
Top-k Implementation Techniques of Minimum Effort

Driven Faceted Search For Databases

Senjuti Basu Roy, Gautam Das

University of Texas at Arlington
Box 19015, 416 Yates St.,Room 300, Nedderman Hall,

Arlington, TX 76019-0015, USA.
senjuti.basuroy@mavs.uta.edu,gdas@uta.edu

Abstract

In this paper, we investigate opportunities to improve
the performance of minimum effort driven faceted
search techniques. The main idea is motivated by the
early stopping techniques used in the TA-family of al-
gorithms for top-k computations. Our initial set of
experimental results demonstrate that the proposed
techniques expedite performance significantly.

1 Introduction

In recent years, the paradigm of faceted search has re-
ceived significant research attention. In particular, it
has been argued that faceted search interfaces [4] can
be extremely useful in user navigation and search for
data records within data warehouses. Consider an ex-
ample of a customer care representative in a bank,
searching for a particular customer record (e.g., search-
ing for a silver card customer in Texas), but who is only
partially familiar with the details of the record. The
popular IR style techniques of ranked retrieval may
not be useful in such cases since the user query is too
”generic” and can result in a flood of results. Instead,
a faceted search interface may provide an alternative
way of searching and navigation in this scenario: first
by Branch Location (Texas → Dallas → South Dallas),
then drilling down via Age Group (30-50 → 30-35),
and then via No of Transactions (Less than 10 trans-
actions in last month → less than 5 debit) and so on.
This alternative interface is of great assistance to the
customer care representative in successfully locating
the record of interest and ending her search.

In recent research works [1, 2] we have proposed
techniques to enable effective faceted search for tu-
ples in structured databases. There, the challenge is
to determine, from the abundance of available meta-
data, which attributes of the tuples are best suited for

15th International Conference on Management of Data
COMAD 2009, Mysore, India, December 9–12, 2009
c©Computer Society of India, 2009

enabling a faceted search interface. For the previous
bank database example, a very simple faceted search
interface is as follows: the user is prompted an at-
tribute 1 (e.g., Location), to which she responds with
a desired value (e.g., Dallas), after which the next ap-
propriate attribute (e.g., Age Group) is suggested to
which she responds with a desired value (e.g., 30-35),
and so on. Our overall goal is to judiciously select the
next facet at every step, so that the user reaches the
desired tuple with minimum effort. While the effort
expended by a user during a search/navigation ses-
sion may be fairly complex to measure, we focus on a
rather simple but intuitive metric: the expected num-
ber of queries that the user has to answer in order to
reach the tuple of interest.

Given a database D with m attributes and n tu-
ples, the faceted search algorithms primarily build a
decision tree which distinguishes each tuple by select-
ing attributes (asking questions) that are most likely
to lead to the tuple of interest. It is important to note
that the attribute selection procedure is not based on
traditional decision tree splitting measures such as in-
formation gain; rather it is based on the Indg() mea-
sure (to be explained later) that attempts to minimize
the average height of the tree (the average height is
equivalent to the expected number of queries the user
has to answer before reaching the tuple of interest).
Algorithms are implemented with the help of a scalable
decision tree construction technique, leveraging a mod-
ification of the Rainforest [5] framework. Using this
framework, at every node of a partially built decision
tree, a single scan of the database partition associated
with that node is sufficient to determine the next best
facet. Such an implementation (referred to as the Full
Scan Algorithm in this paper) achieves a significant
speed up over the naive implementation (that requires
m complete database scans of the database partition
at each node to determine the next best facet).

The main contribution of this paper is to explore

1Henceforth in this paper facets and attributes will be used
interchangeably.

interesting and novel techniques by which the perfor-
mance of the facet selection algorithms in [1, 2] can be
improved even further. To be truly effective, faceted
search algorithms have to respond rapidly and without
delay during an interactive session with an end user.
The Full Scan algorithm presented in [1, 2], while bet-
ter than any naive strategy, still suffered from high
CPU cost and slow response time, as selecting the best
attribute at each node required extensive calculations
involving the database partition.2 In this paper, we
propose techniques to improve the performance of the
facet selection algorithms by reducing CPU intensive
computations. The main idea is a novel adaptation of
the early stopping techniques used in the TA-family of
algorithms for top-k computations [6, 7, 8]. Such tech-
niques can attain early termination that avoid scan-
ning and scoring the complete database in determin-
ing the next most promising facet. In addition, as
an even faster alternative, we propose an approximate
facet selection technique that is guaranteed to stop af-
ter reading a fixed number of tuples and return the
most promising facet discovered thus far.

2 Preliminaries

In this section, we briefly revisit related technical de-
tails of [1, 2]. Essentially, our proposed facet selection
algorithms [1, 2] rely on building a minimum cost de-
cision tree [3]3. Let D be a database with m attributes
{A1, . . . , Am} and n tuples. Let Al (l <= m) be an at-
tribute of D with |Doml| domain values. Picking the
attribute Al as the root node partitions D into disjoint
tuple sets Dx1

, Dx2
, ..., Dx|Doml|

, where each Dxq
is the

set of tuples that share the same attribute value xq of
Al.

As an example of such decision trees, consider Fig-
ure 1(a) which refers to a toy movie database with
three attributes and four tuples. A decision tree for
identifying each of the tuples in the tuple set D =
{t1, t2, t3, t4} is shown in Figure 1(b). The leaves of
such a decision tree is the tuple set D and each tuple
appears exactly once in the leaf nodes. A user reaches
her preferred tuple by answering attribute values.

Given such a tree T , cost(T) is defined as
∑

i ht(ti)/n where ht(ti) is the height of leaf ti.
Clearly, assuming that each tuple is equally likely to be
preferred by the user, this cost represents the average
number of queries that needs to be answered before
the user arrives at a desired tuple. It is easy to verify

2The I/O cost is typically not an issue, as with the latest ad-
vent of semiconductor technology, even an inexpensive personal
computer can often store an entire database partition associated
with a decision tree node in main memory. It is the computa-
tional costs that are more critical to attain real-time response
during interactions with an end user.

3Briefly, each node of the tree represents an attribute, and
each edge leading out of the node is labeled with a value from
the attributes domain.

(a) A small movies database (b) An optimal decision tree

Figure 1: A Small Movie Database and an Optimal
Decision Tree

that the tree in Figure 1(b) is optimal (with minimum
cost = (2 + 2 + 1 + 1)/4 = 1.5).

Two types of faceted search problems on databases
have been considered in [1, 2]: (i) Faceted Search as
an Alternative to Ranked-Retrieval and (ii) Faceted
Search that Leverages Ranking Functions (henceforth
referred to as FSNoRank and FSRank respectively in
this paper). Essentially the second problem assumes
that a ranking/scoring function is available that de-
scribes the preferences of the user for each tuple in a
partition (see [1, 2] for more details).

For FSNoRank, attribute Al is selected as the root
of the decision tree if it minimizes the Indg(Al, D)
(over all attributes of D) value. Formally, Indg(Al, D)
for FSNoRank can be expressed as

Indg(Al, D) =
∑

1≤q≤|Doml|

|Dxq
|(|Dxq

| − 1)/2 (1)

The intuition is that any decision tree should dis-
tinguish every pair of distinct tuples. The approach is
to make the attribute that distinguishes the maximum
number of pairs of tuples as the root of the tree, where
an attribute Al is said to distinguish a pair of tuples
ti, tj if ti[l] 6= tj [l]. We note that these definitions of
Indg() are different from the standard measures used
for splitting attributes in decision trees, such as infor-
mation gain.

Variants of FSNoRank and FSRank are also con-
sidered in the paper [1, 2], i.e., we have presented al-
gorithms for computing single facet at every step, ex-
tending that to k-facets selection and a fixed k-facets
interface. We refer to the papers [1, 2] for more details.

We also assume that attributes are associated with
uncertainties, where the uncertainty of an attribute
refers to the probability of the user being able to pro-
vide a desired value for that attribute. Intuitively this
means, a customer service representative of a bank
searching for a specific customer may not know exactly
the street address of the customer’s residence; likewise
a user searching for a movie may not be sure of the
director of the desired movie, and so on. In designing
our decision trees to cope with uncertainty, we assume
that users can respond to a question by either (a) pro-
viding the correct value of the queried attribute Ai, or

(b) responding with a “don’t know”. In either case,
the faceted search system has to respond by question-
ing the user with a fresh attribute. The inability of
the user to always respond with the correct attribute
value raises interesting complications in the design of
appropriate decision trees.

Therefore, in the constructed decision tree, each
node Al now has |Doml| + 1 links, with one of the
links labeled as “don’t know”. This link is taken with
probability 1 − pl when the user does not know the
value of this attribute, whereas the rest of the links
are taken with probability pl when the user knows
the value of the attribute. Thus, in the former case,
the attribute Al cannot distinguish any further pairs
of tuples (the query was essentially wasted), whereas
in the latter case, the attribute manages to distin-
guish several pairs of tuples and only Indg(Al, D) pairs
were left indistinguished. Thus, we can see that if we
select Al as the root node, then the expected num-
ber of tuple pairs that cannot be disambiguated is
(1 − ps) × |D|(|D| − 1)/2 + ps × Indg(Al, D). It is
not hard to see that an obscure attribute that has lit-
tle chance of being answered correctly by most users,
but is other very effective in distinguishing attributes,
will be overlooked in favor of other attributes in the
decision tree construction.

For FSRank, we additionally have a scoring (or
ranking) function. Let the scoring function assign a
score of S(Q, t) to a tuple t in Dxq

, where Q is the
current query that selects the partition. As discussed
in [1, 2], this may be interpreted as the probability
with which the tuple is the target tuple in the parti-
tion. Indg(Al, D) for FSRank can be expressed as

Indg(Al, D) =
∑

xq∈Doml





∑

ti,tj∈Dxq ,i<j

S(Q, ti) × S(Q, tj)



 (2)

Given the above discussion, the cost of a specific
decision tree T becomes more complicated than the
corresponding definition when no ranking function was
assumed. Consider a database D selected by an initial
query Q, and consider a decision tree T with each tu-
ple of D at its leaves. We will thus derive a formula
for cost(T, Q). Note that Q needs to be a parameter
in the cost, as the ranking function uses Q to derive
preference probabilities for each tuple. Note that in
this cost definition we are not considering attribute
uncertainties.

Let the root of the tree select the facet Al. The root
partitions D into the sets Dx1

, . . . , Dx|Doml|
where Dxq

is the set that satisfies the query Q∧(Al = xq) for each
xq ∈ Doml. Let the corresponding subtrees for each
of these partitions be Tx1

, . . . , Tx|Doml|
.

Clearly cost(Txq
, Q ∧ (Al = xq)) is the (recursive)

cost of each subtree. The quantity
∑

t∈Dxq
S(Q, t) is

the cumulative probabilities of all tuples in Dxq
and

represents the probability that when the user is at the
root, she will prefer any of the tuples in Dxq

. Thus we
have

cost(T, Q) =
∑

xq∈Doml





∑

t∈Dxq

S(Q, t)



×

(

cost(Txq
, Q ∧ (Al = xq)) + 1

)

(3)

It is easy to see that if no ranking functions are
assumed, i.e., each tuple is uniformly preferred by the
user, the cost of a tree reduces to the definition in
Section 2, i.e.,

∑

t∈D ht(t)/n.
Our task is then the following: Given an initial

query Q that selects a set of tuples D, to determine a
tree T such that cost(T, Q) is minimized.

3 Efficient Facet Selection Techniques

In this section, we focus on improving response time
of the facet selection algorithms, by leveraging early
stopping techniques from top-k algorithms.

3.1 Exact Indg() Calculation Based On Top-k
Computation

In general, top-k algorithms operate on index lists
corresponding to a query’s elementary conditions and
aggregate scores monotonically for result candidates.
The objective is to terminate the index scans as early
as possible based on lower and upper bounds for the
scores of result candidates. Motivated by such early
stopping techniques employed in top-k algorithms, we
wish to determine the best facet (or the best set of
k facets) at every step of faceted navigation without
performing a complete database partition scan.

In this paper, we assume that the ranking function
in the FSRank problem is accessible via a pipelining
interface, which is natural and supported by previous
works on top-k computation such as [6, 7, 8]. The
pipelining interface S(Q, D) takes as input a query
Q and a database D and outputs a stream of tu-
ples ranked descending according to S(Q, t) along with
their scores. The cost incurred in using this interface is
the number of tuples retrieved (we can stop retrieving
tuples at any time).

The high-level idea of early stopping is as follows:
while scanning the database partition D1, we consume
tuples in some sequence and maintain a lower and up-
per bound for the value of Indg(As, D1) for each at-
tribute As, and stop as soon as we discover an at-
tribute Al whose upper bound is no larger than the
lower bound of all other attributes.

Lemma 3.1. Given a database D with n tuples and m
attributes, a CPU speedup of n/(r+(n−r)/m) over the

Full Scan algorithm can be obtained, if only r (r ≤ n)
tuples are consumed before the next best facet can be
determined.

Proof Sketch: The Rainforest implementation of Full
Scan requires n × m update operations to compute
Indg() and return the best facet to the user (along
with its domain information). Using the pipelining
interface, if the best facet is determined after reading
r tuples, then the total number of update operations
required to suggest the best facet to the user (along
with its domain information) is (r×m)+(n−r), where
the first term refers to the update cost of processing
the first r tuples, and the second term refers to the
update cost of processing the remaining tuples, where
only the counts for the selected attribute are updated.
Therefore the speedup is n/(r + (n − r)/m). �

As an illustrative example, for a database parti-
tion containing 200k tuples and 50 attributes, if only
20% of the tuples are consumed before termination,
then the CPU speedup over Full Scan is 200k/(40k +
160k/50) = 4.6.

We next discuss the FSRank case in detail. Assume
that the pipelined interface has already scored r tuples,
and let Dr be the set of tuples with the highest scores.
Let the score of the rth tuple be Sr. For each attribute
As, we maintain the following two quantities:

LowerIndg(As, D) = Indg(As, Dr) (4)

UpperIndg(As, D) =

LowerIndg(As, D)+

(n − r)Sr × max
xq∈Doms







∑

t∈Dr,t[s]=xq

S(Q, t)







+

Sr × Sr × (n − r)(n − r − 1)/2 (5)

The lower bound of Indg() reflects the minimum
value that attribute As can get, i.e., it assumes that
the rest (n− r) tuples will not contribute anything to
the Indg() value. This implies that each tuple that is
not read yet has a unique domain value under attribute
As. Therefore, LowerIndg(As, D) = Indg(As, Dr).

On the other hand, the upper bound of Indg()
captures the maximum cumulative value attribute
Indg(As, D) can attain from the rest (n− r) tuples by
considering that the rest (n− r) tuples have the same
score Sr and can be paired with the largest subset of al-
ready read r tuples with the same domain value. This
implies, if xq is the largest domain value of attribute
As so far, then the domain value of attribute As for the
rest (n − r) tuples is also xq. The UpperIndg(As, D)
formula contains the sum of two terms. The first term
captures the value obtained by pairing each (n − r)
tuples with each tuple in the largest subset of r tuples

with domain value xq , whereas the second term cap-
tures the value accumulated by pairing each (n − r)
tuples with each other.

The pipelining interface consumes tuples and main-
tains these bounds, and stops when it discovers an
attribute Al whose upper bound is no larger than the
lower bound of all other attributes. We refer to this
as Exact FSRank Algorithm.

Algorithm 1 Eaxct FSRank (D, A′)

1: Input: a database D with n tuples, a subset A′ ⊂
A attributes not yet used

2: Output: Attribute A1 ∈ A′ that minimizes the
Indg() value.

3: begin
4: if |D| = 1 then
5: Return a tree with any attribute Al ∈ A′ as a

singleton node
6: end if
7: if |A′| = 1 then
8: Return a tree with the attribute in A′ as a sin-

gleton node
9: end if

10: Read the first tuple
11: Set r = 2
12: while r <= n do
13: Read the r-th tuple
14: for each A1 ∈ A′ do
15: LowerIndg(A1, D) = Indg(A1, Dr)
16: UpperIndg(A1, D) =

LowerIndg(A1, D)+

(n − r)Sr × max
xq∈Doms







∑

t∈Dr,t[s]=xq

S(Q, t)







+

Sr × Sr × (n − r)(n − r − 1)/2
17: end for
18: ChosenAttribute = argmin

A1∈A′

UpperIndg(A1, D)

19: for each Ai ∈ A′ − {ChosenAttribute} do
20: if UpperIndg(ChosenAttribute, D) ≤

LowerIndg(Ai, D) then
21: Continue
22: else
23: r = r + 1
24: Return to the while loop
25: end if
26: end for
27: return ChosenAttribute
28: end while
29: end

The Exact FSNoRank Algorithm is very similar, ex-
cept that the upper and lower Indg() for each attribute
As is computed as follows:

LowerIndg(As, D) = Indg(As, Dr) (6)

UpperIndg(As, D) =

LowerIndg(As, D)+

[(n − r) + max
xq∈Doms

{

Dxq

}

]/2

{

(n − r) + max
xq∈Doms

{

Dxq

}

− 1

}

(7)

Here the pipelining interface outputs tuples in any
arbitrary order (since there is no ranking function),
and stops when it discovers an attribute Al whose up-
per bound is no larger than the lower bound of all other
attributes. We refer to this as the Exact FSNoRank
Algorithm.

The LowerIndg(As, D) calculation in the FSNo-
Rank case has a similar explanation as for the FSRank
case, except for the score of each tuple is assumed to
be 1 here. Also, the score of each tuple is assumed to
be 1 in the UpperIndg(As, D) calculation, and the up-
per bound simply captures the Indg() value that can
be attained by pairing each of the rest (n − r) tuples
with the largest subset of r tuples with domain value
xq.

Although our attribute selection algorithms can
work for any black box scoring function S(Q, t), the
score distribution across the tuples greatly affects the
performance of our algorithms, since it determines
which algorithms are feasible and efficient. A highly
skewed scoring function - where the top few tuples
have large scores, followed by a rapid degradation in
score values for the remaining tuples - is most effective
in making the Exact FSRank algorithm very efficient.
This unfortunately does not apply in the case of Ex-
act FSNoRank, because there is no ranking function
to be leveraged. In fact as the lemma below shows,
no matter what is the database, more than half of the
database has to be always scanned by the FSNoRank
algorithm before the best attribute can be determined.

Lemma 3.2. For FSNoRank, even in the best case
more than half of the database partition has to be
scanned using the pipelining interface before the best
facet can be determined.

Proof Sketch: Consider a simple case, where a
database D with n (n is even) tuples has only two
attributes A and B. Let us assume that already
n/2 tuples have been read, and the best scenario
of early stopping has occurred so far in D, i.e., at-
tribute A has returned n/2 different domain values
a1, a2, . . . , an/2, while attribute B repeats the same
domain value b1 in all n/2 tuples. Then we have,
LowerIndg(A, D) = 0 and UpperIndg(A, D) = n(n +
2)/8. Similarly, LowerIndg(B, D) = n(n − 2)/8 and
UpperIndg(B, D) = n(n − 1)/2.

At this stage, no stopping decision can yet be made
considering the upper and lower bounds of the Indg()
values of the attributes, and we must continue the scan
of D. �

3.2 Approximate Indg() calculation

As an even faster alternative to the above algorithms,
we can simply stop reading further tuples after a small
fixed number of iterations (i.e., bounded r), and use
the most promising facet discovered thus far. Such
an algorithm is of course guaranteed not to exhaust
all tuples in the database partition, but may not nec-
essarily produce the facet with the minimum Indg()
value. However, this is a good approximation if r is
reasonably chose. It is easy to observe that such an ap-
proximate Indg() calculation can be applied to both
FSNoRank and FSRank.

4 Experimentation and Results

In this section we describe experimental evaluations
and draw conclusions on the effectiveness of our pro-
posed techniques.

Hardware: All experiments are run on a machine
having Intel(R)Xeon(TM) CPU with 3.0 Ghz proces-
sor and 2.0 GB RAM running Windows XP. All algo-
rithms are implemented using Java and C#. T-SQL is
used to query the back end SQL Server 2005 database
management system.

Database Used: We run all our experiments on a
subset of the Yahoo Autos dataset, a nationwide on-
line used-car automotive dealer’s database. Our ex-
perimental dataset contains 1 million tuples and 43
derived attributes.

Ranking Function: Design of an efficient and effec-
tive ranking function is an orthogonal research prob-
lem and is not our focus here. For practical pur-
poses however, we implement a simple Squared Dis-
tance based ranking function. In this Squared Distance
function, a tuple t gets a score equal to the square of
its Euclidian Distance from the centroid of the residual
database partition. We further normalize this squared
distance to a non-uniform probability distribution over
the selected tuples, such that S(Q, t) represents the
probability that tuple t is preferred by the user, and
that

∑

t selected by Q S(Q, t) = 1.

Performance Evaluation Performance is measured
in terms of the average node creation time. In this
case, we vary database size and observe the perfor-
mance of three different algorithms. Performance is
evaluated among the FSRank Full Scan Algorithm,
the Exact FSRank Algorithm and the Approximate
FSRank (r = 100) Algorithm.

Figure 2 corroborates our claim - the average node
creation time can be significantly improved in Exact
FSRank Algorithm compared to the FSRank Full Scan
Algorithm. The Approximate FSRank is the fastest,
but it comes with a loss in quality - the navigation cost
is sometimes more.

Change of cost by varying r: We vary the param-
eter r here - which determines how many tuples are to

Performance Analysis

0

200

400

600

800

1000

1200

50k 100k 150k 200k

Number Of Tuples

A
v

e
ra

g
e

 N
o

d
e

 C
re

a
ti

o
n

 T
im

e
 (

in
 s

e
c

)

FSRank Full Scan Algorithm

Exact FSRank Algorithm

Approximate FSRank Algorithm

Figure 2: Average Node Creation Time Varying
Dataset Size

be read before the pipelining interface is terminated
to make the selection of the attribute. As expected,
by deciding r in advance, we lose quality (i.e., increase
the average navigation cost) as a trade off to the per-
formance. However, the navigation cost decreases as r
increases. An interesting problem here can be to find
an optimal r value for a given dataset. This concludes

Cost Varying Parameter r

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

r=50 r=100 r=150 r=200 r=250

r

C
o

s
t

Approximate FSRank Algorithm

Figure 3: Change of Cost Varying r in Approximate
FSRank Algorithm

our discussion on experiments.

5 Ongoing and Future Work

In this paper, we propose techniques to reduce CPU
intensive costs during minimum effort driven faceted
navigation. As ongoing work, we aim to extend
these techniques to design efficient algorithms for other
types of decision trees. For example, it would be in-
teresting to see if traditional decision tree algorithms,
designed for classification purposes, can benefit from
such early stopping techniques.

We also aim to explore other techniques, such as
sampling, that can assist in expediting the response
time of facet selection algorithms. Such techniques
may be useful in approximating domain information of
the attributes in a principled way, thus guaranteeing a
reduced CPU cost while suggesting facets to the user.
We would also like to perform a comparative quality
evaluation of these various proposed techniques on a
variety of real world datasets. In the future, we would
like to conduct user studies to obtain user evaluations
on our proposed speedup techniques.

References

[1] S. Roy, H. Wang, G. Das, U. Nambiar and
M. K. Mohania. Minimumeffort driven dynamic
faceted search in structured databases. CIKM Con-
ference, 13–22, 2008.

[2] S. Roy, H. Wang, G. Das, U. Nambiar and
M. K. Mohania. DynaCet: Building Dynamic
Faceted Search Systems over Databases. ICDE
Conference, 1463-1466, 2009.

[3] Venkatesan. T.Chakravarthy, Vinayaka. Pan-
dit, Sambudha. Roy, Pranjal. Awasthi and
Mukesh. Mohania. Decision Trees for Entity Identi-
fication: Approximation Algorithms and Hardness
Results ACM PODS, 53–62, 2007.

[4] Jennifer. English, Marti. Hearst, Rashmi. Sinha,
Kirsten. Swearingen and Ping. Yee. Hierarchical
Faceted Metadata in Site Search Interfaces. CHI
Conference Companion, 628–639, 2002.

[5] Johannes. Gehrke, Raghu. Ramakrishnan and
Venkatesh. Ganti. RainForest - A Framework for
Fast Decision Tree Construction of Large Datasets.
s. Data Min. Knowl. Discov., 4(2/3): 127–162,
2000.

[6] R. Fagin. Combining Fuzzy Information from Mul-
tiple Systems. PODS, pages 216226, June 1996.

[7] U. Guntzer and W.-T. Balke and W. Kiesling. Op-
timizing multi-feature queries for image databases.
The VLDB Journal, pages 419428, 2000

[8] R. Fagin and A. Lotem and M. Naor. Optimal
Aggregation Algorithms For Middleware. PODS,
June 2001.

