
On the Complexity of Multi-Query Optimization in Stream Grids

Saikat Mukherjee Srinath Srinivasa Krithi Ramamritham

International Institute of Information Technology Indian Institute of Technology
Bangalore, India Bombay, India

{saikat.mukherjee,sri}@iiitb.ac.in krithi@cse.iitb.ac.in

Abstract

Stream grids are wide-area grid computing environments
that are fed by a set of stream data sources. Such grids
are becoming more wide-spread due to the large scale
deployment of sensor networks for a wide range of ap-
plications, from monitoring geophysical activities to sup-
ply chain management coupled with applications like net-
work monitoring. Queries external to the system arrive on
any node in the grid seeking data from one or more data
streams. The kind of queries considered in this work are
(1) lifetime queries and (2) long running queries where new
query arrivals and query revocations are infrequent. From
the system perspective, computing the optimal query plan
for the set of queries incident on the grid would ensure min-
imal system-wide resource usage, thereby maximizing the
number of concurrent queries that can be supported. The
key challenge in such a system is multi-query optimization.
In this work, we analyze the complexity of multi-query op-
timization for select, project and join queries in isolation
and propose algorithms for computing optimal query plans
if polynomial time algorithms exist.

1 Introduction

Stream grids are grid computing environments that are fed
with streaming data sources from instrumentation devices
like cameras, RFID (radio-frequency identification) sen-
sors or other applications. Queries by users or applications
seek to tap into one or more such streams. From the sys-
tem perspective, the important optimization goal is reduced
bandwidth consumption which can be achieved by efficient
routing of data streams.

Queries in such grids may originate on any node and
seek data from any stream or a set of streams. Such queries
are typically long lived, but not necessarily infinitely long
lived. Traditionally, query optimization has been addressed
for two classes of queries: “one-shot” queries and infinite
or “standing” queries [6]. One-shot queries are transient
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in nature and have very short life spans. In such environ-
ments, the speed of query processing takes precedence over
computing the execution plan with optimal data stream
routing. On the other hand, for standing queries whose life-
times are practically infinitely long and systems where new
query arrivals and query revocations are very infrequent, it
is desirable to invest time and resources to obtain optimal
execution plans.

The problem of generating globally optimal query plans
has been considered earlier in the context of databases [26,
10, 15], data warehousing [21] and more recently in the
context of streaming data sources like sensor networks [19,
32]. While, the primary challenge in computation of opti-
mal query plans in databases have been joins, in the data
warehousing context it has been the re-use of materialized
views and in the streaming data context, aggregate queries.

The key results from the research into complexity of
query optimization can be summarized as, (a) the opti-
mal join ordering problem in distributed databases is NP
hard [31], (b) the optimal materialized view selection prob-
lem using selection granularities in data warehousing is NP
hard [21], and (c) the problem of minimizing communica-
tion cost is NP-hard formaxandminqueries [30]. While in
the context of databases, considering selects, projects and
joins as part of a single query makes sense, for streaming
data, the possibility of data sharing introduces use cases
where project, select and join queries can be required in
isolation.

In this work, we consider systems which may require
project only, select only, and join only queries thereby ne-
cessitating a re-look at the complexity of multi-query opti-
mization for such individual query types. We show that for
project queries, polynomial time algorithms exists for com-
puting globally optimal query plans. We also show data
sharing coupled with infinite data sets allow projection re-
sults to be composed from a number of sources, with each
source having a subset of data required to answer a query.
Finally, by using a variation of the traditional two step opti-
mization process [9] involving a) data source selection and
access paths computation at runtime and b) operator site se-
lection at compile time, we show that for a particular class
of queries, it is possible to achieve minimum communica-
tion costs.



2 Related Work

Query optimization in databases is a very well studied area
in data management. Original query optimizers search the
plan space using dynamic programming [26], applying a
number of heuristics to reduce the number of options and
ensuring tractable optimization. One of the key observa-
tions made in [26] was the notion of pushing down projec-
tions and sometimes selections in the query tree to reduce
the data transfer between operators.

The focus of subsequent research was primarily on op-
timizing joins [17, 10, 16, 25] and plan enumeration with
other operators in Starburst [15] and Volcano [13]. Cost
models for optimization using resource consumption as a
metric were described in [18]. The inability of resource
consumption models to incorporate operator parallelism
led to the development of response time models as de-
scribed in [10].

A framework for determining the complexity of a gen-
eral class of distributed query processing is discussed
in [31], while the NP hard nature of optimal materialized
view selection based on selection granularities is discussed
in [21].

The concept of data, query and hybrid shipping were
introduced in SHORE [5] and has evolved as the opera-
tor placement problem in network aware query process-
ing [1, 22]. The two step optimization process where query
plans are generated in parts at compile time and runtime is
discussed in [4, 9].

Multi-query optimization in [27, 24, 29] provides
heuristics for computing the query plan, while [14, 7, 12]
discuss issues with scheduling, pipelining and caching
techniques in multi-query optimization. The NP hard na-
ture of computing multi-query optimization in databases is
discussed in [28].

Sensor networks [19] and in network query process-
ing [32] primarily focus on aggregate query optimization
to maximize the energy efficiency of sensors. The com-
plexity of multi-query optimization for aggregate queries
in sensor network is evaluated in [30].

Network aware query processing techniques described
in [1, 22] focus on the correct placement of operators in the
network. A spring relaxation technique to place operators
in the network integrating the two step optimization process
into a single step optimization process is also introduced
in [22].

3 The Grid Model

Mathematically, the stream grid is modeled as:G = (X, d),
whereX represents all the grid nodes. A subset of the grid
nodes,S ⊆ X are also stream sources.d : X ×X → <+

is a distance function encapsulating latency between nodes.
The distance function is assumed to have the following
characteristics:

• ∀x ∈ X, d(x, x) = 0, and

• Triangle inequality:

∀x, y, z ∈ X, x 6= y 6= z, d(x, z) ≤ d(x, y) + d(y, z)

It is important to note that the distance functiond rep-
resents the latency incurred by thebest pathbetween pairs
of nodes. In this sense, even though the triangle inequality
doesn’t hold for packet routing on the Internet [2], it still
holds for the distance function. The space described is a
logical space, which need not directly correspond to any
geography and/or network topology.

Stream data is considered to be in the form of tuples,
with each tuple representing a row in an infinitely long ta-
ble.

4 Query Types
Queries may arrive on any node in the grid requesting for
one or more streams. Queries are represented as relational
algebra expressions over the data streams. For the pur-
poses of grid-level optimization, we consider three basic
relational operations: projections, selections and joins.

1. Projection query:q = πsi1,...sik
(Si)

2. Selection query:q = σ(condition)Si

3. Join query:q = Si ./ Sj

At any given grid nodex ∈ X a subset of one or more
streams may be available as part of current query execution
plan. These streams can be reused to serve other queries in
the vicinity without them having to go all the way to the re-
quired stream sources. A grid node which is the source of a
data stream is termed as a “primary source” and a grid node
providing data which is derived or processed from another
grid node is termed as a “secondary source.”

5 Optimization Objective
From the user perspective, the key optimization goal is to
ensure reduced response times or latency, while from the
system perspective, the key objective is to reduce the re-
quired bandwidth. To ensure minimal response times, each
query would need to be satisfied by connecting to the near-
est node(s) having the required data (minimumd). It should
be noted here that minimizing network latency may result
in increased bandwidth usage if a geographically distant
node provides low latency. However, once the data source
node(s) are identified, the bandwidth required can be re-
duced by optimal operator placement. A bandwidth-delay
product combines both requirements and is termed asnet-
work usagein this work. The optimization objective is to
minimize network usage.

The other parameter which influences response time is
load on a node. Nodes with heavy loads would be a bottle-
neck increasing the overall response time of queries. The
load on a node is a combination of communication and
computational load. In the work presented in this paper,



we do not evaluate the complexity query optimization con-
sidering the load on a node.
Network Usage: At any nodex ∈ X, given a queryq, it
is ultimately answered by returning a set ofstream links
L(q) = {l1, l1, l2, . . . , ln}. For instance in Figure 1, a
query on nodeCN1 requesting fors1 ./ s2 ./ s3 can be
answered by forming the stream link set{l1, l2, l3}.

A link is a directed edge, represented as an ordered pair,
lp = (xp, yp). Data flows from data sourceyp to destina-
tion xp, to satisfy in part or completely, a query atxp. In
Figure 1, the linkl1 would be represented as(CN1, SN1).

q ( s 1 x s 2 x s 3 ,  t 1 )
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Figure 1: Query Result Generation using Streams Links

For a linkli = (xi, yi), its network usageis given as,

u(li) = Bandwidth(li) · d(li) (1)

where,Bandwidth(li) is the data rate of the streamli, and
d(li) = d(xi, yi) as described earlier, is the latency of the
data stream.

Let Q be the set of all queries incident on the gridG at
any instance of time. LetL denote the set of all links that
have been returned in response to queries inQ. We refer to
L as the “Estuary graph” or the “link graph” of the gridG
for the present time. The Estuary graph is formally defined
as:

L =
⋃

q∈Q

L(q) (2)

The global optimization objective on network usage is to
obtain an Estuary graph such that the overall network usage
is minimized. This is stated as:

arg min
L

∑

li∈L
u(li) (3)

6 Components of Network Usage Optimiza-
tion

From Equation 1 it is evident that there are two parts to
the optimization process, a) correct data source selection
leading to minimald, and b) correct operator placement
reducing the bandwidth required to transfer a data stream
from one node to another.
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Figure 2: Non Composable Projection

B

A

D

C

q =  p i ( s i 1 , s i 2 ) (S i )

p i ( s i2 ) (S i )p i ( s i1 ) (S i )

p i ( s i1 , s i2 , s i3 ) (S i )

Figure 3: Projection Composition

6.1 Data Source Selection

Correct data source selection depends on the type of query
plans supported in the system. The two types of plans we
consider in this work are,composableandnon-composable
plans.

Non-Composable Query Plans

Consider a grid nodex ∈ X processing a query of the form
qx = πsi1,si2(Si). This query can be answered by any node
x′ ∈ X, that contains a stream covering the requirements
of qx. In other words, a stream that contains either the same
or a superset of all the attributes ofSi that is required by
qx.

This is shown in Figure 2 where a query on nodeA is
answered by either nodeB or nodeC. A query plan that
always taps into such covering sources is termed as a “non-
composable” plan.

Composable Query Plans

Alternatively,qx can also be answered by sourcing streams
from two or more grid nodes even when none of them indi-
vidually coverqx, as long as the union of all the attributes
sourced from the streams coversqi. Such a kind of query
plan is called a “composable” query plan.

This is shown in Figure 3, where nodeD is the source
of the dataSi with attributessi1, si2 andsi3. NodeB and
C haveπsi1(Si) andπsi2(Si) respectively and a queryq
arrives on nodeA for πsi1,si2(Si). The query on nodeA is
satisfied using subset data available both at nodeB andC.



D(Si) B = πsi1(Si) C = πsi2(Si) B ∪ C =
πsi1,si2(Si)

.. .. .. ..
(1,1,1) (1) (1) (1,1)
(1,1,2) (1) (1) (1,1)
(1,2,3) (1) (2) (1,2)
(2,3,4) (2) (3) (2,3)

.. .. .. ..

Table 1: Continuous Data Projection Composition Possi-
bility - No Duplicate Removal

It should be noted here thatcomposable query plans are
not possible for project operators in traditional relational
algebra working on finite data sets. However, it is possi-
ble to compose query results for projection operations in
streaming data, if duplicates are not removed from the data
stream.

Duplicate removal in stream data itself has been ad-
dressed using various techniques like buffering [11],
Bloom filters [20] and [8] and windowing techniques [3].
If such duplicate removal techniques are used, query re-
sult composition would not be possible. For many practical
applications involving aggregations of data elements (like
counting or computing averages over the query result) du-
plicate removal is not advisable. These kinds of queries are
amenable to be answered by composable query plans.

Composability is possible with selects as well. A given
select operatorσ can be answered by two or more streams
σ1 . . . σk that each have a smaller selectivity thanσ as long
as the combined selectivity ofσ1∪· · ·∪σk coversthe selec-
tivity of σ. Composing query results based on selections is
similar to computing a query over a larger table from two or
more smaller materialized views [21]. In contrast, a query
representing a join between two or more streams has to be
always composed from the different streams.

Hence, given a queryq comprising a single operation
(either select, project or join), a query plan can compute
the result in three different ways:

1. Fetch the data from the relevant node hosting the data
stream or theprimary source.

2. Fetch the data from asecondary sourcewhich can sat-
isfy the query. A secondary source is a node which
shares data fetched from another node. A secondary
source satisfiesq if the streams it hosts covers the se-
lectivity or attribute requirements forq.

3. Compose the query result using two or more sources.

While composability allows for query plans resulting
in lesser network usage than non-composable operations,
it also adds an extra layer of complexity. By allowing
compositions, determining the optimal query plan not only
involves identifying single sources which can satisfy the
query, but also considerall possibilitieswhere a combina-
tion of sources could satisfy the query.

6.2 Operator Placement

The notion of operator placement has been discussed with
respect to query tree optimization in databases [R*], data
and query shipping and network aware query processing.
For the SPJ queries considered in this work, we consider
the correct placement of operator resulting in minimal net-
work usage for individual project, select and join queries
for composable and non-composable query plans discussed
in the previous section. To decide on operator placement,
each operatorO, a selectivity(O)parameter is used and is
defined as,

selectivity(O) =
bO(result)∑

i∈I
b(DSi)

(4)

where, I is the set of input streams to the operatorO,
b(DSi) is the bandwidth required to transmit theith input
stream inI, bO(result) is the bandwidth required to trans-
mit the resultant data stream.

The complexity of query optimization is the com-
bined complexity of source selection coupled with opera-
tor placement. If any of the two parts of the plan result in
non-polynomial time algorithms, heuristics can be used.

7 Complexity of Network Usage Optimiza-
tion

For the purpose of computing the complexity of computing
a globally optimal plan, leading to minimal network usage,
at any instance, we assume that the system is frozen on
any query arrival or revocation until the plan is computed.
In other words, query plan computation is a system-wide
atomic step.

We now consider each of the operations (projects, se-
lects and joins) separately for complexity calculation.

7.1 Complexity of Projections

The complexity of projection queries for composable and
non-composable query plans are as follows.

7.1.1 Composable Projects

Data Source Selection:To find the optimal query plan
for a given query set, we re-write all project queries re-
questing for multiple attributes of a stream to single at-
tribute queries (SAQ) of the same stream. For instance,
in Figure 3, the SAQ for queryqA at nodeA is given as,
SAQ(qA) = {πsi1(Si),πsi2(Si)}.

In a graph theoretic sense, all nodes requiring a given
stream data attribute collectively form a directed acyclic
graph (DAG) with at least one node connected to the orig-
inal data source. For instance the minimum spanning tree
(MST) overlays for the example in Figure 3 are given in
Figure 4 where, a MST is the tree incurring minimal net-
work usage that spans across all nodes in the DAG.



A query at a given node is satisfied by combining the
required attributes from individual data streams. For in-
stance in Figure 3, the query at nodeA is satisfied by tak-
ing a “union” the streamsπsi1(Si) andπsi2(Si)} arriving
at nodeA as shown in Table 1.

To find the DAG with the minimal network usage, we
use the following rationale:

1. Ignore the direction of DAG edges and consider all
stream connections between all pairs of nodes in the
grid

2. Compute a MST for the grid based on the stream con-
nections.

3. The overlay with the minimum network usage be-
tween a given source and destination is the path be-
tween them that lies on the MST.

Algorithm 1 Minimum Spanning Tree Overlay Algorithm
Require: Grid G and project query setQ incident onG
Ensure: Overlay of MSTsM with minimum network us-

ageUmin

1: S ← {}, N ← {},M ← {}, Umin ← 0
2: for all q ∈ Q do
3: S = S ∪ SAQ(q)
4: end for
5: for all SAQi ∈ S do
6: Ni = {x : x ∈ X ∧ ∃qx : SAQ(qx) ⊇ SAQi}
7: N = N ∪Ni

8: end for
9: for all Ni ∈ N do

10: Mi = MST (Ni,G)
11: M = M ∪Mi

12: end for
13: for all Mi ∈ M do
14: Umin = Umin + U(Mi)
15: end for

The overall algorithm as shown in Algorithm 1 is ex-
plained as follows. Each queryq ∈ Q incident on the grid
is decomposed into individual SAQs required to satisfyq
using theSAQ(q) operator. These individual SAQs are
then added to a setS which contains all the unique, indi-
vidual SAQs required to satisfy all the queriesQ incident
on the grid. For eachSAQi ∈ S, the set of grid nodes
Ni ∈ G which requireSAQi to satisfy some query incident
on it are identified.N is the set of allNis corresponding
to eachSAQi. All nodes inNi and the source ofSAQi

are connected together to create an overlay of edgesMi us-
ing a minimum spanning tree algorithmMST (Ni,G). The
network usage for the overlayMi is given byU(Mi) and
the network usage for the set of all overlaysM results in
the minimum network usageUmin.

Theorem 1 An overlay of minimum spanning treesM as
computed by Algorithm 1 gives the minimum network usage
query planUmin for a set of stream projection queriesQ if
compositions are allowed.

B

(a )   s i 1  ove r l ay  

A

D D

C

A

(a )   s i 2  ove r l ay  

Figure 4: Minimum Spanning Tree Overlays

Proof We prove the above theorem by refutation. Consider
one of the MST overlaysMi, requiring minimal access
paths over the set of nodesNi. Suppose there exists another
topologyM ′

i to connect nodes inNi with a network usage
U(M ′

i) such thatU(M ′
i) < U(Mi). This would mean that

if we replace the overlay path inMi with M ′
i we would get

a spanning tree of smaller weight. This is a contradiction
sinceMi is the minimum spanning tree.

Thus if compositions are allowed, then the optimal
query plan complexity is polynomial time with the optimal
query plan being an overlay of minimum spanning trees, as
the complexity of computing each minimum spanning tree
is polynomial [23].
Operator Placement: The project operator is not used at
all for composable projects. Instead for each queryq at
a node, the required data streams are fetched from other
nodes and a union operator used to combine the individual
streams to get the required result. Since the selectivity of
the union operator is unity, there is no possibility of reduc-
ing the bandwidth required to transmit the data by “better”
operator placement.

7.1.2 Non Composable Projects

Data Source Selection:If compositions are not allowed,
the only way to satisfy a query request is to get it from
either the primary source or a secondary source which has
a superset of the required data.

To determine the set of possible sources to answer a
query, we check for the covering property using the SAQ
concept introduced earlier. A queryqx on nodex can be
coveredor satisfiedby either the source of the data, or an-
other nodey which answers a queryqy whereSAQ(qx) ⊆
SAQ(qy).

The set of all sources and queries can be represented as
a poset of covering hierarchy based on the streams that they
possess or require. The covering poset for the example in
Figure 3 is shown in Figure 5. NodeD being the source
can satisfy any query and is therefore at the top of the poset
and at level 0. The query at nodeA requiring bothπsi1(Si)
andπsi2(Si) is next and can be satisfied only by sourceD.
Queries at nodesB andC can be satisfied by both nodeA



and source nodeD and are hence at the highest level of the
poset.

(B ,  { s i1 (S i )  } )

(A ,  { s i1 (S i ) ,  s i2 (S i )  } )

(D ,  {s i1 (S i ) ,  s i2  (S i ) ,  s i3  (S i )  } )

(C ,  { s i2 (S i )  } )

I nc reas ing  Sa t i s f i ab i l i t y

I n c r e a s i n g  L e v e l s

L e v e l  0

L e v e l  1

L e v e l  2

Figure 5: Satisfiability Poset for Figure 3

Each poset element is represented asei, where i
uniquely identifies the poset element. A functionL(ei)
is defined to denote thelevel of poset elementi and
SAQ(ei) v SAQ(ej) indicates the satisfiability of poset
elementei by another poset elementej .

The hierarchy of the poset ensures ifSAQ(ei) v
SAQ(ej) or L(ej) ≤ L(ei). A source nodes ∈ S can
answer a query for any attribute related to the source and
hence poset elements corresponding to sources are placed
at the top most level. All poset elements representing
queries are hierarchically organized below the source ele-
ments. Algorithm 2 explains the poset hierarchy formation
process.

Algorithm 2 Poset Hierarchy Formation Algorithm
Require: Grid G and project query setQ incident onG
Ensure: Hierarchically ordered posetP

1: for all ei ∈ P do
2: if ei ∈ S then
3: L(ei) = 0
4: else
5: L(ei) = 1
6: end if
7: end for
8: repeat
9: finish ← true

10: for all ei ∈ P do
11: for all ej ∈ P do
12: if SAQ(ei) @ SAQ(ej) then
13: L(ei) = max[L(ei), (L(ej) + 1)]
14: finish ← false
15: end if
16: end for
17: end for
18: until finish

Lemma 2 At the end of the poset hierarchy formation
process, theith poset elementei at levelk = L(ei) can
only be satisfied by,

1. poset elementej at levelk if and only ifSAQ(ei) =
SAQ(ej)

2. poset elementej at level l = L(ej), wherel < k, if
and only ifSAQ(ei) @ SAQ(ej)

Proof We prove this by refutation. Assuming there exists
a poset elementej at level l > k which can satisfyei,
then either (a)SAQ(ei) @ SAQ(ej), or (b) SAQ(ei) =
SAQ(ej).

• Refutation for (a): If there exists someej such that
SAQ(ei) @ SAQ(ej), then fromline 13 of Algo-
rithm 2, k ≥ l + 1. Hence ifk < l, then such anej

cannot exist.

• Refutation for (b): Ifej is at levell there must be some
eq at levell − 1 such thatSAQ(ej) @ SAQ(eq). If
SAQ(ej) = SAQ(ei), thenk = l as SAQ(ei) ⊂
SAQ(eq). Hence ifk < l, then such anej cannot
exist.

Once the posetP is ordered according to satisfiabil-
ity, we now create a “minimum network usage graph”
MinGraph. To create theMinGraph, each poset ele-
ment is considered as a node in the graph and the set of
edges determined ensuring minimum network usage. From
Lemma 2 all poset elements requiring the same data are
at the same levell and are grouped into a setX and re-
ferred to as the destination nodes. The poset elements or
nodes which can satisfy the poset elements in setX are
in lower levels and are grouped together into setY or the
source nodes. To determine the edges resulting in the min-
imum network usage, Prim’s minimum spanning tree al-
gorithm [23] is used whereY is considered to be the set
of nodes which are already in the tree andX is the set of
nodes still requiring to be connected.

Algorithm 3 determines the set of edges resulting in
minimum network usage.

Algorithm 3 Minimum Cost Network Usage Graph
Require: Grid G and ordered posetP
Ensure: Edges of MinGraph

1: Edges ← {}
2: for all ei ∈ P do
3: X ← {} {X is the set of destination nodes}
4: Y ← {} {Y is the set of source nodes}
5: for all ej ∈ P do
6: if (L(ej) = L(ei) & SAQ(ei) = SAQ(ej))

then
7: X = X ∪ ej

8: end if
9: if (L(ej) < L(ei) & SAQ(ei) ⊂ SAQ(ej))

then
10: Y = Y ∪ ej

11: end if
12: end for
13: Edges = Edges ∪ PrimsMST (X, Y,G)
14: end for

Theorem 3 The setEdges determined using Algorithm 3
results in minimum network usage.



Proof We use proof by refutation to prove the above algo-
rithm. The incorrectness can arise from,

• Incorrect selection of source set: Incorrect source se-
lection can occur if any possible source is being not
considered while considering the best source to select.
Givenline 9 of Algorithm 3, if there is such a source
present, it must be represented by a poset element
with a level greater than the concerned poset element.
However this is not possible because of Lemma 2.

• Incorrect selection of destination set: Incorrect desti-
nation selection can occur if any destination requiring
the same data is being not considered.Line 6 of Algo-
rithm 3 ensures that all equal sources are considered.

• Incorrect selection of edge: If there is an incorrect
edge selected, then there exists another edge with
lesser weight than the selected edge. This is not pos-
sible because of the use of Prim’s algorithm which se-
lects the minimum cost edge.

Operator Placement: The project operator is always
placed on the data source asselectivity(π) ≤ 1.

7.2 Complexity of Selections

Like project queries, we consider the complexity of com-
posable and non-composable selection query plans.

7.2.1 Composable Selects

Data Source Selection: The main issue in selection
queries involving compositions is identifying the set of data
sources which would lead to the minimal network loss.
The quintessential notion which determines if a source can
serve a query is theselection granularityavailable at the
source and the selection granularity required by the query.
For instance a queryq1 = σ(b1=1&b2=5)Si can be answered
by composing the result from two secondary data sources
having dataσ(b1<3)Si andσ(b2>4)Si.

Using selection granularities to determine reuse of data
is a well studied in the area of materialized view selection
techniques in data-warehouses [21].

In [21], for a given queryQ, there are a set of candidate
materialized viewsV (Q) to satisfyQ and a cost function
cost(MVi, QRi) which provides the cost for a materialized
view MVi ∈ V (Q) with a query region ofQRi. The op-
timal MV set problem is to find an optimal setS of pairs
(MVi, QRi) which can answer queryQ, minimizing the
cost ofS or,

arg min
S

∑

(MVi,QRi)∈S

cost(MVi, QRi) (5)

[21] shows that the minimum set cover decision prob-
lem, which is NP-complete can be transformed in polyno-
mial time to this decision problem thereby rendering the
optimization version as NP-hard.

We map the optimal MV set problem to the problem of
identifying the correct set of sources to satisfy a queryq

incident on the grid. The candidate sources and secondary
sourcesS(q) for answering the query can be considered to
be the set of candidate MVsV (Q). The cost for a mate-
rialized view can be considered to be the network usage
U(si, ri) for fetching data from the nodesi ∈ S(q) with
selection granularityri. The optimal network usage prob-
lem is to find the optimal setS of pairs(si, ri) to minimize
the network usage ofS or,

arg min
S

∑

(si,ri)∈S

U(si, ri) (6)

Hence the optimal network usage problem is NP-hard as
well.

7.2.2 Non Composable Selects

Data Source Selection:If compositions are not allowed,
the problem becomes very similar to the projection with-
out compositions problem. Since queries can be answered
from only sources with higher selection granularities, a
single query stream is sufficient to answer the query. In
such a scenario we need to create a hierarchical poset for a
given query set using selection granularities to set the lev-
els. The rest of the algorithm will be the same as in projec-
tion queries.
Operator Placement:The select operator is always placed
on the data source asselectivity(σ) ≤ 1.

7.3 Complexity of Joins

Operator Placement: In a distributed environment with
data being available at different sites, a join query withn
relations is formulated as a graph problem [31]. A directed
graph withn + 1 nodes is constructed where one node cor-
responds to the final destination siteD and the remaining
n nodes have a one-to-one association with a relation. An
edge(Ri, Rj) indicates relationRi being sent to node with
relationRj to perform a join. An edge(Ri, D) indicates
relationRi being sent to the destination site directly. The
objective is to find an inversely directed spanning tree to-
ward D with the minimal transmission cost. Finding the
optimal join sequence to minimize the transmission cost is
NP hard [31]. By replacing the transmission cost with the
network usage associated with shipping relations between
nodes, our problem also becomes NP-hard.

Trivially, joins cannot be performed without composi-
tions as no single source will have the joined data.

8 Conclusion and Future Work
This work shows that when composable query plans are
not allowed, polynomial time algorithms exists for com-
puting globally optimal non-composable plan for selects
and projects. However, the resultant network usage is not
the minimum possible value. Better query plans involving
lesser network usage are possible when selects and projects
are composed from streams with lower resolution. This
however, makes the optimization problem intractable ex-
cept for project-only queries.



Conditions Projects Selection Joins
Is query result
possible without
composition?

Yes Yes No

Complexity of
globally optimal
composable plan

P NP-hard NP-hard

Complexity of
globally optimal
non-composable
plan

P P -

Table 2: Summary of Query Processing Complexities for
Network Usage Optimization

However, it must be noted that the key assumption for
computing the globally optimal query plan is that the sys-
tem is frozen on any query arrival or revocation for query
plan computation. While this may be feasible for a system
where query arrivals and revocations occur infrequently, it
would not be practically feasible in a system where query
arrivals and revocations occur frequently.
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