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Abstract

Mining evolving data streams for concept drifts has
gained importance in applications like customer be-
havior analysis, network intrusion detection, credit
card fraud detection. Several approaches have been
proposed for detection of concept drifts in the context
of supervised learning in data streams. Recently, re-
searchers have been looking into the problem of identi-
fying concept drifts in unlabeled data streams. Preva-
lent approaches study the evolution of streaming clus-
ters using intrinsic and extrinsic characteristics of the
discovered clusters, where each cluster is considered a
concept.

In this paper we model an unlabeled, uniform data
stream as a stochastic poisson process and study the
arrival pattern of data points to analyse the nature of
an evolving concept (cluster). Each concept is mod-
eled as stochastic poisson process and is individually
observed for arrival rates of the incoming data points.
A random sample of arrival rates is collected for each
concept and appropriate non-parametric tests are ap-
plied to infer the nature of evolution for the concept.
Concept drift in the stream can be inferred by the
overall behavior of the concepts. We also propose a
taxonomy of various types of concept behaviors and
inter-relation among them. Experiments have been
performed to demonstrate feasibility, validity and scal-
ability of the proposed method.

Keywords: Unlabeled data streams, concept drift,
clustering, stochastic poisson process

1 Introduction

It is a well known and accepted fact that the underly-
ing data generation mechanism for streaming datasets
changes (may be slowly) over time. For example,
change in customer buying preferences, change in stu-
dents interest in choosing subjects depending on cur-
rent market demand and change in number of network
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packets received at the server. These changes are typ-
ically characterized by outliers, change points or con-
cept drifts. Outliers and change points indicate abrupt
change in data whereas concept drift is a relatively
slower process.

Researchers are interested in concept drift detection
because, often, the cause of the change is not known
a-priori. Consequently, concept drift has a degrading
effect on the learned model, and eventually on the tar-
get objective too [22]. Presence of concept drift there-
fore, requires revision of the learned model to obtain
accurate results.

Concept drifts have been extensively studied in
the context of supervised learning. The objective is
to maintain the desired accuracy level of the predic-
tor, by adapting the learner to the changing concepts
[2, 11, 12, 23]. Each class is treated as a concept and
the change in data distribution of the class is mod-
eled as concept drift [8]. However, in unlabeled data,
non-availability of class label accentuates the problem
because there is no known distinction between under-
lying concepts. In such settings, clusters have been
used to model concepts and study of their evolution
has been used to detect concept drift [5, 13, 19, 20].

We propose a taxonomy of concepts based on the
changes (drifts) they have undergone and present a
state space diagram for transitions. We also pro-
vide physical significance of such transitions. For
example, about a decade ago science subjects were
highly popular among undergraduates university stu-
dents, while finance courses enjoy similar popularity
currently. Thus analyzing student data for last ten
years would reveal Science as a diminishing concept
whereas Fconomics and Commerce as emerging con-
cepts. However, Literature is a consistent concept as
it still maintains the popularity level as it had earlier.
The taxonomy can be extremely useful for obtaining
actionable insights from the data. For example, ed-
ucationists can take proactive measures to popularize
science courses by offering placement in reputed na-
tional science laboratories.

In this work incoming stream is modeled as a
stochastic poisson process characterized by its rate
and can be split into multiple child processes. Each



child stochastic poisson process is mapped to a con-
cept. Each process generates data with a specific dis-
tribution and is characterized by the rate of data gen-
eration.

The proposed algorithm processes the incoming
data and captures detailed data distribution in grid
based synopsis. Clustering is performed to discover
concepts existing in the stream. The arrival rate for
each concept is sampled at random interval, thereby
generating a sample of iid observations on arrival rates
with unknown distribution. Non-parametric statistical
tests are applied on this sample to categorize the con-
cepts as emerging, diminishing, transitional, random
or consistent.

To summarize, the key contributions of the article
are:

e An algorithm to facilitate detection of concept
drifts in an unlabeled and smooth data stream
modeled as a collection of stochastic poisson pro-
cesses. The concepts in the stream are modeled
as child stochastic poisson processes and are ob-
tained by clustering the stream.

e A taxonomy of concepts based on the changes
they undergo and a transition model, which con-
cepts follow during their life times.

e Use of a novel approach by sampling arrival rate
for each concept for studying its evolution. Sub-
sequently, non-parametric tests are used on the
samples to infer about the nature of evolution of
each concept, and categorize it accordingly.

e Experimental analysis to demonstrate the fea-
sibility, validity and scalability of the proposed
method.

Section 2 describes modeling of stream as stochastic
poisson process. Sections 3 and 4 delineate the main
contributions of the paper. The detailed algorithm
is given in Section 5 and related work is discussed in
Section 6. Experiments are reported in Section 7, and
Section 8 concludes the paper.

2 Stream as a Stochastic Poisson Pro-
cess

A data stream S is a real-time, continuous, ordered
sequence of data instances [9]. Consider a data stream
with a uniform arrival rate A and let N(¢) denote the
total number of points that have arrived up to time t.
Note that stream S satisfies:

1. N(t) > 0.

2. N(t) is integer valued.

3. if s < t, then N(s) < N(t).
4.

For s < t, N(t)—N(s) equals the number of points
that have arrived in the interval (s,t].

Satisfaction of the above conditions makes stream a
counting process P(t) [17]. Further, P(t) also satisfies:

1. P(0) =0.

2. The process P(t) has independent increments i.e.
the number of data instances that arrived in dis-
joint time intervals are independent.

3. P(P(t+h) —P(t) =1) = A« h+ o(h).
4. P(P(t+h)—"P(t) > 2) = o(h) where o(h) defines

a function f s.t. limp_.¢ @ =0.

Accordingly, P(t), which characterizes the smooth
data stream S, can be considered as a stochastic pois-
son process (SPP) with parameter A [17].

Root(Poisson Process)

T B

[ (N

Hyper-cuboi‘t‘i(cl) . () (% )

Ne] NNe] NNe] NNa] N

Figure 1: Grid representation of the splitting
of stochastic poisson process in a two dimen-
sional data stream with g =4

2.1 Grid Structure for Analyzing Stream

The incoming data in the stream S is processed into
a grid like trie structure G, which is a collection of
hyper-cuboids (cells) in bounded data space. Each
hyper-cuboid represents a data region of pre-specified
granularity!' in the data space. The structure main-
tains a detailed data distribution of all points received
in stream. Such a structure is capable of supporting
both the categorical and numeric data.

Given the dimension set A = {ay,...,aq} for d-
dimensional numeric dataset. Let [; and h; respec-
tively be the lowest and the highest data values along
dimension a;, as known to the domain expert. The
range r; = [l;, h;] of a; is divided into g equi-width
intervals [1},h1], (12,h2],..., (IZ,h?], such that I} =
li,hY = h;, where g is a user defined parameter. We
keep g same for all dimensions to simplify notation,
even though there is no practical or implementational
limitation in this respect. In case of categorical data,
g is the size of the domain and will vary for different
attributes.

Each hyper-cuboid (cell ¢) represents a data re-
gion (I{" AI3"2 A ... NI 4) where I} refers to

L Attempts have been made to get rid of the need to pre-
determine the granularity of the data space in [15, 16]. However,
the computational cost of these approaches is prohibitive.



interval ¢/(1 < ¢/ < g) of i*" dimension of the c™.
At any instance, the grid maintains only those hyper-
cuboids which have at least one point in the corre-
sponding data region. A hyper-cuboid, referred as a
cell in the rest of the paper, maintains statistical in-
formation required for subsequent computations.

2.2 Non-homogeneous SPP for Cells

As mentioned earlier, stream S is modeled as a SPP
P(t) with parameter A (arrival rate). The points arriv-
ing in § are assigned to appropriate cell as per their
data values. Conceptually, each cell ¢™ in the grid
represents a data region that receives points and can
be considered as child SPP of the root process (P(¢)).
However, the arrival rates for the cells are not constant
because the assumption of uniform rate may not hold
for individual cells, even though it is valid for P(¢).
In fact depending on the change in data characteris-
tics i.e. concept drift, the arrival rate for each cell may
vary in an unpredictable manner and gives clues about
the changes in data distribution. Because of this rea-
son, the SPP’s at cell level are non-homogeneous in
nature with parameter A (t), which denotes the rate
of arrival of points in the ¢™ at time ¢ [17].

At time ¢, the process P(t) at the root of the grid
gets splitted into m processes where m is the number
of cells in the grid. In case the stream is stationary
without concept drift, then ) A™(t) = A. Since the
assumption of stationarity is not true, in the case of
continuous non-ending data stream Y A"(t) — A
as m — oo [17]. Figure 1 shows grid synopsis for
SPP with five subprocesses (cells) for 2-dimensional
data stream. Here g = 4 and the numbers in the cells
denote the count of the data points arrived.

2.3 Modeling Concepts in Stream

At time ¢, a cell ¢ in the grid represents a concept at
the lowest level of abstraction and stores arrival time of
the first point (f™), number of points contained (n™)
and arrival rate A" (t)(= %) As time progresses,
the number of cells in the grid increases denoting in-
crease in the number of concepts in S. Monitoring all
these concepts for detecting concept drift is computa-
tionally expensive.

In order to reduce the number of units under obser-
vation and to make computations tractable, the cells
in grid are clustered to yield concepts at higher level
of abstraction. These concepts are expected to be
semantically more meaningful and hence representa-
tive. Connected component analysis is used to gen-
erate clusters. The additive property of SPP is ex-
ploited here to associate a SPP with each cluster [17].
Therefore, SPP P*(t) for the cluster C* is the additive
outcome of the SPPs corresponding to the constituent
cells.

For cluster C* with N cells, i) arrival time of first
point (¢*), ii) number of points (n*) and iii) arrival

rate (A¥) at time ¢ are computed as follows:

oF = min(fL, 2, N

Nk
)= nm (1)
k
MO = g

The arrival rate of each cluster is sampled periodi-
cally for its categorization.

3 Identifying Concept Drift

Concept drift in stream indicates data evolution; es-
sentially a change in the underlying data distribution.
It is an aggregated effect of the changes in the concepts
existing in the stream. Hence, the task of ascertain-
ing the concept drift in the stream is accomplished by
inferring the changing trends in each concept individ-
ually and combining the overall effect of change.
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Figure 2: Nature of changes in concepts

The nature of concept drift in stream can be ex-
pressed as combination of quantum and duration or
the persistence of change. Thus identification of con-
cept drift rests on definition of 'how much’ change and
for ’how long’ duration. Figure 2 shows a matrix of na-
ture of changes in concepts with respect to quantum
and duration.

Type I consists of small quantum of changes (sta-
tistically non-significant) observed for short duration
that are natural to expect in any data generation pro-
cess. Such non-persistent changes do not require atten-
tion and must be ignored by a concept drift detection
algorithm (CDDA). Type III changes indicate aberra-
tion or an unexpected event in data generation process.
An example of type III change is a sudden and quan-
tum jump in the patient admission during the spread
of an epidemic. Type III changes that characterize
swift, large and short drifts are strong indications of
anomalies or outliers, and may require immediate ac-
tion. A good CDDA must be able to identify type 111
concept drifts.

Type II and IV are persistent changes in a sense
that they are observable over a relatively longer period



of time. They differ primarily in the time they take
to build a gradient which is observable. Consequently,
their detection is influenced by the periodicity of obser-
vation. Developing an algorithm which is hedged from
the periodicity of observation is the ultimate goal of
the researchers in this area.

3.1 Methodology in Detail

As the stream begins, the incoming data points are
processed and concepts in the stream are discovered.
As mentioned earlier, each concept is generated by a
stochastic poisson process with a corresponding sam-
ple of arrival rates. Recall that the arrival rate of a
process (concept) is computed using statistics stored
in its constituents processes (cells) (Eq. 1).

An incoming data point in the stream is added to
the appropriate concept by the online component of
the algorithm. FEach existing concept is sampled for
its arrival rate. If a new concept gets created during
the processing, it is noted and a corresponding new
sample set is created. When the sample of desired size
s has been obtained, non-parametric tests are applied
to categorize the corresponding concept as described
later. The categorization may also be done when de-
manded by the user.

Depending on the user specified time period for
detection of concept drift, an average sampling pe-
riodicity @ is determined such that a sample of size
s > 30 (statistically large [10]) can be obtained. Ac-
tual sampling is performed at random intervals with
average sampling periodicity ®. Randomness ensures
that the arrival rates are independently and identi-
cally distributed (iid) over time, which is a necessary
requirement for the statistical tests used for catego-
rization.

Occurrence of Type I drift may introduce noise in
the collected sample. Smoothing, a noise reduction
technique commonly used in signal processing is em-
ployed to mitigate this effect. We use 3-points sliding-
average smoothing function which is defined as follows:

. (pj—1+pj+pit1)
pj = 3

where p; and p; are 4t points in the smoothed sig-
nal and original signal respectively, and n is the total
number of points in the sample.

Type III drifts, characterized by outliers and
anomalies (noise) are inherently identified and possi-
bly removed during CCA based approach for clustering
[3]. However if it is prominent, it is captured by the al-
gorithm as evident in experiment described in Section
7.3.2.

3.2 Categorization of Concepts

For each concept, its iid sample of arrival rates, whose
distribution is unknown is examined for a trend using

non-parametric statistical tests. A newly discovered
concept may have sample of size < s. Hence it is not
prudent to comment upon its nature, till the sample
is complete. During this period, the concept is consid-
ered 'Novel” (N).
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Figure 3: Categorization of concepts on the basis of
their arrival rates

At a later time, when the sample is complete, the
concept is categorized as one of the following.

1. Consistent Concept: A concept is said to be con-
sistent (C) if arrival rate in the corresponding pro-
cess does not vary significantly (Figure 3a). This
indicates that concept is receiving points at nearly
uniform rate and as per the expectation.

2. Emerging Concept: A concept with increasing ar-
rival rate is said to be an emerging (E) concept
(Figure 3b). The increasing arrival rate indicates
that concept is firming up as number of points
supporting the concept are increasing with time.
Such concepts contribute to concept drift.

3. Diminishing Concept: A concept with decreasing
arrival rate is said to be a diminishing (D) con-
cept (Figure 3c). Such concept fades away with
time and contributes to the drift. A diminishing
concept indicates a clear loss of support in terms
of the data points which belong to it.

4. Transitional Concept: Transitional concept re-
flects instability of emerging or diminishing trend
during observed duration (Figure 3e, 3f). Usu-
ally, a concept which has increasing arrival rates
followed by decreasing arrival rates or vice-versa
is categorized as a transitional (T) concept.

5. Random Concept: A concept which cannot be
categorized as any of the above mentioned con-
cepts is called random (R) concept. The sample



of its arrival rates does not exhibit any statisti-
cally significant pattern(Figure 3d).

Though arrival rate is the primary characteristic of
the behavior of the concept over time, some other at-
tributes are also important. For instance, 7 - the num-
ber of points and N - the number of cells in a concept
also characterize it and influence categorization. 7 is
an indicator of the membership of cluster, while NV is
the indicator of the volume of the cluster. Each of the
three features A, 7 and N can either vary i.e. increase
(1) or decrease (]) or remain unchanged (=), overtime.

Let A(4), n(¢) and N(¢) denote the three attributes
of a concept at time ¢;. Each of them can have three
possible transitions at time ¢;11 i.e. increase (1), de-
crease (|) or unchanged (=). Thus at time ¢;;1, at-
tributes of a concept can have 27 possible transitions
based on which it can be categorized. After enumer-
ating each of these transitions, it can be seen that 20
of these transitions are not feasible. For example, a
transition with no change in the number of points in
a concept (n(i) = n(i + 1)), but with a change in the
number of cells is not feasible. A careful analysis re-
veals that only five attribute transitions are possible,
which determine the category (state) of a concept as
shown in Table 1.

Attributes

States A n N
Consistent (C) | = 1 X
Emerging (E) T 7T X
Diminishing (D) | | = =
Diminishing D) | | T =
Diminishing D) [ | T 1

Table 1: Five possible states of a concept based
on changes in its three attributes; = denotes un-
changed; T denotes increase; | denotes decrease;
X denotes don’t care

Changes in both  and N have been effectively used
for cluster evolution studies earlier [19, 20]. We have
used only the arrival rate for categorization, as it is a
good representative of other two attributes.

3.3 Transition of Concepts States

At any time ¢, the state of a concept is represented by
its category. A concept may change its state during
its lifetime as shown in Figure 4. A concept begins life
as a novel concept, when it is first discovered but may
not have a complete sample for testing the nature of its
evolution. Subsequently a novel concept can become
either consistent, emerging or diminishing concept de-
pending upon the rate at which the incoming points
in the stream join the concept. The emerging concept
may either retain its state or change to consistent or
diminishing. A consistent concept persists as long as
the arrival rates of the points joining the concept re-
mains nearly constant, otherwise the state transition

takes place. Transitional and random states can be
observed in between transitions to any of the shown
stable states.

Emerging(E)

Novel(N)

iminishing(D) Consistent(C)

N~ S

Prune(P)

Figure 4: Semantics of state transitions

Concept which is diagnosed (possibly repeatedly)
diminishing is retained till such time when no points
are received in last sample. Detailed semantics of the
states transition are given in Table 2.

Transition Semantics

N—D A novel concept appeared and is fading now.

N—E A novel concept is still emerging and
more data in the stream is favouring
this concept

N—C A novel concept is stable now

D—D A diminishing concept is weakening further

D—E A diminishing concept is getting revived
More data points are exhibiting distribution
favourable to this concept

D—C A diminishing concept is stable now

D—P A diminishing concept has not recived points
in last s/2 observations and is pruned

E—E An emerging concept is strengthening further

E—D An emerging concept does not receive new
points and becomes weak

E—-C An emerging concept is stable now

Table 2: Semantics of state transitions

After categorization of concepts, the knowledge dis-
covered is aggregated to quantify the concept drift in
the stream. There can be multiple ways in which ag-
gregation can be carried out, each of which may be
application dependent. The methodology proposed by
Choudhary et al. [7] can be adopted for quantification
of concept drift.

4 Tests for concept categorization

Let L* = {A*(1),A*(2),---,A*(s)} be the sample of
smoothed arrival rates for a concept C* (s > 30). An
overview of the applied statistical tests is given in the
algorithm later. The tests for categorization are de-
tailed below.

4.1 Consistent Concept

Intuitively, a consistent concept has nearly constant
arrival rates in LF and variance is a good enough test
for capturing variation. However, it is difficult for the



naive user to set the threshold for accepting the con-
sistency of the concept. The Coefficient of Variation
(CV) is an alternative measure which requires thresh-
old (6,) to be given in percentage, and hence is intu-
itive.

CV is a statistical measure for computing the rel-
ative dispersion of data points in a data sequence
around the mean and is computed as CV = < x 100.
Lower value of CV indicates higher similarity in data.
Computed CV for L*, if found less than 6,% indicates
consistent concepts.

4.2 Random Concepts

One sample run test for ups and downs is a useful check
for non-randomness in a sequence of observations and
requires minimum of formal assumptions [10, 14]. The
test is based on the premise that if an observed value
in the sequence is influenced by its position or by its
preceding or succeeding observations, the process is
not truly random.

The test is derived from the theory of runs, where a
run is a succession of identical letters/symbols which
is preceded and followed by same symbol or no sym-
bol at all. Too few runs imply a definite grouping or a
trend, where as too many runs indicate erratic behav-
ior in the sequence [10]. In the test, the null hypothesis
of randomness (Hp) is tested against the alternate hy-
pothesis (H;) of non-randomness. The test is inferred
at «a level of confidence and if Hy is accepted then there
is an evidence of randomness in the sequence.

Given a sequence L*, set symbol '1" if AF(i) <
AF(i +1),(0 < i < s), else set symbol '0’; ignoring
the equal case. This leads to a sequence of 1’s and
0’s of size < s . Defining a run as a sequence of same
symbols, let u be the total number of runs, ny be the
number of 1s and ny be the number of 0s. For s > 25,
it has been shown that u is approximately normally
distributed with mean g’ and variance o’ [14], where

,:2*(n1+n2)—1

3
o \/16(n1 +ng) — 29
90
z-score is computed as z = ";,“l and Hy is rejected if

z < ly or z > h, where [, and h, are low and high
values at a level of significance for normal distribution.

4.3 Emerging and Diminishing Concepts

Rejection of Hy indicates absence of evidence of ran-
domness in the sequence L*, or alternately presence of
a trend. The natural follow-in task in sequence is to
determine the type of trend.

Sen’s slope test, a nonparametric alternative for es-
timating a slope for a univariate time series, is a well
known test to detect increasing or decreasing trend in

the series [18]. It uses the slope as a change in mea-
surement with respect to time. The test is more robust
as it is not affected by gross data errors and outliers
[18].

Given LF, slope between two readings A*(i) and
AR() AR () —A*(0) g

(j) is computed as — where 1 < i < j <
s. This leads to computation of # slope values,
whose median is computed and compared with speci-
fied confidence interval. L* exhibits a trend if median
is statistically different from zero and lies within the
confidence interval [4]. Further, signs of slopes are
used to report the trend as diminishing or emerging.
In case there is not sufficient evidence of the trend, the
corresponding concept is reported as transitional. The
rationale for the decision follows from the fact that
the previous test has already ruled out randomness in
the arrival rate. A transitional concept usually has an

emerging and a diminishing trend within same sample.

5 CCDD Algorithm

CCDD (Categorizing Concepts for Detecting Drifts)
begins with an empty grid structure G and as data
points stream in, G gets populated. After a pre-
specified gestation period, concepts are discovered and
arrival rate for each concept is computed. This task
denotes the start of building of the sample L*. These
concepts are updated at random time intervals (aver-
age sampling periodicity - ®) and the arrival rates are
observed for each concept. Once the complete sample
for a concept is obtained, it can be categorized.

5.1 Notations

The application of connected component analysis on
G at time t; delivers a set C; = {C},C?,---,CE1}
of K, concepts. Each concept CY is a tuple <
id,n, N, \, ¢, type >, where id is the concept identi-
fier and type refers to category of the concept.

5.2 Description

Let Cy consists of K concepts discovered at time .
Subsequently, all incoming points are inserted in G,
till it is time to sample the arrival rates. Statistical in-
formation maintained in cells are used to update three
attributes of each concept in C;, thereby leading to
updated clustering scheme C;y;. This task may re-
sult into discovery of new concept, which are marked
'N’. Such concepts arise because some of the recently
added cells in G do not belong to any of the existing
concepts. Such cells may either collectively give rise to
a new concept or may individually be precursor of new
concepts. T'wo or more existing concepts may also get
merged due to newly added cells and additive prop-
erty of poisson process is used to compute a sample
of arrival rates for merged concepts. In case, pruning



of stale cells leads to splitting of concepts, the statis-
tics for splitted concepts are computed afresh using
the statistics of constituents cells using Eq. 1.

This process of inserting points in the G and col-
lecting observations at random intervals of time is re-
peated till either a sample of size s is attained or there
is demand for categorization.

Algorithm : CCDD: Categorizing Concepts for Detecting Drifts
Input : Points in Stream S, Sample size s.
Output : All concepts in stream alongwith the categories (either on
demand or periodically).
: begin
: Co=Initialization(G) //initial concepts
j=0
while more points in S do
B=random() //with ® as average sampling periodicity
Process and insert all incoming points received within time-
period ® in G
Using GG, update existing concepts C; and insert new concepts,
if any.
j=j+1 //Next observation
if (DemandForDrift) OR (sample complete) then
Categorize_concepts(C;)
Quantify drift using concepts and their categories in C;_1
and C;
end if
: end while
: end

Eo©0® N aswr
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Function : Categorize_concepts()

Input : Concepts C;

Output : Concept Type for each con-
cept.

1: begin

2: for each concept C'JZ in C; do

3 if sample size of i*" concept < s then

4 Set type="N’

5 else

6: Compute Co-efficient of Variation (CV')

7 if (CV <=6,) then

8 Set type="C’

9: else

10: Apply Runs 'ups and downs’ test // evidence for ran-
domness

11: if (non-random) then

12: Apply Sen’s Slope Method to detect increasing and

decreasing slope

13: if slope is negative then

14: Set type="D’

15: else

16: if slope is positive then

17: Set type="E’

18: else

19: Set type="T"

20: end if

21: end if

22: else

23: Set type="R’

24: end if //non-random

25: end if //CV

26:  end if//sample size
27: end for//each concept
28: end

6 Related work

Recently, the idea of concept drift has been applied to
unsupervised learning to detect evolution of clusters
[1, 5, 13, 19, 20]. We describe some of the recent al-
gorithms proposed to capture concept drift and follow
it by comparison of the proposed methodology with
some of these algorithms.

6.1 Capturing Cluster Transition

Kernel functions are used by Aggrawal [1] to model
clusters and variation in kernel density is used for
reporting cluster transitions. Changes are reported
based on the computation of the change ’velocity’ and
finding the location with the highest ’velocity’ using
assumption of fixed trajectory. Temporal and spatial
velocity profiles are maintained at periodic intervals
and are used to produce three types of cluster changes
viz. dissolution, coagulation and shift. However, the
method cannot be used in environment like text stream
mining, where feature space may change with time
[19].

MONIC framework [19] proposes a cluster transi-
tion model which tracks the cluster changes, not on
the basis of topological properties of clusters, but the
contents of the stream obtained by periodic clustering.
It tracks two types of cluster transitions viz. external
and internal. The transitions are used in making con-
clusions like mutation, stability and life time etc. of
a cluster. External transition imply relationship of a
cluster to the rest of clustering, whereas internal tran-
sition is detected using form and content of the cluster.
An aging function is used to reduce impact of history
data on current trends.

An Online Novelty and Drift Detection Algorithm
(OLINDDA) detects concept as cluster from a one-
class perspective. This implies that initial model is
learned based only on examples of a single class that
represents normal concept [20]. The algorithm detects
a novel concept or report concept drift if a normal
concept undergoes a change and a new class emerges.
A validated cluster which appears very far from the
global boundary of all clusters is reported as a novel
concept where as small transition within normal clus-
ters is detected as concept drift.

HE-Tree, an entropy-based clustering algorithm re-
ports changes in underlying clustering structure for
categorical stream as cluster transitions [5]. Three
types of cluster transitions viz. emerging clusters,
disappearing clusters and expanding clusters are de-
tected. As number of clusters K may vary with time,
BK Plot method is used to identify the best K clus-
ters in categorical data and to detect first two types
of transitions. It uses incremental entropy to find sim-
ilarity between two clusters and to report third form
of cluster transition. Change in physical characteris-
tics has been used to detect cluster transitions with
respect to last clustering.

The method proposed by Lin et al. [13] uses no-
tion of a concept cycle to indicate the concept drift.
All clusters formed within a cycle are treated as one
concept. A linear regression test is used to predict the
next time stamp for occurrence of a new dense cluster
which is compared with real next time stamp. The
formation of a new dense cluster after the predicted
time indicates the beginning of a new concept. But,



Data Window1l Window?2 ‘Window3 Window4
set Data (30k) CT Data (30k) CT Data (30k) CT Data (30k) CT
FD1 C1 C1:.C C2 C1:D,C2:C C3 C2:D,C3:C C4 C3:D,C4:C
FD2 C1,C2,C3 C1:D C1,C3 Cl1:E C3,C1 C1,C3:T C1,C3,C1,C3,- - - C1,C3:C
(15k,10k,5k) C2,C3:N (25k,5k) C2,C3:D (15k,15k) ((1k,1k),- - -,15 times)

Table 3: Description of Synthetic datasets for validation; CT: Categorization Type; ® = 1000; s = 30

in real life applications like customer buying pattern,
there may be multiple concepts within a time cycle
which this method cannot capture.

6.2 Comparison

Our work is comparable to the algorithms proposed
in [1], MONIC [19] and HE-Tree [5] as they capture
concept drifts in multiple concepts by comparing two
consecutive clustering schemes. Topological properties
are used in [1, 5] to report concepts transitions whereas
MONIC [19] distinguishes between internal and exter-
nal transitions using the contents of underlying data
streams.

CCDD algorithm introduces a novel perspective on
concept evolution, by considering the arrival rate of the
data points in a concept as an indicator of changing
data characteristics. This facilitates concise captur-
ing of new and emerging concepts on one hand, dis-
appearing and diminishing on the other. At the same
time, consistent and transitional data characteristics
are captured effectively. In several applications, in-
cluding market basket analysis and stock market anal-
ysis, arrival rate is more effective indicator compared
to change in physical characteristics of concepts like
shape, size etc.. This approach thus complements the
existing frameworks for concept transitions.

7 Experiment Section

In this section, we describe the experiments performed
to evaluate various aspects of proposed algorithm
(CCDD) on a synthetic data set and a real data set.
All experiments are performed on Intel Centrino pro-
cessor with 256 MB RAM, running stand-alone Linux
(kernel 2.4.22-1). The algorithm is implemented in
ANSI C with no optimizations, and compiled using
g++ compiler (3.3.2-2). In the experiments, the tim-
ing results are averaged over multiple runs.

7.1 Data Set Description

The data sets used for experiments are described be-
low.

1. Synthetic Data in the experiments is generated
using ENCLUS data generator [6], which gen-
erates pre-specified number of clusters with user
defined cardinality. The number of dimensions is
specified by the user.

2. Intrusion Detection data set (Kdd cup 99) con-
sists of a series of TCP connection records, each

of which can either correspond to a normal con-
nection or an intrusion. An intrusion is from one
of the 22 attack classes. The dataset has 494,020
observations, each consisting of 42 attributes (34
continuous and 8 categorical) [21]. We performed
experiment using 34 continuous attributes.

Synthetic data set has been used to validate the frame-
work, because it facilitates simulation of concepts
drifts by generating, merging, splitting of concepts as
described in Section 7.2. Kdd cup data set consists
of attacks of varied sizes. Attack classes like Neptune
and Smurf are biggest classes and appear in chunks
whereas some of the small attack classes are scat-
tered. Appearance and disappearance of attack classes
with normal class affects the evolution of correspond-
ing concepts (attacks) which is captured by the pro-
posed framework as emerging, diminishing, consistent
concepts.

7.2 Validation of CCDD algorithm

We validate the proposed framework on both synthetic
and real data sets keeping sampling periodicity (®)
fixed so as to obtain at least one complete sample (s =
30) at the end of each window.

7.2.1 Validation using synthetic data set

Clusters were generated using ENCLUS and stored in
separate files. Initially, a data file (FD1) was created
with four concepts in a sequence where each concept
was of size 30,000. The data file was created to af-
firm the expected output of the algorithm in simplest
scenario. On execution, one consistent concept was re-
ported in each window with one diminishing concept
which was generated in last window (Table 3, Row 1).
As expected, all the concepts were identified and cat-
egorized correctly.
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Figure 5: Transition of concept C1 in data set FD2



Later, a second data file (FD2) was created to vali-
date the capability of the algorithm to categorize mul-
tiple concepts at same time. Data was partitioned into
four windows each of size 30k as before. Three con-
cepts (C1,C2,C3) of respective sizes (15k,10k,5k) were
embedded in first window. Records of these concepts
were varied in next windows to simulate concepts tran-
sitions as shown in the second row of the Table 3.

This data file was streamed in for experimentation
and categorization was done after each window for
s = 30 with sample periodicity ® = 1000. All the
concepts were reported correctly as expected. Figure
5 shows the arrival pattern of concept C1 which tran-
sits thru different categories. These transitions match
with expected categorization (column CT of Row 2 in
Table 3) at the end of each window. This validated
the proposal and the programing aspect.

7.2.2 Validation using real data set

Subsequently, we validated algorithm on Kdd cup data
set by capturing transition in concepts. The original
Kdd cup data set was transmuted such that extracted
data had two concepts viz. Smurf attack and Nep-
tune attack. Order of appearance of these attacks
was not disturbed, to facilitate repeatability of exper-
iments and to capture natural evolution of clusters in
the data. We executed the algorithm with & = 1000
and s = 30. Table 4 shows the obtained results. The
first column shows total records in the stream at the
time of categorization. Second and third column show
the number of records of respective attack types. CId
column denotes the id of the discovered cluster (con-
cept). z.y.z denotes that during the observation pe-
riod, concepts z, y and z got merged to yield one con-
cept. CT column shows the categorization of the con-
cepts.

Records Concepts categorization
Smurf Neptune
TR* Smurf Neptune CId CT CId CT
30 11,258 18,742 1.2.3.4 T 5 N
60 22,753 37,247 1.2.3.4 T 5 T
90 48,878 41,122 1.2.3.4.7 E 5 D
6 N
120 78,878 41,122 1.2.3.4.7 E 6 D
150 108,878 41,122 1.2.3.4.7 C - -
180 138,878 41,122 1.2.3.4.7 C - -
210 168,878 41,122 1.2.3.4.7 C - -
240 198,878 41,122 1.2.3.4.7 C - -
270 223,545 46,455 1.2.3.4.7 C 8 N
300 224,364 75,636 1.2.3.4.7 D 8.9.10 D
11 N
12 N
330 243,969 86,031 1.2.3.4.7 C 8.9.10 D
11 D
12 D
360 273,969 86,031 1.2.3.4.7 C - -

Table 4: Concepts transition; TR*: Total records in
thousands, CId: Concept Id, CT: Category

During the first observation period, four concepts
were discovered, which ultimately got merged (Con-
cept Id 1.2.3.4). As a new (N) concept of Neptune

attack (CId 5) was also forming during this observed
period, the concept of Smurf was categorized as transi-
tional (T). Figure 6 shows the arrival rates correspond-
ing to these observed concepts.

During the second observation period, records for
Neptune attack were received initially, thereby increas-
ing its arrival rates and decreasing arrival rates for
Smurf concept. Later, Smurf concept received more
data points which increased its arrival rate whereas
arrival rates of Neptune concept decreased (Figure 7).
As arrival rates of both concepts were not stabilized,
these were reported as transitional concepts which is
verified from Figure 7.

Interesting drift can be noted after 120,000 records,
when Smurf concept was still emerging but old Nep-
tune concept (CId 6) became diminishing. This small
concept eventually vanished and Smurf concept be-
came consistent in the next categorization (Figure 8).
This can be vetted from the left hand side column
of the table, which shows total absence of Neptune
records up to 240,000. The Smurf concept remained
consistent even though a small concept of Neptune
(CId 8) appeared at 270,000; but became diminish-
ing on appearance of new concepts of Neptune at
300,000. Three Neptune concepts (Clds 8, 9 and
10) got merged, decreasing its arrival rate whereas
two more were reported separately as novel concepts.
These new concepts became diminishing at 330,000
and vanished subsequently, again making Smurf con-
sistent. Figure 9 shows the appearance of these two
novel concepts of Neptune in one window, which be-
came diminishing in adjacent window. Capturing of
such small concepts demonstrates the capability of the
algorithm to capture Type IIT drifts (Section 3) .

7.3 Sensitivity Analysis

The next set of experiments was run with the same
synthetic data file FD2 (Table 3), in a more realistic
environment, where ¢ was randomized. This was a
preliminary test where the objective was to assess the
sensitivity of the proposed algorithm with respect to
i) sampling periodicity and ii) sample size. This ex-
periment was designed to answer questions like ”does
the inference change if sampling periodicity changes?”
or "does the inference change if the sample size in-
creases?”. This investigation is important because de-
termining the sampling periodicity in an application is
difficult for the user. Intuitively, the inference is not
totally independent of the sampling periodicity. How-
ever, we found that varying ® in wide ranges does not
alter the inference regarding the category of a concept
in FD2.

7.3.1 Analysis using synthetic data set

Rigorous test was performed on another synthetic data
set which simulated rapid variation of concepts within
a single observation window. Each chunk corresponds
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Data Chunk1 Chunk?2 Chunk i Categorization
(size™)
DS1 CI(5K)C2(5k) C1(4.8K)C2(5.2K) CI1(3K)C2(7k) C1D, CZE
(350k) (10k) (10K) (10K)
DS2 | C1(5K)C2(Bk)C3(2k) | C1(5.2k)C2(4.8K)C3(2K) CI(7k)C2(3k)C3(2K) CTE, 2D
(400k) (12k) 12k 12k C3: C
DS3 | C1(d4K)C2(4k)C3(2k) | C1(4.2k)C2(3.8K)C3(2K) CT(6k)C3(2k)CA(2K) CTE, 02D
(500k) (10k) (10k) (10k) C3:C, C4N
Table 5: Description of Synthetic datasets
to one observation of arrival rate in concepts. We gen-
erated five data files each having 50,000 records in Dat 3 Ot "
one cluster. Three data sets (DS1, DS2, DS3) with ata 5 aregorization
. . 1000-20000 | 30-50 Correct
(350,000, 400,000 and 500,000) points respectively, Sl
. DS1 100-2000 | 30-200 R/C initially
were generated using these data files. The doctored
o . . . Correct® afterwards
datasets are shown in Table 5. Dataset DS1 consisted C
of data chunks each of size 10,000 points where each DS2 1100'224000 30'245 Co.rr.ec.t T
chunk had only two types of concepts: C1 (diminish- 00-2000 | 30-200 C R/ *m;tla Y 4
ing) and C2 (emerging). DS2 had data chunks each of orrect” afterwards
size 12,000 points and consisted of three type of con- 1000-20000 | 30-50 Co.rr.ec.t
cepts such that C1 was emerging, C2 was diminishing DS3 100-2000 | 30-200 R/ C* initially
and C3 was consistent. Dataset DS3 had four types of Correct” afterwards

concepts. Data records of each chunk were shuffled to
randomize the appearance of records of each cluster.

The categorization obtained with ® = 10,000 and
s = 30 for each data set was used as reference for
comparison (Table 5, last column). Each data set was
streamed in a separate experiment, and each experi-
ment was repeated with ® and s varying in wide ranges
as shown in Table 6. Further, this range was kept same
for DS1 and DS3, in which the chunk size was same.

The concepts were categorized correctly for wide
variation of ® (1000 to 20,000) for DS1 and DS3, and
(1000 to 24,000) for DS2. However, categorization for
very small periodicities (100 to 2000) was initially in-
correct, in which the concepts were reported as 'R’ or
'C’. Highly frequent sampling of arrival rates in the
concepts initially leads to unpredictable fluctuations
in arrival rates making the patterns either random or
consistent. However, after the concepts have stabi-
lized (few complete chunks have been processed) the
arrival rates accumulate and then small variations do
not alter the decision.

Table 6: Effect of sampling periodicity on concept cat-
egorization, *: after first few data chunks have been
sampled; R: Random, C: Consistent
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Table 7: Sensitivity analysis by varying s and ®; TR: Total
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7.3.2 Analysis using real data set

We performed sensitivity analysis of CCDD algorithm
on Kdd cup data by varying sampling periodicity (®)
and sample size (s). The data file generated for valida-
tion was used for comparison purpose. Table 7 shows
the categorization of Smurf (SF) and Neptune (NP)
with varying ® and s.

Column I in the table shows actual concept catego-
rization reported with fixed ® = 1000 and s = 30 and
has been taken from Table 4 . Column IT and IIT shows
the categorization reported by varying & and s. The
observation is same as that in the previous experiment.
The categorization of concepts gets perturbed initially,
but as the concepts stabilize, the correct inferences are
drawn.

7.4 Scalability Tests

Per-point processing time, sampling time and catego-
rization time are critical for the performance of the al-
gorithm. Per-point processing time in grid is constant
and of order (O(d)). Time for categorization depends
on sample size used in statistical test computation for
categorization. Increasing ® implies reduction of sam-
ple size and hence categorization time. However, the
sampling time depends on the number of concepts ex-
isting in the stream since arrival rates of each concept
has to be recorded. The scalability of the algorithm
is also tested on both synthetic data as well read data
set.
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Figure 10: Effect of sampling periodicity on total pro-
cessing time, A: 200 < & < 1000; B: 500 < & < 1000;
C:1000 < & < 3000

7.4.1 Scalability with synthetic data set

First experiment was conducted on the DS1, which was
repeatedly streamed to create a stream of 3,500,000
data points. We varied ® in small ranges and found
linear scalability for total time which includes process-
ing time, sampling time and categorization time. Ob-
servations from this experiment shows that total pro-
cessing time reduces marginally with reduction in @

(Figure 10).

7.4.2 Scalability with real data set

Next experiment aimed to study scalability with re-
spect to the number of concepts. We used Kdd cup
data for this purpose because of the abundance of the
number of clusters. Though there are only 23 classes,
the number of clusters is very large which keep on ap-
pearing and disappearing. This cluster evolution is
nicely captured by the algorithm.

First 350,000 records of KDD cup data file were
used in experiment. The sampling time and the num-
ber of concepts were observed with periodicity varying
® (3000 < @ < 6000). The experiment was repeated
multiple times to collect more observations so as to
average out the effect of randomness of ®.
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Figure 11: Variation of sampling time with the con-
cepts

Figure 11 shows scatter plot of the sampling times
with the changing number of concepts where sampling
time includes updation time for concepts and obser-
vation time for next reading. A general linear trend
is observed which affirms the intuition that if more
concepts are present in the stream, then the time re-
quired to record the arrival rate will be more because
of updation of concepts to incorporate new statistics
corresponding to updated cells in grid. However, little
noise between 50-150 along x-axis raises some perti-
nent questions. On investigating, we observed that
these were the locations in the data file where all the
records were of the same class and hence, were going
to the same concept. Consequently, minimal number
of concepts were being updated explaining near zero
sampling time.

8 Conclusion

In this paper, we presented CCDD (Categorizing Con-
cepts for Detecting Drifts) algorithm, which captures
concept drift in an unlabeled data stream by moni-
toring arrival pattern of data points. A taxonomy of
various types of concept drifts has been presented and



transitions that occur in the life-cycle of a concept are
modeled.

The basic premise of the algorithm is that the ar-
rival rate of points in a concept is a good indicator of
its evolution. Accordingly, the algorithm samples each
concept in the stream for respective arrival rates. The
iid sample is subjected to non-parametric statistical
tests to infer about the nature of evolution. Exper-
imentation had been done to demonstrate feasibility,
validity and scalability of the algorithm and the results
were found to be encouraging. The algorithm also was
found to be nearly non-sensitive to the sampling peri-
odicity and sample size.
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