
 A Self-Adaptive Spike Detection Algorithm with Application
in Performance and Capacity Management

Shivam Sahai, Maitreya Natu, Manoj Jain

Tata Research Development and Design Center
Pune, MH, India, 411013

{shivam.sahai, maitreya.natu, kumar.manoj}@tcs.com

Abstract
This paper presents a simple, yet novel, approach
to address the problem of spike detection. The
definition of a spike varies with the domain
under study. This results in domain-specific
solutions that are often rendered unusable in
other domains. Moreover, the spike detection
algorithms proposed in the past are effective only
when suitably tuned. This often limits their
usability in real-life scenarios. In this paper, we
present a generic approach to address the
problem. We propose various spike definitions
and present a computationally light-weight
algorithm that can cater to all these definitions.
The algorithm can automatically adapt itself to
changing data characteristics. We demonstrate
the soundness of our approach by experimental
evaluation. We also compare the proposed
algorithm with the existing implementations. We
then present an application of spike detection in
the domain of performance and capacity
management in enterprise systems by presenting
real-life case-studies.

1. Introduction
Detection of spikes (peaks and troughs) has been a subject
of interest across diverse fields such as mass spectrometry
[13], signal processing [11], image processing [3], bio-
informatics [2] to name a few. The subject has found such
widespread applicability owing to its ability to highlight
deviations, in an otherwise routine scenario.

A close examination of such deviations can lead to
interesting insights relevant to the applicable domain.
Some such examples are shown in Figure 1. Figure 1a
shows the price of oil exhibiting divergence from routine
trend at times of recession in the economy. Figure 1b
shows a musical signal that suddenly intensifies for a
short time at places of high pitch. Figure 1c shows a

signal that slowly intensifies as the breath is inhaled
during respiration process. Figure 1d shows an EEG
signal that starts to fluctuate fiercely at times of increased
brain activity.

The problem of spike detection is challenging due to
various reasons. One of the biggest challenges is the
ambiguous definition of a spike. It is hard to formalize the
problem in one single definition. One key reason for the
absence of a common definition is the tight coupling of
the definition to the applicable domain as shown in Figure
1. In Figure 1a, a spike is a sudden rise or fall at certain
point in time (start or end of recession period). It can also
be a gradual pattern spread across the entire recession
period. In Figure 1b a spike is a sudden rise followed by a
sudden fall. The shape of the spike is symmetric on both
sides and the spike occurs periodically. Moreover, the
true spikes are hidden in the underlying noise. In Figure
1c, a spike is a gradual rise followed by a gradual fall.
The shape of the spike is symmetric and the occurrences
are periodic. However, the fall sustains for relatively
longer duration than the rise. The signal here is free of
noise. In Figure 1d a spike is a sudden rise followed by a
sudden fall. However, the shape of the spike is
asymmetric and the spike occurs at non-periodic intervals.
From these examples it can be seen that it is very difficult
to derive a single definition. The existence of such a wide
category of applicable domains, each with its own
problem definition, has resulted in various spike detection
algorithms. Nevertheless, there exist a set of common
challenges that restrict the accuracy of the existing spike
detection algorithms. Some of these challenges are as
follows:
1. Noise in the underlying data: Figure 2a shows high

level of noise in the data. It is imperative to estimate
the right level of noise to avoid detection of many
spurious spikes (high rate of false positives).

2. Criteria for setting threshold(s): Figure 2c shows a
signal with true spikes depicted by numbers 1 to 5. A
solid threshold (bold line) to detect spikes prevents
many true spikes (#4 and #5) from getting detected.
An adjustable threshold (dotted line) does a better
job (captures #5 but still leaves #4). A robust 15th International Conference on Management of Data

COMAD 2009, Mysore, India, December 9–12, 2009
©Computer Society of India, 2009

criterion for dynamic threshold determination is
crucial to achieve high rate of accuracy.

3. Presence of both strong and weak spikes: Figure 2b
shows a data-series where both strong and weak
spikes co-exist. In some scenarios, it is necessary to
detect both strong as well as weak spikes.

4. Minimal tuneable parameters: Existence of wide
range of highly unpredictable data characteristics
demands different settings of algorithm parameters. It
is highly cumbersome and impractical to manually
tune the algorithm depending on the situation.
Therefore, reliance on minimal tuneable parameters
is a foremost necessity.

Figure 1 (a) Spikes in price level of oil (b) Spikes in a musical
note (c) Spikes in a signal depicting human respiration
behaviour (d) Spikes in an EEG signal

In this paper, we present a spike detection algorithm

that caters to these challenges. We formalize various
spike definitions and show the generic nature of our
algorithm across these definitions. We present a technique
to estimate the level of noise in the underlying data. We
then propose an algorithm that dynamically derives the
threshold value based on input data characteristics. The
algorithm is capable of detecting both strong as well as
weak spikes. Moreover, we rely on minimal tuneable
parameters while producing consistently sound results
across wide range of data characteristics.

We also present an application of the proposed spike
detection algorithm in the area of performance and
capacity management in enterprise systems. Many
operations in this domain require analysis of various
system, workload, and performance metrics. Spike
detection proves to be a very useful tool in such analysis.
A few relevant instances are listed below:
• Identification of points of interest: One of the first

steps in the ‘as-is’ analysis of the system involves
identification of points of interest. For instance, these
points could be specific days in a week when system
workload shoots up. Spike detection in such
scenarios can identify these points that become the
focus for further analysis. We applied spike detection

on data gathered from a real-life batch processing
system and successfully identified such points of high
workload and low performance. We present such a
scenario in Section 6.2.

• Capacity planning: Spike detection can also be a
useful tool in assessing the capacity of a system. For
instance, consider a scenario of an online shopping
service. Here, an increase in the number of users can
cause abnormal spikes in metrics such as available
memory, CPU utilization and response time. These
spikes can be a useful indicator of the saturation and
instability of the system. We present such a scenario
in Section 6.3.

Figure 2 (a) A series with high level of noise with no true
spikes. (b) A signal with true spikes marked by numbers 1 to 5
along with solid and adjustable threshold values. (c) A series
where both strong (solid circles) and weak (dotted circles)
spikes co-exist.

The main contributions of this paper are as follows. (1)
We propose a spike detection algorithm that is
computationally light weight and caters to various spike
definitions. (2) We propose a novel approach that
automatically tunes the algorithm parameters based on the
input data characteristics. Thus, the algorithm shows high
accuracy over a wide range of input data. (3) We present
an application of the proposed spike detection algorithm
in the area of performance and capacity management in
enterprise systems. We present experimental evaluation of
the proposed algorithm on various real-life case-studies.

The rest of this paper is organized as follows; Section
2 talks about the related work. The proposed approach is
discussed in Section 3, followed by the pseudo code in
Section 4. Section 5 presents the experimental evaluation
of the proposed algorithm. In this section, we validate the
effectiveness of our approach and compare the proposed
algorithm with spike detection algorithms proposed in the
past. In Section 6 we show the application of spike
detection algorithm in the domain of performance and
capacity management through various real-life case-

(a) (b)

(c) (d)

(a) (b)

(c)

studies. Section 7 presents the conclusion. Open issues
and future work are discussed in Section 8.

2. Related work
Spike detection has been a subject of interest across
diverse domains. Several algorithms have been proposed
in context of each applicable domain [1, 2, 3, 5, 7, 8, 9,
11, 13]. Although, all the algorithms cater to the same
conceptual problem, the algorithm’s design is tightly
coupled to the domain. This is evident from the existence
of a variety of spike definitions as discussed in Section 1.
This coupling restricts their re-use in other domains.

A few mathematical formalizations have been
proposed [12], however, they result in large number of
false positives unless specifically tailored for the intended
domain.

In general, a common approach to address the problem
includes Smoothing followed by Baseline correction and
finally Peak Identification [13]. Smoothing involves
capturing the important patterns in the data, while leaving
out noise or other fine-scale structures. Baseline
correction then flattens the baseline of the smoothed data.
It attempts to average the baseline to zero. This improves
the accuracy in the Peak Identification phase which sets a
threshold on the baseline corrected data to produce the
final result. Each spike detection algorithm incorporates
either all or a subset of these functions in its lifecycle.

Moreover, many spike detection algorithms rely on
the usage of a single or multiple threshold values. This
notion plays a decisive role in evaluating the effectiveness
of any algorithm. In some way or the other, this notion
prevails at each phase of spike detection. The amount of
desired Smoothing might depend on the amount of noise
in the underlying data, and so does the amount of
Baseline correction, which might depend on the nature of
overall data. Also, the final criterion that decides whether
a point is a spike or not, is always some comparison
against a threshold value. It is therefore imperative for
each algorithm to incorporate a dynamic criterion for
threshold determination while producing consistent
results across wide range of data characteristics. In the
past, some work has been done in dynamically computing
these thresholds [6]. Most of these algorithms work under
some assumptions such as absence of outliers in the data
[6], reliance on a minimal threshold [4], etc. In addition,
some algorithms require additional input parameters, such
as window size [10], algorithm-specific parameters (such
as minimum momentum as in [4]), for which a constant
value might not work in every situation.

Adding to the complexity of an already volatile
situation, are unpredictable data characteristics, justifying
an indispensable need for an algorithm to be self-
tuneable.

3. Proposed approach
Our approach for detection of spikes (peaks and troughs)
in a time-series is a sequence of six steps. At each step
some data-points are filtered based on certain criteria. The
selected data-points are passed onto successive steps to be
rinsed further. Here we will explain our approach to
detect peaks. Detection of troughs follows a conceptually
similar approach, which will be a part of Section 4.

We will use the term data-point to refer to the value at
some time-instant. Also, we use the term data-series to
refer to a collection of data-points. Below, we explain
each of the six steps used in our approach.

3.1 Removal of non-candidate data-points

Intuitively, a spike would resemble a data-point as shown
in Figure 3a; a data-point (solid) with both left and right
neighbours (hollow) having a significant lower value. In
this step, we identify such data points that are candidates
for further processing.

For the sake of simplicity, we adhere to certain
limitations in this step:
• We consider only immediate left and right neighbours.
• The distance from the neighbouring points

(significance) is not a concern here.
However, this basic definition can be extended to

include a few more scenarios, as explained using Figure
3.
• A spike can be a data-point where the left neighbour

possess a lower value, while the right neighbour can
have an equal value as shown in Figure 3b.

• A spike can be a data-point where the left neighbour
possess a lower value, while the right neighbour can
have a higher value as shown in Figure 3c.

Such extensions are important since they add more
flexibility in matching varying set of expectations. As a
whole, we derive four possible spike definitions from
Figure 3, as listed in Table 1.

Our algorithm, by default, adheres to definition D2.
Therefore, as our first step, we consider only those points
in the original time-series, which adhere to definition D2.
By doing this, we are removing all those data-points from
the original time-series which can never be spikes. This
reduces the probability of detecting a false positive,
thereby contributing to the accuracy rate. Note that, the
algorithm is flexible enough to adapt to the other spike
definitions (listed in Table 1). This aspect will be
highlighted in Section 4.

Figure 3: Examples of spike shapes
(a) (b) (c)

 (a) (b) (c)

D1 Included - -
D2 Included Included -
D3 Included - Included
D4 Included Included Included

Table 1: Spike definitions

3.2 Bifurcation

The selected set of data-points is now bifurcated into two
data-series. The first data-series is composed of the
‘difference’ between the data-points with their immediate
left neighbours. We will refer to this series as left-data-
series. Similarly, the other data-series is composed of the
‘difference’ between the data-points with their immediate
right neighbours. We will refer to this series as right-
data-series.

Each data-series is now analyzed independently. This
simple step gives bountiful of advantages:
• We have achieved baseline correction without the use

of any explicit baseline correction method. Figure 4a
shows the original time-series. Baseline correction is
noticeably visible in Figure 4b and Figure 4c.

• The original time-series characteristics (such as
precise amplitude of spikes, amount of noise) are still
preserved in the data-series pair. Figure 4b and Figure
4c collectively reflect the original characteristics of the
time-series (Figure 4a).

• It provides greater flexibility in deciding the outcome
of a data-point (spike or not). Consider the encircled
data-point in Figure 5a. The data-point is a candidate
spike as per definition D2. However, the distance of
the data-point with its left neighbour is negligible
when compared to its distance with the right
neighbour, as encircled in Figure 5b and Figure 5c
respectively. Such uneven scenarios become apparent
due to independent analysis of the data-series. A
flexible criterion can then be applied to decide the
outcome of such data-points (spike or not). This
argument will be supported by a discussion in Section
3.5.
Note that this step can be altered to consider k

neighbouring points, instead of just the immediate
neighbour as per our definition of a spike. Criterion for
formation of data-series in such case will be explained in
Section 4.

Both the data-series are now independently processed
in the next step. We will use the term data-series to refer
to each series obtained as a result of bifurcation.

Figure 4: (a) Original time series, (b) Left data-series, (c) Right
data-series

Figure 5: (
data-series

3.3 Noise

We argue
criterion
of under
important
on a rob
noise in a
same sta
Figure 6a
spikes (lo
noise is v

Figure 6: (

We e
Figure 7.
series int
standard
noise dat
from the
relatively
Figure 7d
deviation
increases
dotted lin

These
highlighte

• I
7

(b) (c)(c)

Definition / Figure 3

(a) (b)
a) Original time serie

 Estimation

 that standard devia
for effective spike d
lying noise in the
 measure. Our appro
ust technique that
 data-series. Figure

ndard deviation bu
, the data-series is
w noise). However
isually noticeable in

a) Low noise data seri

xplain our approach
 In Figure 7, we p
o four categories
deviation. Figure 7a
a-series. However,
mean, the standard

 higher. Similarly,
 possess high level

 from the mean in
 its standard devia
e shows the mean va
 data-series show s
d below:
n a low noise data
b), there is highly

(a)

(a)
s, (b) Left data-series, (c) Right

tion alone is not a sufficient
etection. Rather, the amount
 data series is an equally
ach to detect spikes is based

estimates the right level of
 6 shows two scenarios with
t different noise levels. In
 almost steady with seldom
, in Figure 6b, high level of
 the data-series.

es, (b) High noise data series

 for noise estimation using
resent classification of data-
on the basis of noise and
 and Figure 7b are both low
owing to greater deviation
 deviation of Figure 7b is

data-series in Figure 7c and
 of noise. However, greater
the data-series in Figure 7d
tion. In all these figures, a
lue of the data-series.
ome peculiar behaviour as

-series (Figure 7a & Figure
uneven distribution of data-

(b)

(b) (c)

points about the mean. Figure 8a shows the
density estimate of such uneven distribution. The
data-points are mainly concentrated below the
mean (dotted line).

• In a high noise data-series (Figure 7c & Figure
7d), the distribution of the data-points about the
mean is relatively even. Figure 8b shows the
density estimate of an even distribution. The
data-points are evenly distributed about the mean
(dotted line).

We calculate the density of data-points (in terms of
population) around the mean for the data-series shown in
Figure 6. Statistically, for the low noise data-series, this
population is approximately 93 percent on one side of the
mean. This is unlikely the case with the high noise data-
series where almost 50 percent of data-points evenly fall
on each side of the mean. On the basis of the above
observation, we deduce that the density distribution of
data-points about the mean is a promising indicator of
noise in a data-series (a result of bifurcation process). We
argue that low noise in a data series leads to an uneven
density distribution and vice-versa. We validate this
argument by experimental evaluation in Section 5.1 where
we show the effect of increase in noise on the flattening
of the density curve. In this section, we use these concepts
to compute the noise estimate and the threshold.

3.4 Determination of the threshold value

Our algorithm auto-computes the threshold value based
on the level of noise in a data-series; the higher the noise
level, the higher is the threshold required to avoid
detection of spurious spikes. We use the threshold to
further trim the set of candidate spikes by rejecting all the
data-points that lie below the threshold value.

Figure 7: Categorization of data-series on the basis of noise and
standard deviation. (a) Low noise and low standard deviation (b)
Low noise and high standard deviation (c) High noise and low
standard deviation (d) High noise and high standard deviation.

Figure 8: Density estimates of low (a) and high (b) noise data-
series of Figure 6

Formally, we define the threshold value (λ) for a data-

series with mean (µ) and standard deviation (σ) as:
λ = µ + (β * σ) (1)

where β is the noise estimate for the data-series.
As already discussed in Section 3.3, standard

deviation alone is not a sufficient criterion for spike
detection. Therefore, we compute the noise estimate β
based on the technique discussed in Section 3.3, and use β
to compute the threshold value λ. We next present a
technique to compute β.

In accordance to the noise estimation technique
discussed in Section 3.3, we argue that the density
distribution about the mean is a promising indicator of
underlying noise. We have supported this argument by
calculating the population of data-points (percentage)
about the mean value for both low and high noise data-
series. We will use this notion to derive the noise estimate
β. Formally, we define the noise estimate β as:

β = ƒ (ρ) (2)
where ρ is the percentage population on either side of the
mean, with the higher density estimate.

We observed that a linear equation is not the right
representative of the relationship between β and ρ. The
reason for this inference arose from experimental
analysis. We observed that the threshold bar β should be
raised more aggressively levels below ρ ~ 80 to avoid
detection of spurious spikes. The β value in the range 80
< ρ < 100 was found to work well with lower increments.
Hence, we empirically derived an approximate
polynomial curve of second degree to represent the
relationship between β and ρ. Figure 9 shows the
relationship between β and ρ. The goodness of fit can be
judged by a near one R2 value of 0.9928. Equation 1 thus
governs the dynamic value of threshold across varying
level of noise in a data-series.

We extended the above concept to introduce the
notion of noise sensitivity. We define noise sensitivity as
the ratio of β to ρ. The higher the ratio, higher is the noise
sensitivity. Providing noise sensitivity as a parameter
adds more flexibility in customizing the algorithm’s
sensitivity to noise, as per user expectations. In
accordance, we deduce three levels of noise sensitivity, as
shown in Figure10.

(a) (b)

(c) (d)

(a) (b)

Figure 9: Relationship between β and ρ

The coefficients and R2 values of equation of type y =
ax2 + bx + c, for all three levels are listed in Table 2.

Thus, we have derived a novel approach to
dynamically determine the threshold value depending on
the noise estimate of the data-series. In addition, the
concept of noise estimate when encapsulated within the
notion of noise sensitivity, gives more flexibility in
customizing the algorithm as per user expectations. We
present an experimental evaluation of this concept in
Section 5.1.

Figure 10: Noise sensitivity levels

Noise

Sensitivity a b c R2

Low 0.0007 - 0.1369 6.5232 0.998
Medium 0.0024 - 0.4407 20.455 0.993

High 0.0015 - 0.3293 17.732 0.997
Table 2: Coefficients and R2 values of polynomial equations

3.5 Spike selection criterion

Independent analysis of each data-series in the previous
step results in two sets of candidate spikes. By default,
our algorithm takes the union of candidate spikes in both
the sets. Thus a data-point is a spike, if individual analysis
of either of the data-series considers it to be a spike. This
is supported by a scenario in Figure 5.

Note that this step is flexible enough to consider the
intersection of candidate spikes in the two sets. This step
is useful in deciding the desired shape of the spike.

3.6 Comparison with spike intensity

The resultant set of candidate spikes undergoes the final
step of filtering. This is a simple, yet efficient step that
addresses one of the major challenges already discussed
in Section 1. The intensities (amplitudes) of the candidate
spikes are now compared against a user-desired intensity
value, if any. We calculate the intensity of a data-point
relative to the maximum value in the original time-series.

This gives the flexibility to either accept or reject weak
spikes. The co-existence of weak and strong spikes has
been a subject of discussion in Section 1. The resulting set
of data-points forms the final set of spikes

4. Proposed algorithm
In this section, we present the pseudo-code of the
proposed spike detection algorithm. We will explain its
working against the default spike definition, D2 in Table
1. For the sake of simplicity, the pseudo-code that we
present here makes the following assumptions; it will
detect only the peaks and it considers only the immediate
neighbours for analysis.

The generic nature of the algorithm across various
aspects such as adapting to other spike definitions,
criterion for considering k immediate neighbours, and
detection of troughs will be a subject of discussion at the
end of this section.

Consider a univariate uniformly sampled time-series
T = <x1, x2, x3…xN> of length N. The time-instants are
assumed to be 1, 2…N. The value at the ith time-instant is
represented by x[i]. We will use symbol N for noise
sensitivity and S for spike intensity.

procedure spike.detection (T, N, S) do
 variables P, lds, rds
 for each data-point in T, do
 if the data-point matches the spike definition D2 do
 # add the data-point to the left-data-series
 lds = the difference between the data-point and its immediate left

neighbour
 # add the data-point to the right-data-series
 rds = the difference between the data-point and its immediate

right neighbour
end

 end

if (standard deviation of both lds and rds is zero) do
 return ‘No Spike’

end

Compute density estimates (ρ) for both lds and rds do
 ρ = density on either side of the mean, whichever is higher

end

Compute noise estimate (β) for both lds and rds using Table 2 do
 β = a*ρ2 + b*ρ+ c [Equation depends on N]

end

Compute the threshold (λ) for both lds and rds do
 λ = µ + (β * σ)

end

Select only those data-points from lds and rds that are above the
threshold value (λ) do

 P = union (data-points above the threshold λ)
end
Select only those points from P that exceed the spike intensity value
(S) do

P = {P} – {data-points in P with intensity less than S}
end

end
 The above pseudo code follows certain assumptions that
have already been discussed in this section. We will now

Noise Sensitivity levels

0

1

2

3

4

5

6

50 60 70 80 90 100

�

β

HIGH
MEDIUM
LOW

ρ

ρ

ρ ρ

discuss the generic nature of the algorithm across various
aspects.
• Adapting to a different spike definition: By default,

the algorithm follows spike definition D2 of Table 1.
We will now explain the approach to customize the
algorithm for other spike definitions (listed in Table
1). This aspect of generality is a concern in the first
step of our approach (Section 3.1). In accordance to
Section 3.1, we consider only those data-points in the
time-series that follow the spike definition rules. These
rules are now formalized in Table 3 for all the four
definitions. We will present the interpretation of these
rules for one of the spike definition, D3. The same
interpretation is applicable to all the other definitions.
We will interpret the definition rule (D3) for the
selection of candidate peaks (in Section 3.1). The
interpretation of the rule is as follows; Any data-point
x[i] is considered to be a candidate peak only if, x[i] is
higher than its immediate left neighbour (x[i-1]) and
x[i] is not equal to the immediate right neighbour
(x[i+1]). Similarly, rules applicable to trough detection
are listed in the third column of Table 3.

x[i] (Peaks) x[i] (Troughs) Definition x[i-1] x[i+1] x[i-1] x[i+1]

D1 > > < <
D2 >= >= <= <=
D3 > != < !=
D4 >= none <= none

Table 3: Spike definition rules for peaks and troughs

Table 3 thus governs the rules that should be

followed in order to customize the algorithm for a
different spike definition.

• Considering neighbouring k data-points: In the

bifurcation phase of our approach (Section 3.2), the
algorithm (by default) considers only the immediate left
and right neighbours for construction of the data-series
(left-data-series and right-data-series). This aspect
however can be extended to consider k neighbouring
data-points, instead of just the immediate neighbour.
We will first explain the approach to construct left-
data-series. The criteria for selecting the appropriate
data-point (among k neighbouring data-points on either
side of x[i]) differs for both peak and trough detection.
For peak detection, we consider the data-point
possessing the minimum value among the k neighbours.
Conversely, for trough detection, we consider the data-
point possessing the maximum value among the k
neighbours.

Similar approach applies to the construction of the
right-data-series. The criterion of selection of the
appropriate data-point (among k neighbouring data-
points) in this case is listed in Table 4, for both peak
and trough detection.

• Deciding the shape of a spike: By default, in the spike
selection criteria (Section 3.6), the algorithm takes the
union of both the sets (of candidate spikes) that has
resulted from independent analysis of both the data-
series. The algorithm can also be customized on this
aspect to consider the intersection of both the sets. This
aspect governs the desired shape of a spike.

Peaks x[i] Troughs x[i]

min (x[i-k]:i) min (i: x[i+k]) max (x[i-k]:i) max(i: [i+k])
Table 4: Bifurcation rules to construct left-data-series and right-
data-series in case of k neighbours.

5. Experimental evaluation
In this section we present the experimental evaluation of
the proposed algorithm. We first evaluate the correctness
of the proposed approach to detect spikes and the auto-
tuning behaviour of the algorithm across changing data
characteristics. We validate the proposed auto-tuning
approach by running the algorithm with and without auto-
tuning support. We show the effectiveness of auto-tuning
across a wide range of time-series varying in their level of
noise. Section 5.1 covers this aspect of evaluation.

We then compare the proposed algorithm with two
widely used spike detection algorithms: (1) entropy-based
algorithm [10] (2) a mathematical formalization [10]. We
identify the strengths and weaknesses of these algorithms
and show that the proposed algorithm outperforms the
existing algorithms in various aspects. Section 5.2
presents this evaluation.

5.1 Effectiveness of auto-tuning
Test-bed description
For evaluating the effectiveness of auto-tuning, we
generate artificial noise in a synthetic time-series. We
started with an almost steady time-series of 100 data-
points. All the data-points, except one (spike), are at the
zero level (Figure 11a). We slowly increment the amount
of artificial noise over a span of fifteen time-series
(increments). The number of expected (true) spikes
increases for the first seven time-series. However, with
increase in noise at further levels, most of them begin to
get buried in the noise. Thus, the number of expected
spikes increases up to the middle and then gradually
reduces towards the fifteenth time-series.

In order to achieve comprehensive evaluation of our
technique, we plant both strong and weak spikes. Figure
11b shows the presence of both weak (encircled) and
strong spikes in an intermediate time-series.

In order to give a visual feel of our test-bed, Figure
11a and Figure 11c show the initial and final state of the
synthetic time-series. Time-series in Figure 11a is free of
noise, with a prominent spike. An intermediate time-
series shown in Figure 11b contains both strong and weak
spikes. Figure 11c shows the final state of the time-series.
A high level of noise is visually apparent.

Also, to justify our criterion of noise estimation, we
present plots of the density estimates of four intermediate
time-series in order of increasing noise, see Figure 12.
The first density plot clearly shows a high density
estimate below the mean (a dotted line, almost at zero
level), with just a small bump at 0.4 level (corresponding
to spike at 0.4 in Figure 11a). With increment in the noise
level, this curve starts to flatten as apparent in the fourth
density plot, for time-series in Figure 11c.

Figure11: Sample time-series from the test-bed (a) Initial state
(b) Intermediate state with weak spikes (c) Final state with noise

Figure12: Density plots of sample time-series in increasing order
of noise.

Parameter tuning
We validate our technique by running the algorithm with
and without auto-tuning support. In the active mode, the
algorithm automatically computes β. The algorithm is
tuned to noise sensitivity of medium level, which is the
default. The spike intensity is set to the default value of
five percent.

In the inactive mode, the noise estimate β is fixed at
value one.

Evaluation criteria
We evaluate the algorithm on the basis of three simple
parameters; detected spikes, false positives and false
negatives. We refer to the set of actual spikes as the
expected set. The unexpected set comprises of all data-
points other than the expected set.

As apparent, detected spikes is the number of data-
points detected as spikes by the algorithm. False positives
are the number of data-points detected as spikes, from the

unexpected set. False negatives are the number of data-
points not detected from the expected set.

Results
Figure 13a shows the detected spikes during ‘active’ and
‘inactive’ mode, against all fifteen time-series in order of
increasing noise. The dotted curve shows the behaviour in
inactive mode. The solid curve shows the behaviour in the
active mode.

As apparent from the figure, with the increase in noise
level, the inactive mode detects more data-points as
spikes. However, the active mode senses the increase in
the noise level, and the effect of auto-tuning is apparent
by the downward motion of the curve (solid) beyond the
seventh time-series.

Although this parameter does not anyhow point to the
accuracy of the algorithm in either of the modes, it does
however show the effect of auto-tuning. The observation
that the active mode curve remains above the inactive
mode curve till the seventh time-series produces an
interesting insight. Both modes detect the strong spikes in
the initial stages. The higher curve of active mode shows
that, unlike the inactive mode, the auto-tuning was
effective in detecting even the ‘weak spikes’ present in
the initial stages.

Figure 13b shows the false positives produced in both
modes. In the inactive mode, with increase in noise level
the algorithm started to detect spurious spikes (dotted
curve). However, in the active mode, the algorithm kept
the false positives at a significantly lower level (solid
curve). It shows the effectiveness of our approach across
varying time-series characteristics.

Figure 13c shows the false negatives produced in both
modes. In the inactive mode, the algorithm produces low
false negatives for the initial stages having low noise.
With further increase in noise, the inactive mode fails to
capture weak spikes resulting in increase in false
negatives. The decrease in false negatives after a point is
attributed to the increase in false positives (Figure 13b).
With high noise, the algorithm detects both true spikes as
well as spurious spikes resulting in low false negatives
but high false positives. In the active mode however, the
algorithm maintains low false negatives over the entire
range (solid curve, Figure 13 c).

The above experiments validate the effectiveness of
auto-tuning. The results clearly indicate that auto-tuning
correctly captures the time-series properties and provide
effective spike detection over a wide range of time series.

5.2 Comparison with other algorithms
In this section, we compare the proposed algorithm with
two widely used spike detection algorithms; (1) entropy
based algorithm [10] (2) a mathematical formalization
(mf based) [10]. Both the algorithms are based on the
sliding-window concept. The entropy based algorithm
first computes the entropy in the window size of 2k data-
points (k on each side of the ith data-point). It then

(a) (b) (c)

includes the ith data-point and re-computes the entropy
now in the window size of 2k+1. It computes the
probability density of the window as an intermediate step
while computing the entropy. The difference in the
entropy with and without the ith data-point reflects the
significance of the ith data-point in the region. On the
other hand, the mathematical formalization first computes
(i) the average of the distances of ith data-point from its k
left neighbours and (ii) the average of the distances of ith
data-point from its k right neighbours. Then it takes the
average of (i) and (ii). This value reflects the significance
of the data-point in the region. The output of both the
algorithms then undergoes a common post-processing
step to filter out spurious spikes. Moreover, both the
algorithms use an additional parameter h to adjust the
threshold that decides the significance of a spike.

Figure13: Evaluation results against (a) Total number of
detected spikes (b) False Positives (c) False Negatives

Parameter settings: For evaluation of these algorithms,
we use the default settings of their arguments. The
purpose of this exercise is not to evaluate their behaviour
across different set of arguments. Therefore, they are
evaluated with the default setting which is expected to
produce the best results. We choose window size (k) as 15
and h as 1.5. The proposed algorithm is also evaluated
against its default setting of arguments; noise sensitivity
at medium level and spike intensity of five percent.

Test-bed description: The test-bed used for this section
comprises of thirteen time-series. In order to achieve a
comprehensive review of all the three algorithms across
wide range of data characteristics, the time-series differ in
various aspects; such as amount of noise, standard
deviation, length, presence of weak as well as strong
spikes, etc. to name a few. We will evaluate all the three
algorithms in their ability to detect only the peaks. The
data-points that are expected to be spikes are chosen on
the basis of their visual appeal. This is necessary due to
the absence of an optimal solution. In cases where weak
spikes were present, they are included in the expected set
of spikes.

Comparison criteria: The algorithms are compared on
the basis of three metrics; false positives, false negatives
and execution time. False positives and false negatives in

a time-series are calculated in terms of percentage as
follows:

An additional parameter, execution time (seconds) is the
time taken by the algorithm to complete its entire process
of spike detection. The foremost expectation from these
algorithms was to keep minimal false negatives. Detection
of almost all the true spikes is of paramount importance.
Low false positives are undoubtedly another necessity,
but it is not expected to be achieved at the cost of an
increase in the false negatives.
Results:
o In terms of false negatives (Figure 14), the proposed

algorithm turns out to be a clear winner. It was able
to detect all the true spikes. Both entropy-based and
the mf-based were unable to detect many true spikes
in a substantial number of time-series (8 out of 13).
The set of time-series where these algorithms failed
had a common characteristic; they were all low
noise time-series with half of them having presence
of weak spikes (3, 8, 12 and 13). The proposed
algorithm detected all the true spikes in one of the
time-series of just 29 data-points, where the
window-based algorithms failed.

o Figure 15 shows the false positives produced by the
three algorithms. It can be seen that the entropy-
based algorithm generates smallest number of false
positives. However, note that these low false
positives come at the cost of high false negatives, as
shown in Figure 14. The mf-based algorithm is
prone to high noise and hence generates high false
positives in many cases (7 out of 13). The high false
positives account for low false negatives in Figure
14, allowing the algorithm to detect true spikes even
in high noise time-series (1, 5). The proposed
algorithm produces significantly lower number of
false positives than the mf-based algorithm. It
produces higher false positives than the entropy-
based algorithm in four cases (1, 4, 6, and 12). In
most of these cases the number of false positives is
not very high. The data-points detected as false
positives had a peculiar behaviour; the significance
of fall on the sides of the data-point was highly
uneven. The proposed algorithm caters to such
shapes by default, and therefore detected existence
of such spikes. Note that, due to its generic nature,
the algorithm can be customized to prevent
detection of such spikes.

o In terms of execution time (Figure 16), both the
proposed algorithm and the mf-based algorithm did
equally well. However, the entropy-based algorithm
was found to be computationally expensive. The

Total Spikes

-2

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ts_id

of

 d
et

ec
te

d
sp

ik
es

False Positives

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ts_id

of

 F
P'

s

False Negatives

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ts_id

of

 F
N

's

(a) (b) (c)

reason for this lies in the complexity of its
operation. Although the implementation definitely
leaves the scope of improvement in terms of
optimization, but such a profound difference in the
performance is hard to be equalized.

Figure14: False Negatives

Figure15: False Positives

Figure16: Execution Time

Inference: It is evident from the results that the
performance of the proposed algorithm was most stable
and robust against variety of data characteristics. It
achieved the objective of producing less false negatives,
while maintaining a less false positives. It performed
outstanding in a few cases, especially in cases where
weak spikes were present. Owing to the generic nature of
the algorithm, a few cases of false positives can be
handled easily. It proved to be light-weight owing to its
simplicity, a parameter crucial in determining the
algorithms practicality in real life scenarios.

6. Application in performance and capacity
management domain
In this section, we present various application scenarios to
demonstrate the importance of spike detection in the
domain of performance and capacity management.

6.1 Background
Today’s enterprise systems are expanding in size as well
as complexity. Moreover, they continue to host more and
more performance critical applications. Such an
expansion has made the automated management of these
systems a foremost necessity. The current state-of-the-art
solutions that attend to these needs rely on deployment of

monitors on servers, routers, load balancers, switches, etc.
to collect various performance statistics. These statistics
are then analyzed for insights into the as-is state of the
system. It also assists in forecasting the system’s
performance in the future. Spike detection turns out to be
a very useful tool for such analysis. In this section, we
present application of spike detection in two such analysis
operations: (1) identification of points of interest and (2)
capacity planning. We use real-life case studies to
demonstrate the effectiveness of the proposed algorithm
in capturing interesting insights.

Below, we describe the case-studies that we have used
for this purpose:

Trade-plant data: We used the monitored data of the
mainframe jobs of a leading investment bank. Various
performance metrics are available at a job-level such as
the number of requests, CPU used, elapsed time in
execution, number of failed executions, etc. The monitors
also collect workload metrics (number of requests, arrival
time of requests) and performance metrics (elapsed time,
throughput). The data was collected for a period of 150
days. We applied spike detection on this data set, in
Section 6.2, to identify the critical hours in a day when
the components observe high CPU activity.

Server-farm data: This data is obtained by monitoring
the server farms of a data centre. The data consists of
various system metrics such as total processor time used,
available memory, page faults per second, bytes sent and
received per second, etc. The data was collected for a
month and approximately 1500 data points were collected
for each metric every day. In Section 6.2 we apply spike
detection to this data to identify interesting regions where
various metrics simultaneously show high activity. This
analysis provides insights into the steady state of the
system.

Petstore data: We also performed a simulation
experiment using Load-Runner and Petstore to model a
3-tier web-service architecture. We gradually increased
the number of users to observe its effect on various
performance metrics such as the elapsed time, CPU
utilization, percent free memory, etc. In Section 6.3 we
use this data. We demonstrate the applicability of spike
detection in providing insights into the conditions of
saturation and instability.

6.2 Identification of points of interest

Given the large scale of today’s enterprise systems it
is absolutely essential to identify the points of interest to
narrow down the scope of further detailed analysis. The
interestingness can be based on critical time window
analysis, critical component analysis, critical path
analysis, etc. In this section, we present two such real-life
scenarios in which application of spike detection
highlights such interesting regions.

Execution Time (seconds)

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13

time-series

ex
ec

tu
tio

n
tim

e

entropy
mf
sa

False Negatives (%)

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 11 12 13

time-series

fa
ls
e
ne

ga
tiv

es

entropy
mf
sa

False Positives (%)

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13

time-series

fa
ls
e
po

si
tiv

es

entropy
mf
sa

We first consider the Trade-plant data for this
purpose. We grouped the CPU usage data of 150 days
over 5 days * 24 hours space. This helped us in
identifying the CPU usage characteristics that are specific
to the day of the week and hour of the day. Application
of spike detection on this data-set clearly identified the
hours with significantly high CPU usage (Figure 17). It
can be seen that on all the five days of the week, the
system observed significantly high CPU usage on the last
few hours of the day. Such spikes in the workload pattern
provided insights into better scheduling of the jobs. The
jobs that are not bound for execution in this critical region
can be scheduled at non-critical time durations for better
resource utilization and increased system performance.

Figure 17: Spikes identified on 2100, 2200, and 2300 hours on
all five days of the week.

Next, we present the application of spike detection on
the Server-farm data. Here, we analyzed the data collected
for a single server on a specific day. We applied spike
detection on the single-day time-series of 20 performance
metrics. Figure 18 and Figure 19 show the spikes detected
on five such metrics namely: total % free disk space, free
disk space on drive C, free disk space on drive E, bytes
sent from the network interface, bytes received at the
network interface. It can be seen that all five metrics
observe huge spikes between time-instants corresponding
to 500th and 550th data-point. Simultaneous occurrences of
spikes in these performance metrics provide valuable
insights; (a) they highlight times of high activity in a day;
(b) they indicate a change in the steady state of the
system.

6.3 Capacity management
Spike detection can also be used to gather insights into
various capacity management issues. Though spike
detection cannot address complex capacity management
problems, it can however provide interesting insights that
can be used to carry out further analysis. In this context,
we performed an experiment to detect signs of saturation
and instability using spike detection. We used the Petstore
data in this regard. In this experiment, we gradually
increased the number of users and observed its effect on
various system parameters.

Figure 18: Large spikes observed around 500th point in times
series of all three metrics

Figure 19: Large spikes observed around 550th point in time
series of both metrics

In Figure 20 we show how spike detection can provide
symptoms showing the effect of saturation. Figure 20b
shows high spikes in the response time beyond a certain
level of increase in users (Figure 20a). Furthermore the
spikes tend to increase with further increase in the number
of users. Such symptoms are indicators of saturation of
the system. We verified this inference by analyzing the
CPU utilization metric which was found to have reached
the saturation level.

Figure 20: Effect of increase in number of users on response
time.

Figure 21: Effect of increase in number of users on % free
memory.

Another interesting insight was obtained by running
spike detection on the time series of percentage free
memory. With the increase in number of users (Figure
21a), the percentage free memory periodically shows a
gradual decrease followed by a sudden large spike (Figure
21b). These spikes are indicative of the garbage collection
activity. They provide insights into the JVM heap-size

(a) (b)

(a) (b)

settings. We observed that with an increase in the heap-
size, these spikes are detected at larger intervals,
indicating the system’s capacity to support more users.

7. Conclusion
In this paper, we have proposed a spike detection

algorithm that caters to its various inherent challenges. It
requires no pre-processing such as explicit baseline
correction or smoothing. The need to refrain from such
pre-processing methods is evident. Different baseline
removal and smooth algorithms can produce different
results, are sensitive to parameter settings and overall
have a negative affect on the performance of further
analysis. The proposed algorithm is computationally
light-weight and still maintains high standards of
accuracy. Moreover, it is highly flexible in various
aspects. It can cater to various spike definitions, offers
greater control to decide the shape of a spike (due to
bifurcation), and offers various levels of noise sensitivity.
The algorithm is capable of detecting both strong as well
as weak spikes. We have proposed a technique to estimate
the right level of noise in the underlying data. The
advantage of this technique is harnessed to make the
algorithm self-tunable. This has resulted in reliance on
minimal tunable parameters, which has been a foremost
need against the ever changing data characteristics.

We have also presented an application of the proposed
algorithm in the domain of performance and capacity
management in enterprise systems. We have shown its
importance across various operations relevant to the
domain. We have applied the proposed algorithm on
various real-life examples to demonstrate the usefulness
of spike detection in the studied domain.

8. Open issues & future work
One concern is the applicability of the proposed

algorithm on data sets with multiple modes. Consider a
bi-modal distribution with one mode (steady) having a
significantly lower standard deviation than the other
(noisy). The proposed algorithm will set an averaged
threshold based on the entire time-series. This can result
in unintended spikes getting detected in the noisy node
(second part). The advantage is that since the time-series
has been steady since the beginning, the detection of
spikes in the second half (noisy) does indicate beginning
of abnormal activity. However, this issue is rather
debatable and is highly dependent on the user
expectations. One walk-around this problem is to make
the algorithm window-based by choosing a larger size of
the window. Another approach could be to split the time
series across modes and perform independent analysis the
data of these modes. Such scenarios are possible course of
action in the future.

References

1. Azzini, R. Dell’Anna, F. Ciocchetta, F. Demichelis,
A. Sboner, E. Blanzieri, and A. Malossini, Simple
Methods for Peak Detection in Time Series
Microarray Data, In Proc. of CAMDA’04 (Critical
Assessment of Microarray Data), 2004.

2. P. Du, W. A. Kibbe and S. M. Lin, Improved peak
detection in mass spectrum by incorporating
continuous wavelet transform based pattern
matching, Bioinformatics 2006, vol. 22, pages
2059-2065.

3. R. B. Fisher and D. K. Naidu, A Comparison of
Algorithms for Subpixel Peak Detection, Image
Technology - Springer-Verlag, Heidelberg, 1996.

4. K. Harmer, G. Howells, W. Sheng, M. Fairhurst and
F. Deravi, A Peak-Trough Detection Algorithm
Based on Momentum, Congress on Image and
Signal Processing, vol. 4, 2008, pages 454-458.

5. P. V. Hese, H. Hallez, B. Vanrumste, Y. D'Asseler
and P. Boon, Evaluation of Temporal and Spatial
EEG Spike Detection Algorithms, Fifth FTW PhD
Symposium, Faculty of Engineering, Ghent
University, Dec. 2004.

6. L. Jacobson, Auto-threshold peak detection in
physiological signals, In Proc. of the 23rd Annual
International Conference of the IEEE, 2001.

7. Kleinberg, Bursty and Hierarchical Structure in
Streams, In Proc of 8th ACM SIGKDD, 2002, pages
91–101.

8. M. Ma, A. V. Genderen, and P. Beukelman,
Developing and Implementing Peak Detection for
Real-Time Image Registration, In Proc. of the 16th
Annual Workshop on Circuits, Systems & Signal
Processing , ProRISC, 2005.

9. G. M. Nijm, A. V. Sahakian, S. Swiryn, and A. C.
Larson, Comparison of Signal Peak Detection
Algorithms for Self-Gated Cardiac Cine MRI,
Computers in Cardiology, 2007.

10. G.K. Palshikar, Simple Algorithms for Peak
Detection in Time-Series, in Proc. of 1st Int. Conf.
Advanced Data Analysis, Business Analytics and
Intelligence (ICADABAI2009), Ahmedabad, June
2009.

11. H. Satar-boroujeni and B. Shafai, Detection of
Peaks in Spectral Representation of Music Signals,
Communications in Computing, 2004.

12. B. S. Todd and D. C. Andrews, The Identification of
Peaks in Physiological Signals, Computers and
Biomedical Research, vol. 32, 1999, pages 322-335.

13. C. Yang, Z. He, and W. Yu, Comparison of public
peak detection algorithms for MALDI mass
spectrometry data analysis, BMC Bioinformatics,
vol. 10(4), 2009.

