithm did 
equally well. However, the entropy-based algorithm 
was found to be computationally expensive. The 
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reason for this lies in the complexity of its 
operation. Although the implementation definitely 
leaves the scope of improvement in terms of 
optimization, but such a profound difference in the 
performance is hard to be equalized. 

 

 
Figure14: False Negatives  
 

 
Figure15: False Positives  

 

 
Figure16: Execution Time  
 
Inference: It is evident from the results that the 
performance of the proposed algorithm was most stable 
and robust against variety of data characteristics. It 
achieved the objective of producing less false negatives, 
while maintaining a less false positives. It performed 
outstanding in a few cases, especially in cases where 
weak spikes were present. Owing to the generic nature of 
the algorithm, a few cases of false positives can be 
handled easily. It proved to be light-weight owing to its 
simplicity, a parameter crucial in determining the 
algorithms practicality in real life scenarios. 

6.   Application in performance and capacity 
management domain 
In this section, we present various application scenarios to 
demonstrate the importance of spike detection in the 
domain of performance and capacity management. 
 
6.1 Background 
Today’s enterprise systems are expanding in size as well 
as complexity. Moreover, they continue to host more and 
more performance critical applications. Such an 
expansion has made the automated management of these 
systems a foremost necessity. The current state-of-the-art 
solutions that attend to these needs rely on deployment of 

monitors on servers, routers, load balancers, switches, etc. 
to collect various performance statistics. These statistics 
are then analyzed for insights into the as-is state of the 
system. It also assists in forecasting the system’s 
performance in the future. Spike detection turns out to be 
a very useful tool for such analysis. In this section, we 
present application of spike detection in two such analysis 
operations: (1) identification of points of interest and (2) 
capacity planning. We use real-life case studies to 
demonstrate the effectiveness of the proposed algorithm 
in capturing interesting insights. 

Below, we describe the case-studies that we have used 
for this purpose: 

 
Trade-plant data: We used the monitored data of the 
mainframe jobs of a leading investment bank. Various 
performance metrics are available at a job-level such as 
the number of requests, CPU used, elapsed time in 
execution, number of failed executions, etc. The monitors 
also collect workload metrics (number of requests, arrival 
time of requests) and performance metrics (elapsed time, 
throughput). The data was collected for a period of 150 
days. We applied spike detection on this data set, in 
Section 6.2, to identify the critical hours in a day when 
the components observe high CPU activity.  
 
Server-farm data: This data is obtained by monitoring 
the server farms of a data centre.  The data consists of 
various system metrics such as total processor time used, 
available memory, page faults per second, bytes sent and 
received per second, etc. The data was collected for a 
month and approximately 1500 data points were collected 
for each metric every day. In Section 6.2 we apply spike 
detection to this data to identify interesting regions where 
various metrics simultaneously show high activity. This 
analysis provides insights into the steady state of the 
system. 
 
Petstore data: We also performed a simulation 
experiment using Load-Runner and Petstore to model a 
3-tier web-service architecture. We gradually increased 
the number of users to observe its effect on various 
performance metrics such as the elapsed time, CPU 
utilization, percent free memory, etc. In Section 6.3 we 
use this data. We demonstrate the applicability of spike 
detection in providing insights into the conditions of 
saturation and instability. 

 
6.2 Identification of points of interest 

Given the large scale of today’s enterprise systems it 
is absolutely essential to identify the points of interest to 
narrow down the scope of further detailed analysis. The 
interestingness can be based on critical time window 
analysis, critical component analysis, critical path 
analysis, etc. In this section, we present two such real-life 
scenarios in which application of spike detection 
highlights such interesting regions. 
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We first consider the Trade-plant data for this 
purpose. We grouped the CPU usage data of 150 days 
over 5 days * 24 hours space. This helped us in 
identifying the CPU usage characteristics that are specific 
to the day of the week and hour of the day.  Application 
of spike detection on this data-set clearly identified the 
hours with significantly high CPU usage (Figure 17). It 
can be seen that on all the five days of the week, the 
system observed significantly high CPU usage on the last 
few hours of the day. Such spikes in the workload pattern 
provided insights into better scheduling of the jobs. The 
jobs that are not bound for execution in this critical region 
can be scheduled at non-critical time durations for better 
resource utilization and increased system performance. 

 
Figure 17: Spikes identified on 2100, 2200, and 2300 hours on 
all five days of the week. 
 

Next, we present the application of spike detection on 
the Server-farm data. Here, we analyzed the data collected 
for a single server on a specific day. We applied spike 
detection on the single-day time-series of 20 performance 
metrics. Figure 18 and Figure 19 show the spikes detected 
on five such metrics namely: total % free disk space, free 
disk space on drive C, free disk space on drive E, bytes 
sent from the network interface, bytes received at the 
network interface. It can be seen that all five metrics 
observe huge spikes between time-instants corresponding 
to 500th and 550th data-point. Simultaneous occurrences of 
spikes in these performance metrics provide valuable 
insights; (a) they highlight times of high activity in a day; 
(b) they indicate a change in the steady state of the 
system. 

 
6.3 Capacity management 
Spike detection can also be used to gather insights into 
various capacity management issues. Though spike 
detection cannot address complex capacity management 
problems, it can however provide interesting insights that 
can be used to carry out further analysis. In this context, 
we performed an experiment to detect signs of saturation 
and instability using spike detection. We used the Petstore 
data in this regard. In this experiment, we gradually 
increased the number of users and observed its effect on 
various system parameters.  

 
Figure 18: Large spikes observed around 500th point in times 
series of all three metrics 
 

 
Figure 19: Large spikes observed around 550th point in time 
series of both metrics 
 

In Figure 20 we show how spike detection can provide 
symptoms showing the effect of saturation. Figure 20b 
shows high spikes in the response time beyond a certain 
level of increase in users (Figure 20a). Furthermore the 
spikes tend to increase with further increase in the number 
of users. Such symptoms are indicators of saturation of 
the system. We verified this inference by analyzing the 
CPU utilization metric which was found to have reached 
the saturation level. 

 

 
Figure 20: Effect of increase in number of users on response 
time. 
 

 
Figure 21: Effect of increase in number of users on % free 
memory. 
 

Another interesting insight was obtained by running 
spike detection on the time series of percentage free 
memory. With the increase in number of users (Figure 
21a), the percentage free memory periodically shows a 
gradual decrease followed by a sudden large spike (Figure 
21b). These spikes are indicative of the garbage collection 
activity. They provide insights into the JVM heap-size 

(a) (b) 

(a) (b)



settings. We observed that with an increase in the heap-
size, these spikes are detected at larger intervals, 
indicating the system’s capacity to support more users. 

7.   Conclusion 
In this paper, we have proposed a spike detection 

algorithm that caters to its various inherent challenges. It 
requires no pre-processing such as explicit baseline 
correction or smoothing. The need to refrain from such 
pre-processing methods is evident. Different baseline 
removal and smooth algorithms can produce different 
results, are sensitive to parameter settings and overall 
have a negative affect on the performance of further 
analysis. The proposed algorithm is computationally 
light-weight and still maintains high standards of 
accuracy. Moreover, it is highly flexible in various 
aspects. It can cater to various spike definitions, offers 
greater control to decide the shape of a spike (due to 
bifurcation), and offers various levels of noise sensitivity. 
The algorithm is capable of detecting both strong as well 
as weak spikes. We have proposed a technique to estimate 
the right level of noise in the underlying data. The 
advantage of this technique is harnessed to make the 
algorithm self-tunable. This has resulted in reliance on 
minimal tunable parameters, which has been a foremost 
need against the ever changing data characteristics. 

We have also presented an application of the proposed 
algorithm in the domain of performance and capacity 
management in enterprise systems. We have shown its 
importance across various operations relevant to the 
domain. We have applied the proposed algorithm on 
various real-life examples to demonstrate the usefulness 
of spike detection in the studied domain. 

8.   Open issues & future work 
One concern is the applicability of the proposed 

algorithm on data sets with multiple modes. Consider a 
bi-modal distribution with one mode (steady) having a 
significantly lower standard deviation than the other 
(noisy). The proposed algorithm will set an averaged 
threshold based on the entire time-series. This can result 
in unintended spikes getting detected in the noisy node 
(second part). The advantage is that since the time-series 
has been steady since the beginning, the detection of 
spikes in the second half (noisy) does indicate beginning 
of abnormal activity. However, this issue is rather 
debatable and is highly dependent on the user 
expectations. One walk-around this problem is to make 
the algorithm window-based by choosing a larger size of 
the window. Another approach could be to split the time 
series across modes and perform independent analysis the 
data of these modes. Such scenarios are possible course of 
action in the future. 
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