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Abstract in nature and have very short life spans. In such environ-

ments, the speed of query processing takes precedence over

Stream grids are wide-area grid computing environment§omputing the execution plan with optimal data stream
that are fed by a set of stream data sources. Such grid®uting. On the other hand, for standing queries whose life-
are becoming more wide-spread due to the large scalémes are practically infinitely long and systems where new
deployment of sensor networks for a wide range of ap-guery arrivals and query revocations are very infrequent, it
plications, from monitoring geophysical activities to sup- IS desirable to invest time and resources to obtain optimal
ply chain management coupled with applications like net-execution plans.
work monitoring. Queries external to the system arrive on  The problem of generating globally optimal query plans
any node in the grid seeking data from one or more dat&as been considered earlier in the context of databases [26,
streams. The kind of queries considered in this work arelO, 15], data warehousing [21] and more recently in the
(1) lifetime queries and (2) long running queries where newcontext of streaming data sources like sensor networks [19,
query arrivals and query revocations are infrequent. Fron82]. While, the primary challenge in computation of opti-
the system perspective, computing the optimal query plafal query plans in databases have been joins, in the data
for the set of queries incident on the grid would ensure minwarehousing context it has been the re-use of materialized
imal system-wide resource usage, thereby maximizing th&iews and in the streaming data context, aggregate queries.
number of concurrent queries that can be supported. The The key results from the research into complexity of
key challenge in such a system is multi-query optimizationguery optimization can be summarized as, (a) the opti-
In this work, we analyze the complexity of multi-query op- mal join ordering problem in distributed databases is NP
timization for select, project and join queries in isolation hard [31], (b) the optimal materialized view selection prob-
and propose algorithms for computing optimal query plandem using selection granularities in data warehousing is NP
if polynomial time algorithms exist. hard [21], and (c) the problem of minimizing communica-
tion cost is NP-hard fomaxandmin queries [30]. While in
1 ducti the context of databases, considering selects, projects and
htroduction joins as part of a single query makes sense, for streaming

Stream grids are grid computing environments that are fedata, the possibility of data sharing introduces use cases
with streaming data sources from instrumentation device¥here project, select and join queries can be required in
like cameras, RFID (radio-frequency identification) sen-isolation. _ _ _
sors or other applications. Queries by users or applications [N this work, we consider systems which may require
seek to tap into one or more such streams. From the sygroject only, select only, and join only queries thereby ne-
tem perspective, the important optimization goal is reduce@essitating a re-look at the complexity of multi-query opti-
bandwidth consumption which can be achieved by efficientfization for such individual query types. We show that for
routing of data streams. project queries, polynomial time algorithms exists for com-
Queries in such grids may originate on any node and?uting globally optimal query plans. We also show data
seek data from any stream or a set of streams. Such queri€garing coupled with infinite data sets allow projection re-
are typically long lived, but not necessarily infinitely long Sults to be composed from a number of sources, with each
lived. Traditionally, query optimization has been addresseOUrce having a subset of data required to answer a query.
for two classes of queries: “one-shot” queries and infiniteFinally, by using a variation of the traditional two step opti-

or “standing” queries [6]. One-shot queries are transieniMization process [9] involving a) data source selection and
access paths computation at runtime and b) operator site se-

h . lection at compile time, we show that for a particular class
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2 Related Work e Triangle inequality:

Query optimization in databases is a very well studied area vz 2 € X,z # y # 2z, d(z, 2) < d(x,y) + d(y, 2)
in data management. Original query optimizers search the
plan space using dynamic programming [26], applying a It is important to note that the distance functi@mep-
numb_er of heuristics t(.) r_edu_ce the number of options an(ije:sents the latency incurred by thest pathbetween pairs
ensuring trqctable optimization. One of _the key obse_rva-of nodes. In this sense, even though the triangle inequality
tions made in [26] was the notion of pushing down projec-

. ) : . doesn'’t hold for packet routing on the Internet [2], it still
tions and sometimes selections in the query tree to reduCﬁolds for the distance function. The space described is a
the data transfer between operators. '

. logical space, which need not directly correspond to any
The focus of subsequent research was primarily on OPgeography and/or network topology.

timizing joins [17, 10, 16, 25] and plan enumeration with = gyream data is considered to be in the form of tuples,

other operators ‘U S’Farburst [15] and Volcano [13.]' Costyjith each tuple representing a row in an infinitely long ta-
models for optimization using resource consumption as g,

metric were described in [18]. The inability of resource
consumption models to incorporate operator parallelism
led to tr?e development of reSponse tiF;'ne mog)els as de‘lr Query Types
scribed in [10]. Queries may arrive on any node in the grid requesting for
A framework for determining the complexity of a gen- one or more streams. Queries are represented as relational
eral class of distributed query processing is discussedlgebra expressions over the data streams. For the pur-
in [31], while the NP hard nature of optimal materialized poses of grid-level optimization, we consider three basic
view selection based on selection granularities is discussettlational operations: projections, selections and joins.
in [21].
The concept of data, query and hybrid shipping were 1. Projection queryy =, ., (5i)
introduced in SHORE [5] and has evolved as the opera-
tor placement problem in network aware query process-
ing [1, 22]. The two step optimization process where query 3. join query:q = S; S;
plans are generated in parts at compile time and runtime is '
discussed in [4, 9]. At any given grid noder € X a subset of one or more
Multi-query optimization in [27, 24, 29] provides streams may be available as part of current query execution
heuristics for computing the query plan, while [14, 7, 12] plan. These streams can be reused to serve other queries in
discuss issues with scheduling, pipelining and cachinghe vicinity without them having to go all the way to the re-
techniques in multi-query optimization. The NP hard na-quired stream sources. A grid node which is the source of a
ture of computing multi-query optimization in databases isdata stream is termed as a “primary source” and a grid node
discussed in [28]. providing data which is derived or processed from another
Sensor networks [19] and in network query process-grid node is termed as a “secondary source.”
ing [32] primarily focus on aggregate query optimization
to maximize the energy efficiency of sensors. The com§ Optimization Objective
plexity of multi-query optimization for aggregate queries ) o .
From the user perspective, the key optimization goal is to

in sensor network is evaluated in [30]. duced . lat hile f th
Network aware query processing techniques describe§SUre reduced response times or latency, while from the
system perspective, the key objective is to reduce the re-

in [1, 22] focus on the correct placement of operators in the uired bandwidth. To ensure minimal response times, each
network. A spring relaxation technique to place operatorsq ; e pon ’
guery would need to be satisfied by connecting to the near-

in the network integrating the two step optimization process ) : .
into a single step optimization process is also introduce stnode(s) having thg r'eq.u|.red data (minimf)mit should
: e noted here that minimizing network latency may result
in [22]. C . . ) )
in increased bandwidth usage if a geographically distant
node provides low latency. However, once the data source
3  The Grid Model node(s) are identified, the bandwidth required can be re-
duced by optimal operator placement. A bandwidth-delay
Mathematically, the stream grid is modeled@s= (X,d),  product combines both requirements and is termeuke#s
whereX represents all the grid nodes. A subset of the gridwork usagen this work. The optimization objective is to
nodes,S C X are also stream sourcas: X x X — RT minimize network usage.
is a distance function encapsulating latency between nodes. The other parameter which influences response time is
The distance function is assumed to have the followindoad on a node. Nodes with heavy loads would be a bottle-
characteristics: neck increasing the overall response time of queries. The
load on a node is a combination of communication and
e Vz e X,d(z,z) =0, and computational load. In the work presented in this paper,

2. Selection queryy = o'(condition)Si



we do not evaluate the complexity query optimization con- piGsivsiz siz)si) (B) (c) risivsizsiasisisi
sidering the load on a node.
Network Usage: At any nodex € X, given a queryy, it
is ultimately answered by returning a setsifeam links *)
L(q) = {li,l1,ls,...,1,}. For instance in Figure 1, a
guery on node”’ N; requesting fors; > so <1 s3 can be
answered by forming the stream link 4éf, 5, [3}.

Alink is a directed edge, represented as an ordered pair,
l, = (xp,yp). Data flows from data sourag, to destina-
tion z,, to satisfy in part or completely, a queryaf. In
Figure 1, the link; would be represented 4§’ Ny, SNy).

q = pi(sil,si2)(Si)

Figure 2: Non Composable Projection
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Figure 1: Query Result Generation using Streams Links _
6.1 Data Source Selection

For alinkl; = (i, y;), its network usages given as, Correct data source selection depends on the type of query
u(l;) = Bandwidth(l;) - d(1;) (1)  plans supported in the system. The two types of plans we
consider in this work are&gomposabl@andnon-composable
where,Bandwidth(l;) is the data rate of the stredmand  plans.
d(l;) = d(x;,y;) as described earlier, is the latency of the
data stream. . Non-Composable Query Plans
Let @ be the set of all queries incident on the gficht
any instance of time. Lef denote the set of all links that Consider a grid node € X processing a query of the form
have been returned in response to querigg.ifVe referto 4z = s, s, (S:). This query can be answered by any node
L as the “Estuary graph” or the “link graph” of the gig 7' € X, that contains a stream covering the requirements
for the present time. The Estuary graph is forma”y definecpf G- In other words, a stream that contains either the same

as: or a superset of all the attributes 8f that is required by
Q-
L= U L(q) 2) This is shown in Figure 2 where a query on nodlés
1€0 answered by either nodB or nodeC. A query plan that

The global optimization objective on network usage is toalways taps ,|,nto such covering sources is termed as a "non-
%omposable plan.

obtain an Estuary graph such that the overall network usag
is minimized. This is stated as:

arg mﬁin Z u(l;) 3)

L,eL

Composable Query Plans

Alternatively,q, can also be answered by sourcing streams
from two or more grid nodes even when none of them indi-
6 Components of Network Usage Optimiza- vidually coverg,,, as long as the union of alllthe attributes
tion sourced from the streams covets Such a kind of query
plan is called a “composable” query plan.
From Equation 1 it is evident that there are two parts to This is shown in Figure 3, where node is the source
the optimization process, a) correct data source selectioaf the dataS; with attributess;;, s;» ands;s. Node B and
leading to minimald, and b) correct operator placement C' haver;;(S;) andrg2(S;) respectively and a query
reducing the bandwidth required to transfer a data streararrives on noded for 741 5i2(S;). The query on nodel is
from one node to another. satisfied using subset data available both at fddedC'.



D(S;) | B=m1(Si) | C =m2(S:) | B U CS: 6.2 Operator Placement
- - - TNLM( 2 The notion of operator placement has been discussed with
(1,1,1) (1) (1) 1,1) respect to query tree optimization in databases [R*], data
(1,1,2) (1) (1) (1,1) and query shipping and network aware query processing.
(1,2,3) (1) ) (1,2) For the SPJ queries considered in this work, we consider
(2,3,4) 2 (3) 2,3) the correct placement of operator resulting in minimal net-
N B . N work usage for individual project, select and join queries

for composable and non-composable query plans discussed
Table 1: Continuous Data Projection Composition Possiin the previous section. To decide on operator placement,
bility - No Duplicate Removal each operato€, aselectivity(O)parameter is used and is
defined as,

It should be noted here thabmposable query plans are
not possible for project operators in traditional relational - Z b
algebra working on finite data setdHowever, it is possi- £ P(DS)
ble to compose query results for projection operations in et

streaming data, if duplicates are not removed from the datghere, 7 is the set of input streams to the opera@y

stream. b(ps,) is the bandwidth required to transmit tffé input

DupIicate_ removal in stream data @tself has _been adstream iNZ, bo(resutr) 1S the bandwidth required to trans-
dressed using various techniques like buffering [11],mit the resultant data stream.

Bloom filters_ [20] and [8] and Wi_ndowing techniques [3].  The complexity of query optimization is the com-
If such duplicate removal techniques are used, query resineq complexity of source selection coupled with opera-
sult composition would not be possible. For many practica, placement. If any of the two parts of the plan result in

applications involving aggregations of data elements (like,on_polynomial time algorithms, heuristics can be used.
counting or computing averages over the query result) du-

plicate removal is not advisable. These kinds of queries are . L

amenable to be answered by composable query plans. 7 C_:omplexﬂy of Network Usage Optimiza-
Composability is possible with selects as well. A given tion

select operatos can be answered by two or more streams

o1 .. .o that each have a smaller selectivity thaas long

as the combined selectivity ef U- - -Uo}, coversthe selec-

bO(result)

selectivity(O) (4)

For the purpose of computing the complexity of computing
a globally optimal plan, leading to minimal network usage,

tivity of 0. Composing query results based on selections iitn an{Ié?St:rr;ﬁZ{l gvrer:\f;garggntzitﬂmﬁesygre]rig SOILOZU?Z don
similar to computing a query over a larger table from two or y query P P :

more smaller materialized views [21]. In contrast, a quer))n other words, query plan computation is a system-wide

representing a join between two or more streams has to b%tomlc step. . . .
We now consider each of the operations (projects, se-

always composed from the different streams. | d ioi v f lexi lculati
Hence, given a query comprising a single operation ects and joins) separately for complexity calculation.

(either select, project or join), a query plan can compute . o
the result in three different ways: 7.1 Complexity of Projections

;’he complexity of projection queries for composable and

1. Fetch the data from the relevant node hosting the dat
non-composable query plans are as follows.

stream or therimary source

2. Fetch the data fromsecondary sourcethich cansat- 7.1.1 Composable Projects

isfy the query. A secondary source is a node which . , .
shares data fetched from another node. A secondar?ata Source Selection:To find the optimal query plan

source satisfie if the streams it hosts covers the se- O @ given query set, we re-write all project queries re-
lectivity or attribute requirements far questing for multiple attributes of a stream to single at-

tribute queries (SAQ) of the same stream. For instance,
3. Compose the query result using two or more sourcesin Figure 3, the SAQ for query, at nodeA is given as,
SAQ(qa) = {msi1(S:),msi2(Si) }-

While composability allows for query plans resulting In a graph theoretic sense, all nodes requiring a given
in lesser network usage than non-composable operationstream data attribute collectively form a directed acyclic
it also adds an extra layer of complexity. By allowing graph (DAG) with at least one node connected to the orig-
compositions, determining the optimal query plan not onlyinal data source. For instance the minimum spanning tree
involves identifying single sources which can satisfy the(MST) overlays for the example in Figure 3 are given in
query, but also considel possibilitieswhere a combina- Figure 4 where, a MST is the tree incurring minimal net-
tion of sources could satisfy the query. work usage that spans across all nodes in the DAG.



A query at a given node is satisfied by combining the
required attributes from individual data streams. For in-
stance in Figure 3, the query at nodes satisfied by tak-
ing a “union” the streams;; (.5;) andms;2(S;)} arriving
at nodeA as shown in Table 1.

To find the DAG with the minimal network usage, we
use the following rationale:

1. Ignore the direction of DAG edges and consider all

stream connections between all pairs of nodes in the

grid

nections.

. The overlay with the minimum network usage be-

. Compute a MST for the grid based on the stream con-

(a) sil overlay (a) si2 overlay

Figure 4: Minimum Spanning Tree Overlays

tween a given source and destination is the path bePrOOf We prove the above theorem by refutation. Consider

tween them that lies on the MST.

Algorithm 1 Minimum Spanning Tree Overlay Algorithm

Require: Grid G and project query s&p incident ong

Ensure: Overlay of MSTsM with minimum network us-
ageUnLin

S —{},N—{}, M —{},Unin <0

: forall g € Q do
S=SUSAQ(q)

end for

: forall SAQ; € S do

N, ={z:2z€ X N3q, : SAQ(q.) 2 SAQ;}

N=NUN;

: end for

: forall N; € N do

M; = MST(N;,G)

M = M U M;

: end for

: forall M; € M do

: end for

P~ e ol

The overall algorithm as shown in Algorithm 1 is ex-
plained as follows. Each querye @ incident on the grid
is decomposed into individual SAQs required to satigfy
using theSAQ(q) operator. These individual SAQs are
then added to a set which contains all the unique, indi-
vidual SAQs required to satisfy all the queri@sincident
on the grid. For eactv AQ; € S, the set of grid nodes
N; € G which requireS AQ); to satisfy some query incident
on it are identified. N is the set of allV;s corresponding
to eachSAQ);. All nodes inN; and the source af AQ;
are connected together to create an overlay of edfjass-
ing a minimum spanning tree algorithtd ST'(V;, G). The
network usage for the overlay/; is given byU (M;) and
the network usage for the set of all overlays results in
the minimum network usadé, ., .

Theorem 1 An overlay of minimum spanning tred$ as
computed by Algorithm 1 gives the minimum network usag
query planU,,;, for a set of stream projection queri€sif
compositions are allowed.

one of the MST overlay3/;, requiring minimal access
paths over the set of nod@§. Suppose there exists another
topology M/ to connect nodes ifV; with a network usage
U(M]) such thatU(M!) < U(M;). This would mean that
if we replace the overlay path ih; with M/ we would get

a spanning tree of smaller weight. This is a contradiction
sinceM; is the minimum spanning tree.

Thus if compositions are allowed, then the optimal
guery plan complexity is polynomial time with the optimal
guery plan being an overlay of minimum spanning trees, as
the complexity of computing each minimum spanning tree
is polynomial [23].

Operator Placement: The project operator is not used at
all for composable projects. Instead for each quest

a node, the required data streams are fetched from other
nodes and a union operator used to combine the individual
streams to get the required result. Since the selectivity of
the union operator is unity, there is no possibility of reduc-
ing the bandwidth required to transmit the data by “better”
operator placement.

7.1.2 Non Composable Projects

Data Source Selection:If compositions are not allowed,
the only way to satisfy a query request is to get it from
either the primary source or a secondary source which has
a superset of the required data.

To determine the set of possible sources to answer a
query, we check for the covering property using the SAQ
concept introduced earlier. A quegy. on nodex can be
coveredor satisfiedby either the source of the data, or an-
other nodey which answers a query, whereSAQ(g,) C
SAQ(qy).

The set of all sources and queries can be represented as
a poset of covering hierarchy based on the streams that they
possess or require. The covering poset for the example in
Figure 3 is shown in Figure 5. Node being the source
can satisfy any query and is therefore at the top of the poset
and at level 0. The query at noderequiring bothr;1 (.S;)
andmg2(S;) is next and can be satisfied only by soufee
Queries at node® andC can be satisfied by both node



and source nod® and are hence at the highest level of the 2. poset element; at levell = L(e;), wherel < k, if

poset. and only ifSAQ(e;) T SAQ(e;)
nereasing satisfiability Proof We prove this by refutation. Assuming there exists
A a poset element; at levell > k which can satisfy;,
revere then either (ay AQ(e;) T SAQ(e;), or (b) SAQ(e;) =
SAQ(e;).

tevel 1 ¢ Refutation for (a): If there exists someg such that

SAQ(e;) T SAQ(e;), then fromline 13 of Algo-

ez | rithm 2,k > [ + 1. Hence ifk < [, then such am;

Increasing Levels cannot exist.
. ] - . o Refutation for (b): lfe; is at levell there must be some
Figure 5: Satisfiability Poset for Figure 3 e, at levell — 1 such thatSAQ(e;) C SAQ(e,). If
SAQ(e;) = SAQ(e;), thenk = [ as SAQ(e;) C
Each poset element is represented eas where i S5AQ(eq). Hence ifk < [, then such are; cannot
uniquely identifies the poset element. A functidie;) exist.

is defined to denote théevel of poset element and
SAQ(e;) T SAQ(e;) indicates the satisfiability of poset
element; by another poset elemeay.

The hierarchy of the poset ensures SAQ(e;) C
SAQ(e;) or L(ej) < L(e;). A source nodes € S can
answer a query for any attribute related to the source an
hence poset elements corresponding to sources are placgfina same level and are grouped into a sat and re-

at the top most level. All poset elements representinge e g as the destination nodes. The poset elements or

gueries are hierarchically organized below the source el%ﬁodes which can satisfy the poset elements in)6ere
ments. Algorithm 2 explains the poset hierarchy formation;, |qwwer levels and are grouped together into Xeor the

process. source nodes. To determine the edges resulting in the min-
imum network usage, Prim’s minimum spanning tree al-
gorithm [23] is used wher& is considered to be the set
of nodes which are already in the tree akids the set of
nodes still requiring to be connected.

Algorithm 3 determines the set of edges resulting in

Once the posefP is ordered according to satisfiabil-
ity, we now create a “minimum network usage graph”
MinGraph. To create the\linGraph, each poset ele-
ment is considered as a node in the graph and the set of

dges determined ensuring minimum network usage. From
emma 2 all poset elements requiring the same data are

Algorithm 2 Poset Hierarchy Formation Algorithm
Require: Grid G and project query s&p incident ong
Ensure: Hierarchically ordered posét

1: forall ¢; € Pdo

2. if e; € Sthen ‘o

- Lies) =0 minimum network usage.

4: else Algorithm 3 Minimum Cost Network Usage Graph
5: L(e;) =1 Require: Grid G and ordered poset

6: endif Ensure: Edges of MinGraph

7: end for 1: Edges — {}

8: repeat 2: forall e; € Pdo

9 finish — true 3 X < {} {X is the set of destination nodes

10 forall e; € Pdo

4: Y « {} {Y is the set of source nodes
11: fO(fagjb% ];dOSAQ( th 5. forall e; € Pdo
12: i e;) C €;) then 6: if (L(e;) = L(e;) & SAQ(e;) = SAQ(e;
13: L(e;) = max[L(e;), (L(ej) +1)] the(n( ) o @) @)
14 finish < false 7: X=XUe,
15 end if &  endif ’
16: end for ' i

o: if (L(e;) < L(e;) & SAQ(e;) C SA ;
17:  end for the(n (€s) = @) @)
18: until finish 10: Y =Y Ue;

11: end if

12:  end for

Lemma 2 At the end of the poset hierarchy formation ;3. Edges = Edges U PrimsMST(X,Y,G)
process, the'" poset element; at levelk = L(e;) can 14: end for
only be satisfied by,

1. poset element; at levelk if and only if SAQ(e;) =  Theorem 3 The setEdges determined using Algorithm 3
SAQ(e;) results in minimum network usage.



Proof We use proof by refutation to prove the above algo-incident on the grid. The candidate sources and secondary

rithm. The incorrectness can arise from, sourcesS(q) for answering the query can be considered to

. ) be the set of candidate MVIE(Q). The cost for a mate-

* Incqrrect selectlon. of source set. Incorreqt SOUrCe S€-jjized view can be considered to be the network usage
Iect|o_n can occur if any ppssmle source is being nOtU(si,m) for fetching data from the node € S(q) with
considered while considering the best source to select,,|action granularity;. The optimal network usage prob-

leenling 9 of Algorithm 3, if there is such a source lem is to find the optimal sef of pairs(s;, r;) to minimize
present, it must be represented by a poset elemeq e network usage o or

with a level greater than the concerned poset element.
However this is not possible because of Lemma 2. arg msin Z U(si,rs) (6)

¢ Incorrect selection of destination set: Incorrect desti- (siyri)es
nation selecﬂon can occur if any destination requiring  Hence the optimal network usage problem is NP-hard as
the same data is being not considerédne 6 of Algo- o1
rithm 3 ensures that all equal sources are considered.

e Incorrect selection of edge: If there is an incorrect /-2-2 Non Composable Selects
edge selected, then there exists another edge withhata Source Selection:If compositions are not allowed,
lesser weight than the selected edge. This is not poshe problem becomes very similar to the projection with-
sible because of the use of Prim’s algorithm which se-out compositions problem. Since queries can be answered
lects the minimum cost edge. from only sources with higher selection granularities, a
single query stream is sufficient to answer the query. In
such a scenario we need to create a hierarchical poset for a
given query set using selection granularities to set the lev-
els. The rest of the algorithm will be the same as in projec-

Operator Placement: The project operator is always
placed on the data source &sectivity(m) < 1.

7.2 Complexity of Selections

tion queries.
Like project queries, we consider the complexity of com-Operator Placement: The select operator is always placed
posable and non-composable selection query plans. on the data source aslectivity(o) < 1.
7.2.1 Composable Selects 7.3 Complexity of Joins

Data Source Selection: The main issue in selection Operator Placement: In a distributed environment with
gueries involving compositions is identifying the set of datadata being available at different sites, a join query with
sources which would lead to the minimal network loss.relations is formulated as a graph problem [31]. A directed
The quintessential notion which determines if a source cagraph withn + 1 nodes is constructed where one node cor-
serve a query is theelection granularityavailable at the responds to the final destination siieand the remaining
source and the selection granularity required by the query. nodes have a one-to-one association with a relation. An
For instance a queny; = o(,1—1852—5)S5: can be answered edge(R;, R;) indicates relatior?; being sent to node with
by composing the result from two secondary data sourceselation R; to perform a join. An edgé¢R;, D) indicates
having datar (1 <3).S; ando 2~ 4)S;. relation R; being sent to the destination site directly. The
Using selection granularities to determine reuse of databjective is to find an inversely directed spanning tree to-
is a well studied in the area of materialized view selectionward D with the minimal transmission cost. Finding the
techniques in data-warehouses [21]. optimal join sequence to minimize the transmission cost is
In [21], for a given queny, there are a set of candidate NP hard [31]. By replacing the transmission cost with the
materialized viewd/(Q) to satisfy@ and a cost function network usage associated with shipping relations between
cost(MV;, QR;) which provides the cost for a materialized nodes, our problem also becomes NP-hard.
view MV; € V(Q) with a query region of R;. The op- Trivially, joins cannot be performed without composi-
timal MV set problem is to find an optimal sétof pairs  tions as no single source will have the joined data.
(MV;, QR;) which can answer quer§), minimizing the
cost ofS or, 8 Conclusion and Future Work

arg min Z cost(MV;, QR;) (5)  This work shows that when composable query plans are
not allowed, polynomial time algorithms exists for com-

puting globally optimal non-composable plan for selects

[21] shows that the minimum set cover decision prob-and projects. However, the resultant network usage is not
lem, which is NP-complete can be transformed in polyno-the minimum possible value. Better query plans involving
mial time to this decision problem thereby rendering thelesser network usage are possible when selects and projects
optimization version as NP-hard. are composed from streams with lower resolution. This

We map the optimal MV set problem to the problem of however, makes the optimization problem intractable ex-
identifying the correct set of sources to satisfy a query cept for project-only queries.

(MV;,QR;)€S



Conditions Projects | Selection| Joins

Is query resultf Yes Yes No

possible without
composition?

Complexity  of NP-hard | NP-hard
globally optimal

composable plan

Complexity  of
globally optimal
non-composable

[8]

[9]

[10]

plan

Table 2: Summary of Query Processing Complexities for
Network Usage Optimization

arrivals and revocations occur frequently.

[11]

However, it must be noted that the key assumption for
computing the globally optimal query plan is that the sys—[
tem is frozen on any query arrival or revocation for query
plan computation. While this may be feasible for a system
where query arrivals and revocations occur infrequently, it
would not be practically feasible in a system where query
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