Minimizing Testing Overheads in Database Migration
Lifecycle

Sangameshwar Patil* Sasanka Roy! John Augustine?
Amanda Redlich? Sachin Lodha, Harrick Vin,
Anand Deshpandef Mangesh Gharote, Ankit Mehrotral

Systems Research Lab
Tata Research Development and Design Center
Tata Consultancy Services
Pune, India
Email: {firstname.lastname}@tcs.com

Abstract

As part of their information management lifecycle,
organizations periodically face the important and in-
evitable task of migrating databases from one software
and hardware platform to another. Apart from ensur-
ing accuracy and consistency, information managers of
such organizations need to minimize the costs associ-
ated with the database migration process. Some of
the migration tasks such as identification of database-
dependent applications and the process of data repli-
cation are primarily governed by the technology used
and have relatively predictable costs. On the other
hand, the cost of testing and verification in the mi-
gration life-cycle depends significantly on the planning
and dominates other costs.

We refer to this problem of optimizing testing cost
as Database Migration Problem (DBMP). DBMP is
challenging for enterprises because large number of
databases and applications are affected and a variety
of constraints force the migration to spread over mul-
tiple phases (or migration waves, as they are typically
called in the industry parlance). After each migration
wave, significant overheads arise for ensuring data in-
tegrity and testing the applications for correctness. We

* Email:

Corresponding author.
war.patil@tcs.com

T Currently at Chennai Mathematical Institute, India.
Email: sasanka.ro@gmail.com

fCurrently at Nanyang Technological University, Singapore.
Email: jea@ics.uci.edu

8Dept. of Mathematics, Massachusetts Inst. of Tech., USA.

Email: aredlich@mit.edu

sangamesh-

9 Currently unaffiliated with TCS. Email: desh-
pande.am@gmail.com
I Currently unaffiliated with TCS. Email:

ankit.mehrotra@sas.com

International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8—10, 2010
© Computer Society of India, 2010

have observed that the industry practice for migration
planning is based on the experience and intuition of
a few software architects and administrators. This of-
ten results in delayed migration schedules and spiral-
ing costs. However, a careful partitioning of databases
into waves can lower the testing overheads and result
in significant financial savings of several hundred thou-
sand dollars. Surprisingly we did not find any litera-
ture that addresses this problem either. Hence, in this
paper, we focus on minimizing the testing overheads
of the data migration life-cycle.

We begin by showing that DBMP is NP-hard. Then,
based on our real-life experience, we formulate DBMP
so that it is amenable to formal, rigorous analysis and
provide algorithms that cater to different scenarios,
likely in practice. For small problem instances, we pro-
vide an optimal solution using integer linear program-
ming. For larger instances, we formulate DBMP as
a hyper-graph partitioning problem and use the well-
known hMETIS tool for solving it. hMETIS provides
good solutions quickly, but violates some of the con-
straints that are important in industry, for instance -
the total size of databases packed in a wave cannot ex-
ceed the maximum wave size limit. Finally, to tackle
such scenarios, we propose a new algorithm WAVE-FIT.
Using experimental evaluation, we show that WAVE-
FIT provides solutions comparable to hMETIS, in rea-
sonable time without violating any constraint.

1 Introduction

Motivation: Databases are integral and critical com-
ponents of IT infrastructure operated by modern en-
terprises. Over the past two decades, the size, num-
ber and diversity of databases used as part of the IT
infrastructure has been increasing steadily. For exam-
ple, we have come across quite a few global, top-tier
financial service providers whose data-centers contain

hundreds of databases (many versions and instances of
every major database product, such as Oracle, DB2,
SQL server, Sybase, Informix, MySQL and other Unix
databases, available in the market). Moreover, these
databases come in various sizes that range from 100
Megabytes to Terabytes and beyond.

The need to migrate databases from one platform
to another arises due to a variety of reasons such as:

i. Functional and performance enhancements

ii. Expiry of vendor support for older versions

iii. Database and server consolidation for reducing
the total cost of ownership

iv. Need for reconciliation of hardware and software
platform diversity due to mergers and acquisitions
among enterprises

v. Balancing workload across the devices

Newer versions of databases and newer/cheaper
platforms offer pragmatic solutions for these require-
ments and often trigger such migration projects.
Given such a scenario, most organizations periodically
face the daunting task of migration: Migrate a set of
production databases from one software and hardware
platform to another.

Database Migration Process: Lets first under-
stand the major steps involved in migration of a single
database.

1. Basic setup and code updates

a. Identify applications that are dependent on
the databases being migrated.

b. Update the applications and SQL code that
needs to change due to migration to target
database version and configuration.

c. Setup and configure the test environment
(hardware and software) corresponding to
the target configuration.

2. Extract-Transform-Load (ETL) processing

a. If there are changes to the source schema,
prepare the target schema generation scripts.

b. There could be an optional step of data
cleansing and removing redundant data.

c. Back up the source databases.

d. Migrate the data: It could be either a rela-
tively straightforward export/import or, for
more complex cases, an elaborate ETL se-
quence of tasks.

3. Database configuration

a. Configure user roles and access rights on mi-
grated databases

b. Create indexes on the target database

4. Testing and Verification

a. Unit testing,
mance/volume
bug-fixing

System testing, Perfor-
testing and associated

The migrated database is now ready to go-live in
production environment.

Note that the technology for migrating or backing
up an individual database is quite mature and well un-
derstood [17, 18]. In fact, most database vendors doc-
ument the process for migrating individual databases
[13, 16]. However, migrating a large collection of
databases is complex. Apart from ensuring correctness
and consistency of migration process, the I'T plant op-
erators must minimize the costs (time and effort) while
honoring a variety of constraints. The constraining
factors are typically related to business processes, the
people and the technology involved; such as:

a. On a business day, the production databases of a
global financial institution are updated from dif-
ferent timezones and are accessed for most part of
the 24 hours. Hence, to minimize the impact on
business availability, the migration activity is con-
strained to happen only on specific, non-business
days (e.g. weekends). Additionally, due to the
stringent performance SLAs, even the ETL tasks
need to be carried out only during non-business
periods.

b. Migration cannot happen during particular peri-
ods (e.g. blackout or brownout! days)

c. Availability of competent personnel, namely,
database administrators as well as application
testing teams

d. Availability of necessary hardware resources for
the testing process

e. Vendor specific or application specific technolog-
ical issues e.g. keyword mismatch, slightly dif-
ferent dialects of SQL due to extensions pro-
vided by vendor, incompatible stored proce-
dures/functions.

f. Physical limits on the data transfer process due
to bandwidth and latency etc.

Considering all such constraints, it is usually not
possible to migrate all databases in a single time
slot. Hence, IT plant operators are often required to
develop a migration plan spread across multiple time
slots. In each time slot, a subset of databases, referred
to as a wave, is migrated from one platform to another.

The cost of migrating a given set of databases in-
cludes, but is not limited to:

C1. Identifying dependencies between databases be-
ing migrated and applications that access these
databases

C2. Extracting data from source systems, carrying out
transformations (if required) and finally loading it
into target systems.

Ischeduled total or partial power outages, typically for main-
tenance

C3. Data integrity verification on target systems
C4. Testing all the dependent applications after each
migration wave

For a particular instance of database migration
project, the costs C1, C2, and C3 in the above list are
typically well-defined and predictable. Minimizing the
cost of testing the dependent applications, however,
is challenging as it depends on how the databases
are segregated into multiple waves. Note that, after
each database is migrated, all applications using this
database must be tested. If databases used by an
application are migrated in two different time-slots,
the application would have to be tested twice. At
this point, we would like to highlight the financial
implications of application testing cost in practice,
especially for the enterprises with large IT infrastruc-
ture. For instance, large global financial institutions
have hundreds of databases being used by an even
larger number of applications. Many of these appli-
cations are complex, business critical and are used
from multiple locations. Testing such applications
is a cost-intensive activity. Cost of a single test run
for each application includes cost of setting up and
configuring the application in test environment, run-
ning the actual test-cases, interpreting the results and
fixing the errors, if any. On an average, these tasks
take about 4-5 person weeks of effort per test run per
application. This can translate into approximately
$10000 per test run per application. Further, this
cost increases with complexity of applications. Any
re-testing would incur repeated expenditure of this
effort. Even a small saving/improvement in terms
of 10s of application re-tests amounts to savings of
hundreds of thousands of dollars. Therefore it makes
imminent practical sense to focus on application
testing cost.

Contributions: Contributions of this paper are as
outlined below:

e Identification of a recurrent problem of high im-
portance to industry

e Proof that this problem is NP-hard (even when
the database sizes are distributed uniformly)

e Characterization of the input data to clearly iden-
tify realms where optimal solution is usable and
when heuristic solutions are necessary

e An optimal solution to the problem and identifi-
cation of its limitations

e Identification of uses and limitations of a well-
known hypergraph partitioning algorithm to solve
real-life problem instances

e WAVE-FIT: A new algorithm that overcomes the
limitation of hypergraph partitioning algorithm,
and also performs comparably on the partition
cost metric

Paper organization: In Section 2, we introduce the

notations, then precisely define the problem and sur-
vey the related work. In Section 3, we show that
the database migration problem is NP-hard by reduc-
ing the SET-PARTITION and hypergraph partition-
ing problems. In Section 4, we first present an optimal
solution, but observe that this method is not scalable.
Then, we map our problem to hypergraph partition-
ing problem and use a well known hypergraph parti-
tioning tool hMETIS [14] to solve this problem. To
overcome the limitations of using hMETIS (especially
for industrial scenarios), in Section 4.3, we propose
WAVE-FIT, our own algorithm. We analyze character-
istics of the dataset from a real-life industrial database
migration project and apply the proposed solutions to
it. In Section 6, we show that the solutions proposed
in this paper significantly improve upon the typical
industrial approach. We also analyze pros and cons
of different proposed solutions, and illustrate the effi-
cacy of WAVE-FIT algorithm using experimental eval-
uation. The paper concludes in Section 7 with our
observations about bounds on application testing cost
and future work.

2 Notations and Problem Formulation

Since our prime interest is to minimize application re-
testing, we formulate the database migration problem
(DBMP) as follows. We are given a set D of databases
which need to be migrated. Each database d; € D
has a size s;. We are also given a set A of applica-
tions which use the databases in D. Each application
a; € A uses one or more databases from D; we denote
this subset as D; C D. Each database d; when mi-
grated will require all the applications depending on
it to be tested; we denote this subset of A as A;. One
round of testing an application a; incurs cost ¢;. For
each re-testing of a;, this cost will be incurred again.
Each application uses at least one database and each
database is used by at least one application. Given this
information, the problem is to partition the databases
into a set of migration waves W such that the total
application testing effort is minimized. Let f(WW) be
the cost function that captures this application testing
effort due to W. Further, we have to ensure that no
wave is overloaded, that is, sum of sizes of all databases
belonging to a migration wave must be less than a user-
specified upper limit. We denote this upper limit as
Smaa:~

As a brief illustration of above notation, consider
a wave wi C D. The set of applications that require
testing due to migration of databases in wy, is given by
Ay, = Udi@)k A;. The application testing cost due to
migration of databases in wave wy, is given by f(wy) =
Zj:ajeAwk t;. In addition, the wave wj, is required to
satisfy the wave-size constraint: Zi:diewk s$i < Spmaz-
Our ultimate goal is to partition D into |W| waves
such that f(W), the total application testing cost over

all waves is minimized.

In short, we are looking for the solution of the fol-
lowing Database Migration problem (DBMP):

Input: A set A of applications which use the
databases in set D and a cost function for
application testing.

Output: Partitions of the databases into a set of
migration waves, W = {w1,ws, -+, wyw|}.

Objective: Minimize total amount of application
testing cost, that is:

W]

Minimize: f(W):Z Z tj

k=1 j:a; EAwk

Constraint: Size of each migration wave should
not exceed Sj,qz, that is:

Z Sq < Smaa:

i:d; Ewy

Related Work: Different types of data migration
problems have been analyzed in literature. Problems
related to replication of files within a storage system
have been studied in [8, 4]. These types of problems
typically arise in case of high demand content servers
such as multimedia servers or web servers. Other type
of large scale data migration occurs in scientific exper-
iments that produce voluminous data where its long
term availability is important. [9] provides an overview
of such a system used for migrating data from physics
related experiments, but focuses on system details,
rather than the algorithmic aspects. Note that such
data migration problems have been studied in differ-
ent domains and different contexts. The primary ob-
jectives and constraints of the data migration problems
that appear in literature are completely different.

While dealing with the problem of database migra-
tion, the database community has looked at the prob-
lems of schema matching [12]. [2] describes a useful
tool developed for automatic schema matching. Mi-
gration of data from relational databases as source into
object-based and XML databases as targets has been
addressed in [10]. However, we could not find any work
that examines the need for optimizing the testing over-
heads of database migration projects. To the best of
our knowledge, this version of DBMP per se has not been
studied before.

3 Hardness of the Database Migration
Problem

First we present a simple proof that DBMP is NP-hard
by proving SET-PARTITION <p DBMP. Recall that
SET-PARTITION |[3] secks to partition a set I of non-
negative integers into two subsets of equal sum.

Theorem 1 DBMP is NP-Hard.

Proof: Note that SET-PARTITION is NP-complete
[3]. We construct the DBMP instance by creating a
database of size s for each s € I. We set the wave
size limit Sy, = % > sc1 8- Clearly, if the number of
waves required to migrate the databases is 2, then the
set I can be partitioned into two subsets of equal sum.
i

However, note that, if all the numbers in set I are
same, then the corresponding SET-PARTITION prob-
lem is trivial to solve. Hence we further prove that
DBMP is NP-hard even when all the databases are of
same size. In essence, this reduction shows that DBMP is
inherently hard even when the well-known hardness of
packing databases in waves is discarded.

We reduce an instance of the hypergraph parti-
tioning problem to an instance of DBMP with uniform
database size (normalized to 1). In the simplest ver-
sion of the hypergraph partitioning problem, we are
given a hypergraph H(V, E) and asked to partition
the vertices into two equal sized subsets such that the
number of edges that are cut by this partition is min-
imized. This problem is known to be NP-hard even
when H is a graph [3], but we use hypergraphs because
of their relevance in our context. In fact, a recent work
[1] showed that even the graph partitioning problem
cannot be approximated within a constant factor un-
less P = NP.

Theorem 2 DBMP s NP-Hard even when all the
databases are of same size.

Proof: Any instance of a hypergraph partitioning
problem can be reduced to an instance of the DBMP in
the following manner. Let H = (V,E) be the hy-
pergraph in our instance of the hypergraph partition-
ing problem. Without loss of generality, we assume
that |V] is even. For each vertex v; € V construct a
database d; of unit size in DBMP. For each edge e; € E,
construct an application a; in DBMP such that a; uses
the set of databases {d; : v; € e;}. Furthermore, these
databases must be migrated in two waves of capacity
|[V']/2. We say that a hyperedge e; has ¢; cuts if the
elements in e; are placed in ¢; + 1 different parts. It is
easy to observe that database migration problem has a
solution that needs (c+|E|) application testings if and
only if the hypergraph partitioning problem instance
can be partitioned with a total (over all edges) of at
most ¢ edge cuts. Therefore, even DBMP with unit sized
databases is NP-hard. ||

4 Proposed Solutions

In this section, we first propose an integer linear pro-
gramming (ILP) based optimal solution to the DBMP.
Expectedly, the ILP based solution does not scale for
large datasets. We then turn our attention to tackling
the more likely industrial scenarios of large number of
databases. Taking a cue from the reduction of hyper-
graph partitioning to DBMP, as presented in Section 3,
we use the well-known hypergraph partitioning tool,
hMETIS [14]. However, we observe that hMETIS can-
not impose a strict upper bound on partition sizes. In
fact, experimental results (refer Figure 6) have shown
that Sy,q2, an important constraint in DBMP, is signifi-
cantly violated by hMETIS. To overcome this problem,
finally, we propose our own algorithm WAVE-FIT that
compares favourably with hMETIS on the cost metric
and also honors S,,4., the wave size limit constraint.

4.1 ILP Formulation

We define a;;, = 1 if application a; needs testing due
to the kth migration wave, and 0 otherwise. Given
this notation, we can define our objective function as

follows:
(W] |A]

Minimize: Z Z a;it;. (1)

k=1 j=1

We define d;;; = 1 if database d; is migrated in the
kth wave, and 0 otherwise. Our constraints are:

| D]
Vk, > sidi
i=1
144

Vi, Y di > 1. (3)
k=1

< Smaza (2)

vj7ka Z dik <

i:d; €D

|D;l - ajp. (4)

Constraint 2 limits the total size of databases allo-
cated to a wave within its capacity Sye.. Constraint 3
ensures that all the databases are migrated. Finally,
Constraint 4 builds the dependency between applica-
tion testing, given by the a;; values, and the wave in
which each database is migrated (given by the d; val-
ues). In other words, aj; must be set to 1 if even one
of the databases migrated in wave k is used by a;. If
the left hand side is greater than zero (i.e., a; uses at
least one of the databases in wave k), then clearly the
inequality can hold only if aj, > 1. Since the left hand
side can never exceed |D,|, the inequality will hold if
ajr = 1.

Our experimental results (Section 6.2.1) indicate
that the ILP solution works well for very small cases,
but does not scale well as the size of the input instances
increase. With standard LP solver Ipsolve [15], the ex-
ecution did not complete even after several (3+) days

for instances with a reasonably small number (40) of
databases. The scalability problem is even more pro-
nounced in the instances with uniform distribution in
database sizes. These facts underscore the need for
more scalable solutions to tackle more realistic indus-
trial scenarios.

4.2 Hypergraph Based Solution

We have observed in Section 3 that DBMP can be viewed
as a hypergraph partitioning problem. In this section,
given an instance of DBMP, we provide a precise con-
struction of an instance of the hypergraph partitioning
problem. We construct the hypergraph H(V, E) as fol-
lows: Databases form the vertices of H weighted by the
size of the databases. For each application a;, the ver-
tices corresponding to the databases used by a; form a
hyperedge e; € E with weight ¢;. Notice that two (or
more) applications using the same subset of databases
induce two (or appropriately more) parallel hyper-
edges. If we want to carry out the database migration
activity in |W| waves, we have to construct |W| groups
of the databases to be migrated such that the applica-
tion testing cost is minimized. This is exactly same as
a |W|-way partitioning (with vertex weight balancing)
of the hypergraph we have constructed above. From
the above construction, it is clear that if we have an al-
gorithm that solves the hypergraph partitioning prob-
lem and the solution needs ¢ hyperedge cuts then mi-
gration problem has a solution that needs (c + |A4])
application testings for this specific partition. As the
upper bound on wave size, Sy, is fixed for a given
instance of DBMP, we need to have a balanced hyper-
graph partitioning such that the sum of weights of the
vertices in each partition is at most Sy, qz.

After mapping DBMP to hypergraph partitioning
problem, we use the well known hypergraph parti-
tioning tool hMETIS [14] to solve our problem. But
to the best of our knowledge, hMETIS cannot im-
pose a strict upper bound of S;,4,. hMETIS may
produce waves which are greater than S,,,,. Hence,
we may encounter wave size violation, a situation in
which the sum of the database sizes in a wave exceeds
Smaz- Note that such an upper bound on the parti-
tion size has not been a hard requirement in past work
[4, 5, 6, 7], but it is an important requirement in DBMP.
We use the term Total Wave Size Violations or TW SV
to denote the number of waves in which the sum of
database sizes exceeds S,,q2. To minimize TW SV, we
used the method shmetis of hMETIS, which takes a
parameter called UBfactor, an integer value between
1 and 49 (both inclusive). When we set UBfactor to
1, the partitioning is more balanced than when set it
higher. Given the number of desired partitions ||,
shmetis partitions a hypergraph into |W| partitions
using recursive bisection.

As presented in Section 6.2, we observed that there
are significant number of instances (sometimes, even

upto 45%) when the wave size constraint is violated by
solutions produced by hMETIS. Figure 6 summarizes
the worst cases of TW SV by hMETIS observed during
experimental evaluation.

4.3 WAVE-FIT: An Algorithm for DBMP That
Honors Wave-size Constraint

We now present WAVE-FIT, a polynomial time greedy
algorithm which guarantees to give solutions without
violating the maximum wave size constraint, Sy,qz-

PHASE-1:

For each application a; € A, let D; be set of
databases used by a;. Sort the set A in descending
order, based on |D;|. For subsequent computation,
we use applications in this sorted order.

Create an empty set of temporary groups of
databases, G = {}

for each application a; € A do

Create g = set of databases D; used by
application a;
Define dbsizeof (g) = >

if dbsizeof (¢) < Smasx then

idicg 5

Ag ={a;}
repeat
Let a, € A\ A, be application such that
D, has maximum overlap with g
(i.e.Dp = MAT .0, A\ A, |D; ﬂg\) and
D,Ng#0
if dbsizeof (9| Dp) < Smaa then
| 9=9UD,
end
Ag=AsUap
until (dbsizeof (g) < Smax);
G =GU{g}

else

Arbitrarily split g into multiple smaller sized
minimal number of subsets such that size of
databases in each subset is less than or equal
t0 Simas. These newly created subsets are
inserted in G as temporary groups.

end

end
PHASE-2

Form final migration waves by using bin packing for
temporary groups g € G generated from PHASE-1. ;

Algorithm 1: WAVE-FIT

WAVE-FIT is designed to tackle the complex, many-
to-many dependencies among the applications and
databases, which are the crux of DBMP. The algorithm
works in two phases. In the first phase, we partition
D into a set of temporary groups of databases G such
that, as far as possible, all the databases used by each
application go into one of the groups without violating
the wave size constraint S,,.,. Intuition behind this

phase is the fact that a given application needs to be
tested more than once only when the databases used
by the applications are migrated as part of more than
one migration wave. We try to put D;, the set of all
the databases used by an application a; € A in a sin-
gle temporary group, say g, if their combined size is
within the wave size limit, i.e. sz:d,;eDj si < Spmaz-
When this condition is valid, D; can go as part of
single migration wave and application a; needs to be
tested only once for each database. However, note that
even after putting D; in a single group g, there is still
spare capacity (= Spaz — Zi:dieg s;) in g. One needs
to use this spare capacity judiciously in order to reduce
the overall application testing effort. We keep expand-
ing g by choosing set D,, corresponding to a, € A\a;
such that D, has maximum overlap with databases in
g till Zi:die(gUDp) $i < Smaz-

Due to large number of databases involved in mi-
gration activity in most cases, the number of groups,
|G| at the end of PHASE-1 will typically be larger than
the intended number of migration waves. Given that
the inter-relationship among databases have been ex-
ploited in PHASE-1, we use bin-packing to combine
the temporary groups g € G to form W, the set of
final migration waves in PHASE-2. Pseudocode of the
algorithm is presented in the box titled Algorithm 1.

5 Real-Life Industrial Database Migra-
tion

The DBMP was motivated by a real-life database
migration project involving 191 applications and
116 databases at a top-tier, global financial service
provider. We applied the two algorithms: WAVE-
FIT and hMETIS to this real-life industrial dataset.
We found that these databases can be migrated in 4
waves with an application testing cost of 191 appli-
cation testings reported both by WAVE-FIT, and by
hMETIS. Note that the cost is optimal as each appli-
cation is tested only once.

For detailed analysis of pros and cons of the pro-
posed algorithms and their comparison with indus-
trial practice, we now characterize the real-life input
dataset from this database migration project. These
characteristics are used to generate synthetic data in
Section 6, required for experimental analysis.

5.1 Input Data Characteristics

To characterize the input dataset for a database mi-
gration project, we need information about:

1. Number of databases |D| to be migrated,

2. Size of these databases,

3. Number of applications |A| which use these
databases, and

4. Application-to-database usage dependency infor-
mation.

Out of the above, |D| and |A| are readily available as
numbers. The database sizes can be easily modeled
using appropriate probability distributions. However,
quantifying the application-to-database dependencies
is not so straight forward. We use graph theory for
this purpose. We model the dependency information
as a bipartite graph between the application nodes and
database nodes. There is an edge between an applica-
tion node and a database node in the bipartite graph
if the corresponding application uses that database.
We denote the set of edges in the bipartite graph as
B. The degree of each application node is the number
of database nodes it is connected to and vice-versa.
The number of edges |B| in the bipartite graph and
the degree distributions of application and database
nodes help us quantify the application-to-database de-
pendency information.

For the real-life dataset, values of these parame-
ters are: |D| = 116, |A| = 191 and |B| = 204.
We found that, in this dataset, the database sizes
(in Megabytes) follow lognormal distribution (mean
= 6.18 and std.dev. = 2.79), as shown in Figure 1.
We observe from Figures 2 and 3 that application and
database degree distributions show power-law like be-
havior.

Database size distilution

——DBsme(MB)= = "DBsize onlogscale

350000
300000

1000000

100000
50000

200000

10000

000
150000

100000
A0000
o

100

DEsize - logscale

Databasze size [ME]

0

1
T
fi1 El 1m M

[etabase id

Figure 1: Database size distribution in the real-life
data.

5.2 Available Options and Typical Industrial
Approach to DBMP

Lets briefly discuss the options available and typical
solution approaches used in industrial scenarios. The
most obvious option is to migrate all the databases in
a single wave. As mentioned in Section 1, this trivial
solution is ruled out due to various constraints on the
migration process. Another solution is to use tech-
niques similar to standard bin-packing to group the
databases into multiple migration waves. From the
real-life data characteristics presented in earlier sec-
tion, one can see that a large number of databases
by a single application. Hence the bin-packing based

Application degree and total size of databases used

| ——uzedDB_size —=— App_Degres

7 350000
§ 300000
%5 250000 @
<4 20000 &
= a5|
§3 115000 g
32 x\\ 1000 §
z g
1 50000

L - :

1 bl 4 1 &1 o 121 141 181 181
Application id

Figure 2: Application degree distribution

Database degree and its size

—=—DB_Degree ——DB =size (MB)

12 7 350000

10 4 1 0000

1 250000

g, 4 7
g 1 noom ;5
§ € 22
g 1 150000 g E
=
g4 14 100000 & =
[=]

21 1 000

0 W % e]

1 2 41 £ &1 101 121
Database id

Figure 3: Database degree distribution

approach seems justified as well. Often, industry peo-
ple do realise the importance of dependencies and try
to put together the databases used by an application.
However, the many-to-many nature of application to
database dependencies, the large number of databases
and applications involved, and the complexity of con-
straints take the problem beyond manual calculations
or simplistic solutions. In the end, the pressing project
deadlines force the industrial practitioner to approach
the database migration planning using a close approx-
imation of bin-packing technique or even worse, in ab-
solutely ad-hoc manner.

6 Experimental Evaluation

In this section, we experimentally validate the need for
more sophisticated solutions for DBMP. We also evaluate
pros and cons of the solutions proposed in Section 4.

6.1 Synthetic Data Generation

We generate synthetic data for experimental analy-
sis using the characteristics of real-life input dataset
as discussed in Section 5.1. We use |D| as the in-
dependent variable and then use |A| and |B| as mul-
tiples of |D|. Database sizes are generated by sam-

pling from the lognormal distribution (mean = 6.18
and std.dev. = 2.79), the same database size distri-
bution as that of real-life data. However, to avoid
getting biased by the dataset we have, we also need to
evaluate the performance using another distribution.
We take lognormal distribution to represent the case
when the database size distribution is skewed. To an-
alyze significantly different scenario, we generate an-
other database size distribution by sampling the uni-
form distribution(min=10, max=500000). We evalu-
ate the performance of the proposed solutions for both
these database size distributions.

We capture the application-to-database dependen-
cies by generating random bipartite graphs. We con-
sider different scenarios as shown in Table 1. While
deciding the |A|/|D| and |B|/|D| ratios, we take the
following real-life observations into account: (a) in in-
dustrial organizations, the number of applications are
typically larger than the number of databases, and (b)
few applications use more than one database. Hence,
based on these observations, we consider the scenarios
when |A|/|D| and |B|/|D| ratios are lower and higher
than the real-life dataset as well as similar to it.

Table 1: Experimentation Scenarios

[AI/ID] [1BI/ID]
Experiment 1 1.1 1.25
Experiment 2 1.5 1.75
Experiment 3 1.75 2.0
Experiment 4 2.0 2.25
Experiment 5 2.5 2.8
Experiment 6 3.0 3.3

An important constraint for a database migration
project is the maximum size of a wave, S,q.. Note
that there is an upper bound on S,,; due to con-
straints such as physical hardware limits, availabil-
ity of database administrators (DBAs) etc. For ex-
perimental evaluation, we take S, to be 1.1 times
the maximum database size for the scenario when
database sizes follow lognormal distribution. This
value is appropriate due to the skewed form of lognor-
mal distribution. For the scenario when the database
sizes follow uniform distribution, we let S, to be
twice the maximum database size.

We varied the independent variable |D| as per the
following list: (5,10,...,95,100,200,...,400). Gran-
ularity is smaller till |D| <= 100 to get more exper-
imental observations for the ILP based solution (pro-
posed in Section 4.1) as that particular solution does
not scale for larger number of databases. To gain sta-
tistical confidence in the results, we have carried out
10 iterations of each scenario mentioned in Table 1 for
each value of |D|. The results are presented in the next
section.

6.2 Experimental Results
6.2.1 ILP-based Solution does not scale

To understand the practical limits of ILP, we imple-
mented it using Ipsolve, a standard open source LP
solver. We conducted our experiment on a Linux
server with a dual core dual processor Intel Xeon(TM)
CPU running at 3.00GHz with 4GB RAM.

a5

Time (seconds)
3 5 8 ¥ 8 & 8
°

@

04.—.—0—“.—.—0—!

[20 40 60 80 100 120 110 160 180

Number of variables

Figure 4: Running time of ILP solution w.r.t. number
of 0-1 variables in the ILP formulation.

8
°

w
&

‘@ 30
°
c
8 25
d)
L
P 20 -
£ °
= 15
10
s °
°
o ° ° °] °
o 5 10 15 20 25 30 35 40 45
Number of Databases

Figure 5: Running time of ILP solution w.r.t. number
of databases

For our experiment, the instances were generated
randomly and follow the lognormal distribution in
database sizes. As described in Section 5.1, we var-
ied the number of databases from 5 onward (in incre-
ments of five) and for each, we generated 20 instances.
We see that there is a quick increase in the running
time as the number of databases increases. In fact, in
many instances, although the parameters were within
the range shown in the graphs, the Ipsolve execution
did not complete even after 72 hours. Furthermore, we
also noticed a sharp increase in the running time as the
number of variables in the ILP formulation increased.
The graph in Figures 4 and 5 show the running times

plotted against the number of databases in the input
problem. We also experimented with uniform distri-
bution in database sizes, but those instances were not
viable even in very small instances (< 15 databases).
Regardless of the way we generate our instances, it is
clear that beyond some small threshold, the ILP for-
mulation is not a viable option.

6.2.2 Comparison of WAVE-FIT and hMETIS

We now compare the WAVE-FIT and hMETIS algo-
rithms. Before proceeding to cost comparison, we first
note that hMETIS runs faster than WAVE-FIT. How-
ever, WAVE-FIT, whose running time is polynomial
in the size of the input, runs reasonably fast; even
the larger problem instances were solved in less than
two minutes. In industrial practice, this is acceptable
time limit.

Observation 1: Testing costs for solutions using
hMETIS and WAVE-FIT are similar.

We use the following notation to denote the appli-
cation testing costs.

U, = testing cost due to hMETIS (Uniform case)
U, = testing cost due to WAVE-FIT (Uniform case)
Ly, = testing cost due to hMETIS (Lognormal case)
L, = testing cost due to WAVE-FIT (Lognormal case)

Table 2:
WAVE-FIT

Ratio of Testing Costs by hMETIS and

U/Uy | L/ Ly
Experiment 1 1.00 1.00
Experiment 2 1.00 0.99
Experiment 3 1.00 1.00
Experiment 4 1.00 1.00
Experiment 5 1.01 1.00
Experiment 6 1.01 1.00

We also explored whether the solutions are sen-
sitive to the wvariation in application-to-database
dependencies. From Table 2, we can see that for wide
variety of application-database dependency scenarios
and for both uniform and lognormal distributions, the
solutions produced by hMETIS and WAVE-FIT are

very much comparable.

Observation 2: hMETIS violates the mazimum wave
size constraint, Sz -

As mentioned in Section 4.2, limitation of solution
produced by hMETIS is violation of wave size con-
straint. Figure 6 summarizes the violations observed
experimentally. As discussed earlier, we use TWSV
to denote the total number of waves in which S, -
the wave size constraint is violated by hMETIS. We
observe from Figure 6(b) that if the database sizes

are distributed as per lognormal distribution, the av-
erage TWSV is about 2.5%. However, the average
TWSV increased to 37% when the database sizes
were sampled from uniform distribution (min=10,
max=500000), as seen from Figure 6(a). Also note
that, as the number of databases increase, TW SV also
increases significantly.

Another matter of concern was the extent to which
the wave sizes generated by hMETIS exceeded the
limit Sy,q.- If we denote sum of databases sizes belong-
ing to a wave as WS, then we found that Max(W.S)
produced by hMETIS often significantly exceeded the
Smaz- This extent of violation can go as high as 30%
of Spaz. Such an high extent of violation may render
the resulting solution unusable.

(a) Violation of YWave Size Constraint by hMETIS
{Uniform distribution)

Wiaves ze Bieess of <% TINSY
5_ma

a0
a4 — —
a e
] —
fa e T
B e
[=}
Fom
;Q 15
1
5
0] an 100 200 et 4
Mumber of datab azes
{b) Violation of \Wave Size Constrart by HVETIS
(Log-normal distribution)
|\avetize Bicess W % TWEY
of 5 ey
15
12
5
E 9
[m]
z " z
o 3 it e, — Z
DW
=l 70 Qo 1m0 an a0 40
MNurmnber of databases

Figure 6: Analysis of wave size constraint violation
by hMETIS: (a) Uniform distribution, (b) Lognormal
distribution.

6.2.3 Comparison of WAVE-FIT with Typical
Industrial Approach

In this section, we analyze the quality of solutions
produced by WAVE-FIT with the typical industrial

approach. As discussed in Section 5.2, we use bin-
packing approach as a close approximation of typical
industrial approach. To evaluate the algorithms un-
der different scenarios, we had to use the synthetically
generated data as described in Section 6.1. To denote
the application testing costs, we use notation similar
to the notation in Section 6.2.2:

U, = testing cost due to bin-packing (Uniform case)
L, = testing cost due to bin-packing (Lognormal
case)

Comparison of Testing Cost
(Lognormal distribution)

5000 T T

T T
LowerBound -+
4500 = g, Testing Cost due to WAVE-FIT — -

4000 - Avg. Testing Cost due to BinPack --++-- T -

A s
4 3500 i R o 7
§ 3000 o 4
g 2500 - i e /,/ i J
2 2000 S 1
1500 s 1

e & . : i
1000 |- ﬁ T
500?’ : » » :
0 | | | | | |
50 100 150 200 250 300 350 400
Num. of databases

Figure 7: Comparison of average application testing cost
by WAVE-FIT and Bin-packing. The database sizes follow
lognormal distribution (mean=6.18, sd=2.79).

Comparison of Testing Cost
(Uniform distribution)

8000 T T T T
LowerBound — [+ +
7000 - Avg. Testing Cost due to WAVE-FIT —%--
Avg. Testing Cost due to BinPack ——
6000 - - » : g
] =
g 5000 :
2
‘5 4000 bl
'_
23000 .
3
2000 bl
1000 B
0
50 100 150 200 250 300 350 400

Num. of databases

Figure 8: Comparison of average application testing cost
by WAVE-FIT and Bin-packing. The database sizes follow
uniform distribution (min=10, maz=500000).

Figures 7 and 8 show the average application testing
cost for solutions produced by bin-packing and WAVE-
FIT. It also shows a feasible lower bound on application
testing cost. To derive this lower bound, we have used

the fact that each application needs to be tested at
least once. So sum of individual application testing
costs is a valid, non-trivial lower bound. We observe
that the solution produced by WAVE-FIT (and simi-
larly, by hMETIS) significantly improves upon the bin-
packing based solution. From Table 2, we can see that
for wide variety of application-database dependency
scenarios, the solutions produced by WAVE-FIT out-
performs the bin-packing based solution. Additionally,
from Figures 7 and 8, note that the solutions produced
by WAVE-FIT are very close the lower bound on test-
ing cost. Thus we have experimental evidence that
the solutions proposed in this paper not only improve
the industry practice of planning database migration
projects, but also provide solutions that are close to
the optimal.

Table 3: Ratio of Testing Cost by Bin-packing and
WAVE-FIT

Uy /Uy | Lo/ Ly,
Experiment 1 1.23 1.28
Experiment 2 1.27 1.32
Experiment 3 1.22 1.27
Experiment 4 1.20 1.25
Experiment 5 1.19 1.24
Experiment 6 1.16 1.20

7 Conclusion And Future Work

In this paper, we have identified the challenges faced
periodically by modern organizations in migrating
large number of databases. Industry practice relies
heavily on intuition and experience for minimizing the
testing overheads in such projects. We have showed
that database migration problem (DBMP) is NP-hard
when we have to optimize the application testing cost.
Based on our real-life experience, we have formulated
DBMP to enable formal and rigorous analysis. We have
identified three different likely scenarios and provided
algorithms to tackle each one. For small problem
instances, we provide an optimal solution using inte-
ger linear programming(ILP). However, ILP suffers
from scalability problems. To tackle large datasets
encountered in practice, we tried to build upon the
hypergraph based formulation of DBMP and used the
well-known tool for this purpose, hMETIS. Use of
hMETIS however has a limitation as it violates the
wave size constraint; the total size of the databases it
packs in waves sometimes exceeds the wave capacity.
Hence, we have devised a polynomial time, easy to
implement algorithm - WAVE-FIT that overcomes this
limitation and provides solutions whose testing cost
metric is comparable to the solutions obtained using
hMETIS. We have successfully applied the techniques
developed in this paper in real-life database migration
projects.

Future Work: It is easy to see that for a given
instance of DBMP, if there is only one application
that uses n databases then the optimal solution for
DBMP is equivalent to finding the optimal bin pack-
ing. Since there is no polynomial time exact (3 — €)-
approximation for bin packing (for any ¢ > 0) [19],
DBMP also does not have a polynomial time exact solu-
tion that is a (3 — €)-approximation.

We have an interesting observation on our exper-
imental results. In all our experiments, the number
of application testings reported by WAVE-FIT is less
than twice of the lower bound on the number of appli-
cation testings. As part of future work, we are explor-
ing if there are more efficient partitioning algorithms
that exploit the characteristics of real-life input data
and achieve better /provable approximation factor for
special cases of DBMP (such as when DB sizes follow
particular distribution e.g. lognormal, uniform etc.).

Another promising area of improvement could be
the running time of our WAVE-FIT algorithm. Quite
recently, [11] showed that any partition problem of hy-
pergraphs has an O(n) time approximate partitioning
algorithm and an efficient property tester. For the
given experimental conditions, the observed running
time of WAVE-FIT is quadratic. Though this is accept-
able for the large and practically relevant instances of
DBMP (less than 2 minutes for 700 databases), we be-
lieve that there is scope for further improvement by
leveraging recent developments in hypergraph parti-
tioning.

References

[1] K. Andreev and H. Récke. Balanced graph par-
titioning. In Proc. of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Ar-
chitectures, 2004.

[2] C.Drumm, M. Schmitt, H. Do, and E. Rahm.
Quickmig - automatic schema matching for
data migration projects. In Proc. of the Six-

teenth Conference on Information and Knowledge
Management-CIKM, 2007.

[3] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco,
CA, 1979.

[4] J. Hall, J. Hartline, A. Karlin, J. Saia, and
J. Wilkes. On algorithms for efficient data mi-
gration. In Proc. of the twelfth annual ACM-
SIAM symposium on Discrete algorithms, pages
620-629, 2001.

[5] G. Karypis and V. Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
20:359-392, 1995.

[6] G. Karypis and V. Kumar. Multilevel k-way par-
titioning scheme for irregular graphs. Journal of
Parallel and Distributed Computing, 48:96-129,
1998.

[7] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell Systems
Technical Journal, 49:291-308, 1970.

[8] S. Khuller, Y. Kim, and Y. Wan. Algorithms for
data migration with cloning. In Proc. of the sym-
posium on Principles of database systems, 2003.

[9] M. Lubeck, D. Geppert, K. Nienartowicz,
M. Nowak, and A. Valassi. An overview of a large-
scale data migration. In Proc. of the NASA God-
dard Conference on Mass Storage Systems and
Technologies, 2003.

[10] A. Maatuk, A. Ali, and N. Rossiter. Relational
database migration : a perspective. In Proc. of the
Database and expert systems application (DEXA),
2008.

[11] A. Matsliah, E. Fischer, and A. Shapira. Approx-
imate hypergraph partitioning and applications.
In Proc. of 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2007.

[12] E. Rahm and P. A. Bernstein. A survey of ap-
proaches to automatic schema matching. VLDB
JOURNAL, 10, 2001.

[13] http://download-uk.oracle.com/docs/cd/
B10501_01/server.920/a96530/toc.htm. Or-
acle online documentation - oracle9i database
migration.

[14] http://glaros.dtc.umn.edu/gkhome/metis/
hmetis/overview. hmetis - hypergraph parti-
tioning tool.

[15] http://1lpsolve.sourceforge.net/.
linear programming solver.

Ipsolve -

[16] http://publib.boulder.ibm.com/
infocenter/db2luw/v9/index. jsp?topic=
/com.ibm.db2.udb.doc/doc/t0024286.htm.
Ibm db2 online documentation - migrating
information management systems.

[17] http://www.ispirer.com/products. Sqlways -
a product for database migration from ispirer sys-
tems.

[18] http://www.swissql.com/
database-migration-solution.html. Swissql -
data migration tool.

[19] V. V. Vazirani. Approzimation Algorithms.
Springer, March 2004.

