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Abstract

Existing studies on data mining has largely focused on
the design of measures and algorithms to identify out-
liers in large and high dimensional categorical and numeric
databases. However, not much stress has been given on the
interestingness of the reported outlier. One way to ascer-
tain interestingness and usefulness of the reported outlier is
by making use of a domain knowledge. In this paper, we
present a new measure to discover outliers based on back-
ground knowledge, represented by a Bayesian network. We
define outliers as “unlikely events under the current fa-
vored theory of the domain”. We introduce two quantitative
rules derived from the Bayesian network to uncover out-
liers. Furthermore, we use these rules to rank the instances
based on joint probability distribution in the Bayesian net-
work.

In our approach, we not only identified outliers but also
explain why they are likely to be so. A critical analysis
on distance based technique is also presented to show why
there is a mismatch between outliers as entities “which are
far away from their neighbors” and “real” outliers as iden-
tified using Bayesian Networks.

1 Introduction
An outlier is a data instance in a database which is signif-
icantly different from the norm. The objective in outlier
detection, is not only to identify outliers in large and high
dimensional databases but also to correlate them with ac-
tual anomalous events. For example, if the outlier detection
techniques are being used for finding anomalies in network
traffic, then outliers in network data should correspond to
physical anomalies - like denial of service attack or ping
flood. Thus if O is a set of discovered outliers from data
and A is the set (unknown) anomalies, then an ideal good
outlier detection method will have high precision and re-
call, i.e., both P (A|O) and P (O|A) are high. The chal-
lenge in outlier detection is that we rarely, if ever, have
access to the anomalous set A. Thus like clustering, outlier
detection is an unsupervised learning method.
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Current data mining methods identify sparse regions
in point cloud data to search for outliers. For example,
in distance-based methods, a data point is an outlier if it
is effectively far away from its neighbors. Variations on
distance-based approaches, like those based on density, in-
corporate the local density of the region while reporting
outliers, though the principle remains the same. However,
as we will demonstrate, such approaches ignore valuable
information that is available in the data.

Suppose we conceptually place a fine resolution grid on
the point cloud space. For example, in an N -dimensional
data set we can identify the grid cells with the a lattice Zn.
Now, distance-based outliers are essentially data points
which live in sparse cells. In fact we can associate a proba-
bility with each cell, which is the percentage of data points
which lie in that cell. In the language of pattern mining,
cells with low (but non-zero) support contain the outliers.
A major objective of this paper is to show that when we
want to search for outliers and then use them to identify
anomalous events, then the focus on confidence yields more
meaningful results.

To elaborate more on above stated observations, con-
sider a hypothetical dataset belonging to a certain region of
the country, highlighting persons income and their expen-
ditures. This example is extended version of one presented
in [4]. The sample data in Figure 1 represents relationship
between persons income (X-axis) and expenditure(Y-axis).
As observed, data points are roughly clustered. We name
them as O1,O2,O3 and O4 respectively. Cluster O2 which
is very dense, indicates that in a given region, persons ex-
penditure is bounded within their income. Unlike cluster
O2, data points forming cluster O1 indicates that there are
very small percentage of people the expenditure of whom
are higher than that of their income. Likewise, there are
few people in region earning high but choose to spend low
as represented by the cluster O3. Lastly, a small percentage
of people have high income and they prefer spending high
as indicated by cluster O4. In the above discussion, if the
objective is find to find outliers using existing techniques
such as distance based [10] or density based [6] then most
likely these approaches will find data points belonging to
the clusters O4 as highly ranked potential outliers. This is
because these data points are far away from their k nearest
neighbor and hence are isolated and easily detected as out-



Figure 1: Shows objects in two dimensional space where
X-axis represents Income and Y-axis represents Expendi-
ture.

liers. To illustrate more on this, data points forming clus-
ter O3 has low support from their neighbors in dimension
Income and high support in dimension Expenditure. For
the data points in cluster O1 and O2, there is enough high
support from the k nearest neighbors of these data points
in given two dimensional space. Lastly, three data points
shown under cluster O4 are farthest from their k nearest
neighbor, having low support by their neighbors in both the
dimensions. Intuitively, high expenditure when income is
high as indicated by the data points in cluster O4 should not
be flagged as outliers. Real outliers which “make sense”
are the data points belonging to the cluster O1. Challenge
here is to overcome the mismatch between outliers as enti-
ties “which are far away from their neighbors” and “real”
outliers.

We propose in this present paper a technique through
which real outliers can be captured. Based on the above
discussion, we propose to use Bayesian network to repre-
sent casual knowledge of the domain. Bayesian network
capture causal relationships among a set of variables using
a graph in which variables are nodes and causation is in-
dicated by arrows. The strength of relationship among de-
pendent nodes is represented in terms of probability. In our
approach, casual relationships encoded in the Bayesian net-
work were exploited using two quantitative rules discussed
in Section 4 to identify anomalous patterns. These rules
were used to score instances based on the joint probability
distribution in the Bayesian network. Later, the instances
were sorted by their score and top n low probability scored
instances were declared as outliers.

Figure 2 represents a Bayesian network of above taken
example. The two variables namely, income and expendi-
ture are represented by the nodes. The arrow from node
Income to node Expenditure indicates that persons income
influences his spending. Following data distribution as
in Figure 1, tables associated with nodes represents prior
probabilities for the parent node, i.e., node Income and con-
ditional probabilities for the child node, i.e., node Expen-
diture. As indicated in the figure, both nodes can take up
two states namely, low and high. For example, 90% of the
population belonging to the region has low income and rest
10% has high income. As income affects persons spending
as indicated in the Bayesian network, 70% of the people
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Figure 2: A simple example of Bayesian network in causal
relationship.

has low expenses when their income is high and 30% peo-
ple spends as high as they earn. Taking Bayesian structure
into account, joint probability of an event

Pr(Income = high, Expenditure = high) =
P (Expenditure = high|Income = High)×

P (Income = high) = 0.03

on similar lines, joint probability of an event

Pr(Income = low, Expenditure = high) =
P (Expenditure = high|Income = low)×

P (Income = low) = 0.018

This simple example illustrates how causality can be
exploited using joint probability to uncover anomalous
patterns in the data. Joint probability of the event
Pr(Income=low,Expenditure=high) is low because the con-
ditional probability P(Expenditure=high | Income=low) is
very low(2%) in the Bayesian network. Detail explanation
on the Bayesian network and our methodology is presented
in Sections 3 and 4 respectively.

Bayesian network have also been used for mining out-
liers in classification settings. However, in the present pa-
per, we worked in an unsupervised environment. We used
Bayesian network as a model for a given domain, to justify
our objective that it is meaning and relationship among at-
tributes that needs to be explored to discover outliers. The
four worthy primitives of the Bayesian network namely,
likelihood, conditioning, relevance and causation [13] were
extensively utilized to discover true and meaningful out-
liers. We define outlier as[8]
“unlikely events under the current favored theory of the
domain”

We not only identified outliers using our approach but
took the identification aspect to explain why identified data
point is an outlier. To best of our knowledge, Knorr and
Ng.[9] were the first and perhaps only to suggest the use-
fulness of explaining why discovered data point is an out-
lier. Though such explanation is vital for the user, their
approach on identifying outliers is based on distance based
criteria which we proclaim is not an effective approach in
discovering true outliers. In addition to explanation aspect,
we also present critical analysis on the search methodology
of distance based techniques, Bayesian approach and why
a data point discovered as an outlier by a distance based
technique is not necessarily an outlier from the Bayesian
perspective.



We claim following contributions towards mining true and
meaningful outliers.

1. We present two quantitative rules to help discovering
anomalous pattern residing in the dataset in conjunc-
tion with the Bayesian network joint probability dis-
tribution to sort for those instances where anomalous
pattern are present to maximum.

2. We evaluate the validity of discovered outliers by
explaining why identified data points are anomalous
which indicates the credibility of our approach.

3. A critical analysis of distance based techniques is also
presented which highlights why distance based crite-
ria may not be an accurate and effective technique to
discover true outliers.

4. Our experiments on variety of simulated and real
datasets, shows that our overall approach is effective
and accurate at the same time.

The rest of the paper proceeds as follows. Section 2,
gives a brief overview of common data mining approaches
for outlier detection. Section 3, introduces Bayesian net-
works. Section 4, presents our methodology, experiments
and analysis on distance based technique. We conclude pa-
per with summary and direction of future research in Sec-
tion 5.

2 Related Work
Common outlier detection techniques can be classified as
statistical, distance and density based. The effectiveness of
these techniques are illustrated using Figure 3. Statistical
methods develop statistical models from the given data and
then apply a inference test to determine if an instance is
likely to have been generated from the model [7]. Statis-
tical techniques are based on the principle that outliers are
observations which are far away from the mean. Statisti-
cal model can find data points P1 and possibly point P3 as
outliers, but can not detect data points P2 and P4. In this
example, since the value of the data point P2 corresponds
to the mean, therefore, it would not be detected by these
methods. Moreover, these methods rely on the assumption
that data is generated from a particular distribution which
may not hold true especially in a high dimensional space.

Distance based methods [5, 9]use metric measure to
rank outliers based on the the distance to their nearest
neighbor. Outliers are those points for which distance is
large. Under their key assumption, they would label data
points P1 and P2 as outliers because they cannot fulfil the
condition of having a required number of neighbors within
certain distance threshold. However, as the data points
P3 and P4 can fulfil this condition, they would not be de-
clared as outliers. The problem arises due to the fact that
these methods take into account the global data distribu-
tion rather than local isolation with respect to the neighbor-
hood. This makes them perform poorly when the dataset
has regions of varying densities. Moreover they have high
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Figure 3: Example showing one dense cluster, one sparse
cluster and four outliers.

computational complexity because they need to compute
the distance to all data points in the database for finding the
k nearest neighbors.

The density based methods “solve” the problem of find-
ing outliers which are isolated from the entire data objects
(global) as well isolated from the local neighborhood (lo-
cal). Several local outlier detection algorithms have been
proposed in the literature including LOF[6] and LOCI[12].
As a consequence such techniques can declare data points
P1, P2, P3 and P4 as outliers. Again, performance of these
approaches greatly depends on a distance measure which
is very challenging, if the data are complex for e.g. graphs
and sequences.

Clustering based approaches make a very simple as-
sumption for finding outliers: normal data points belong
to large and dense clusters, while outliers either do not be-
long to any cluster or form very small clusters[7]. However
such techniques are highly dependent upon the effective-
ness of clustering algorithms which in turn are dependent
on a suitable metric for clustering. This might result in out-
liers getting assigned to large clusters, therefore, likely to
be considered as normal and not outliers.

The use of Bayesian network to find outliers is wide and
varied in different applications like video surveillance, in-
trusion detection in network[15] ,health care[16] and more.
This approach is like a classification problem, where a
trained Bayesian network on training dataset aggregates
information from different variables and provides an es-
timate on the expectancy of that event to belong to nor-
mal/abnormal class for unseen test dataset. The biggest
disadvantage of this technique is that they rely on the avail-
ability of accurate labels for various classes,which is, most
often not possible.

Till date, much focus has been given on discovering
point based outliers whereas, studies on finding conditional
or contextual outliers are rare. This may be due to the fact
that finding contextual outliers needs domain knowledge
to understand context of the attributes. Song and Wu [14]
were first to propose an approach to discover conditional
anomalies. They captured knowledge of the domain in the
form of relationships between two sets of attributes. Where
one set behaves as a parent and other as a children. By per-



turbing values of attributes belonging to the child set, i.e.,
by disturbing the original relationship, they claim to find
more anomalous patterns from the set which has been per-
turbed as compared to the original set where relationships
were intact. Nevertheless, this paper highlights importance
of discovering outliers based on domain knowledge but key
limitation being relationship leant were between two sets
of attribute where one set behave as a parent and other as
a child. This in one sense, narrows the domain knowledge.
The idea of perturbing one set of attributes may not al-
ways result in anomalies. It can result in normal data again.
Therefore, their approach might fail in this scenario. The
focus of the paper in only on highlighting importance of
domain knowledge in discovering true outliers. However
nothing has been said about how identified anomalies can
be useful in updating domain’s knowledge.

3 Bayesian Networks
Bayesian network belong to the family of probabilistic
graphical models. These graphical models are used to
encode knowledge about a domain. In particular, each
node in the graph represents a concept(or variable), while
links(edges) connect pairs of nodes to represent possible
causal relationships. Bayesian network corresponds to
graphical models known as directed acyclic graph(DAG),
meaning that their edges have direction, and that there is no
cycle within the graph. More formally, a Bayesian network
over a set of variables X=x1,x2...,xn consists of (1) a net-
work structure S that encodes plausible relationship among
variables in X and (2) a set P of local probability distri-
butions associated with each variable in X. An edge from
node Xi and Xj in X represents a statistical dependence
between the corresponding variables. Thus, the arrow
indicates that a value taken by variable Xj depends on
the value taken by variable Xi,or that Xi ”influences” Xj .
Node Xi is then referred as parent node and, similarly, Xj

is referred to as a child node of Xi. Bayesian network only
relates nodes that are probabilistically related by some sort
of causal dependency hence the links missing between the
variables is because of conditional independence property.
In other words, each variable in X is independent of its non
descendants given the state of the parents[11].

For each variable Xi : Xi ⊥ nondescendants Xi |
PaS Xi

Where the symbol Pa denotes, parents of variable Xi

in network structure S and symbol ⊥ denotes conditional
independence. A local probability distribution P associ-
ated with each variable in X presents prior probability ta-
bles for the nodes in the structure S that have no parents
and conditional probability tables(CPTs) for the nodes in
S given their parents. The two components of Bayesian
network namely, graphical structure S and P of local prob-
ability distributions together defines the joint probability
distribution for X. Given structure S and parameters P, the
joint probability distribution for X is given by the product

between individual prior probabilities of all parent nodes
in X and conditional probabilities of all child nodes in X.
Thus a joint probability distribution in X is given by Eq.1.

P (X) =
n∏

i=1

P (xi|Pai) (1)

Consider a medical Bayesian network in Figure 4 from
[1] on cancer disease as example to illustrate some of the
characteristics of Bayesian networks. This Bayesian struc-
ture suggests that an event metastatic cancer(denoted by
the node M) can cause brain tumor, an event represented
by the variable B and serum calcium, an event represented
by the variable S. Similarly, severe headache represented
by the node Sh is an effect of an event brain tumor. As-
sociated with each nodes are the unconditional and condi-
tional probability tables associated with those. Each node
represented in the network can take up two states namely,
true(denoted by t) and false(denoted by f) for all variables
except variable serum calcium(S)which takes values in-
creased(denoted by i) and not increased(denoted by ni).
Only partial probabilities are shown and rest can be in-
ferred from the requirement that the probabilities add up to
one. For example, when brain tumor is present and person
has increased serum calcium in the body then probability
that person will go into coma is 60% and thus the probabil-
ity that person will not go in coma is 40%. Following the
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Figure 4: Bayesian network representation of the cancer
disease. Where M,S,B,C,Sh stands for Metastic Cancer,
Serum calcium, Brain tumor, Coma and Severe headache
respectively. Each node represented in the network can take
up two states namely true(denoted by t) and false(denoted
by f) for all variables except variable Serum Calcium
which takes values increased(denoted by i) and not in-
creased(denoted by ni).

Bayesian network independence assumption, several inde-
pendence statements can be observed. For example, when
metastic cancer is given, variables serum calcium and brain
tumor are conditionally independent. Similarly, when brain
tumor is given, severe headache is conditionally indepen-
dent of its ancestor metastatic cancer. The conditional inde-
pendence characteristics of the Bayesian network provides
a compact factorization of the joint probability distribution.
Joint probability over five variables represented in Figure 4



is given by:

P (M, S, B,C, SH) = P (S|M)× P (B|M)× P (C|B, S)
×P (SH|B)× P (M)

As all variables are binary, Bayesian network reduces the
factors in joint probability from 25-1 = 31 to 11 parameters.
Such a reduction provides great benefits from inference,
learning and computational perspective. Once Bayesian
network is built, a process of inferencing is applied which
is a task of updating probabilities of outcome based upon
relationships in the model and the evidence known about
the situation in hand. The updated probabilities reflect the
new levels of beliefs in(or probabilities)of all possible out-
comes codes in the model. In general, all possible inference
queries are evaluated by marginalization, i.e., summing
over irrelevant variables. For example, inference query
like, what is the probability of metastatic cancer given per-
son is suffering from severe headache?. Such queries in
general take exponential time in computation. However,
efficient algorithms like message passing[13] can provide
approximate answers in polynomial number of steps. The
graphical model and associated probabilities can be spec-
ified by the domain experts. However, in the absence of
domain experts, Bayesian structure and parameters can be
learned from the data. Softwares like [1],[3] can be used
for the learning task.

4 Methodology and Experiments
4.1 Methodology

With the need of discovering true and meaningful outliers
and also motivated by[8], we propose to find outliers by
finding joint probability using Bayesian network. We be-
lieve outliers are ‘‘low probable, with intrinsic anomalous
pattern within”, therefore, by using joint probability dis-
tributions and knowledge of the domain, instances can be
ranked according to their probability of occurrence . The
essential idea is, for a given instance, we find joint proba-
bility, which is a product of priors and conditional proba-
bilities across each of the variable in a given domain. The
product thus obtained gives us the score for the instance and
low scored instances were treated as potential outliers. An
important observation here is, product of priors and con-
ditional probabilities, which constitute a score of a given
instance, can give rise to four different situations namely,

1. low prior and high conditional probability
2. high prior and low conditional probability
3. low prior and low conditional probability
4. high prior and high conditional probability

In data mining terminology, prior and conditional probabil-
ity are referred to as support and confidence respectively. A
joint probability actually is a product of the above four fac-
tors or we can say joint probability is formed by the combi-
nation of above listed situations. However, it is always pos-
sible that any situation occur any number of times, while

at the same time it is not also necessary that every situ-
ation will be present in the product. This depends upon
values taken by attributes and their structure of relation-
ship. Of the four situations, the situations listed at one and
two are the only case where there is a conflict between the
evidence and event conditional probability provides for a
theory and our prior belief about the plausibility of that
theory and hence an indication of potential outlying situ-
ations. Griffiths and Tenenbaum [8] defines situations one
and two above as mere and suspicious coincidence respec-
tively. From outlier mining point of view, low uncondi-
tional probability is most likely a “noise event” unless there
exists a variable for which there is high conditional prob-
ability. Situation three is example of noise. High support
and high confidence is example of high correlation and as-
sociation among attributes. The focus of association rule
mining is to discover such patterns from data.

Logically a joint probability of an instance will be low
which has maximum number of first three situations listed
above. In order to find true outlying situations from the
dataset, our focus is on finding those instances where score
of joint probability is low because of situations one and
two only. Keeping this in mind, prior to finding joint prob-
ability of an instance, we checked the strength of the rela-
tionship between the two variables. If for a given parent
variable, prior belief is low and posterior of the direct child
of this parent variable is also low then this posterior factor
was not considered in finding joint probability. We refer
situations one(say R1) and two(say R2)as two quantitative
rules which can be employed to uncover anomalous pat-
terns in the given data. In line with our definition of out-
liers, quantitative rules helped in uncovering anomalous
patterns and joint probability distribution in the Bayesian
network ranked low for the instances where such anoma-
lous patterns were present in maximum. To apply rules R1

and R2 on the dataset, we need to define three parameters
namely, low prior and low,high conditional probability. We
name these parameters as minsupp, minconf and maxconf
respectively. Parameter minsupp is computed for every par-
ent node in the Bayesian network. We define minsupp of
the parent node by Eq.2. Here X stands for any parent node
in the dataset and xi refers to any state of this node.

minsupp(X) = min
i

(support(Xi)) (2)

For example, in Figure 7(a), minsupp for the parent node
Tuberculosis is 1.104%. Unlike minsupp parameter, min-
conf and maxconf are user defined thresholds. Following
these parameters, we define rules R1 and R2 as in by Eq.4
and Eq.5. Where C represents a child node and Pa(C) refers
to the parent(s) of the child node C. The factor P(Pa(C))
calculates support of the parent(s) of C in the Bayesian net-
work(BN) defined by Eq.3 and compares it with respec-
tive minsupp value. Whereas, P(C|Pa(C)) calculates condi-
tional probability of C given parent(s) and compares with
maxconf and minconf thresholds.

support(Pa(C)) = P (Pa(C)) ∈ BN (3)



R1 ⇒ (P (Pa(C)) = minsupp)
∧

(P (C|Pa(C) ≥ maxconf))
(4)

R2 ⇒ (P (Pa(C)) > minsupp)
∧

(P (C|Pa(C) ≤ minconf))
(5)

To help understand our approach, we illustrate how we
ranked instances by taking small hypothetical Bayesian
network as shown in Figure 5. For this Bayesian network,
joint probability distribution over four variables will be rep-
resented by Eq.6. Following definition of minsupp parame-
ter in Eq.2, minsupp(A)=0.4(1-0.6) and minsupp(B)=0.02.
Let thresholds for parameters minconf and maxconf are set
to 10% and 70%.

P (A, B,C, D) = P (C|A,B)× P (D|A)×
P (A)× P (B) (6)

Let T denotes the testset for the Bayesian network in Figure
5 and let instances follow the attribute order A,B,C,D. Let
t1={t, f, f, t} and t2={f, f, t, t} be two testcases such that
t1,t2 ∈ T. With our definition of ranking instances based
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Figure 5: A hypothetical Bayesian network of four vari-
ables. Each variables takes two states, i.e., true(t) and
false(f). Partial probabilities are shown and rest can be cal-
culated by subtracting given probability by one.

on two quantitative rules R1 and R2, score of the instance
t1={t, f, f, t} will be 0.01104 ( P(C|A,B)=0.92 × P(B)=
0.02 × P(A)=0.60 ) and for the instance t2={f, f, t, t} the
score will be 0.005 (P(C|A,B)=0.85 × P(D|A)= 0.75 ×
P(B)=0.02 × P(A)=0.40). The instance t2 is more anoma-
lous than t1 because it has two patterns satisfying rule R1

whereas, instance t1 has one anomalous pattern which is
uncovered by the rule R1. For t1={t, f, f, t}, if we cal-
culate joint probability distribution without imposing any
rules then it would come out to be 0.006%. The rea-
son why it scored low than the one on which rules where
applied is because of the factor P(D|A). The probability
P(D|A) in t1={t, f, f, t} is neither an example of R1 nor
R2. Thus by sensibly using quantitative rules, instances
can be ranked for outlierness. We present pseudo code
of the algorithm(OutlierMiner) in 1 below. OutlierMiner
takes as input a Bayesian network(BN(N,E)) where N, rep-
resents number of nodes and E, set of edges, a testset from
which outliers has to be mined and parameters minconf and
maxconf. Algorithm starts by computing minsupp for ev-
ery parent variable(denoted by X)in the Bayesian network.
Next, for every testcase in testset, conditional probability in

child node(denoted by y) is computed given priors of par-
ents. Rules R1 and R2 are applied on every testcase and
joint probability is computed. Finally, top n low scored in-
stances are reported as outliers.

The computational complexity of OutlierMiner is gov-
erned by factors such as: (1) size of the Bayesian net-
work(i.e. the number of nodes in the net) (2) size of the
dataset and (3) probabilistic inference(belief updating)in
the Bayesian network. Probabilistic inference in Netica(a
commercial Bayesian Network Software) is carried out us-
ing join tree algorithm, whose computational complexity is
exponential in the worst case.

We experimented on two different sets of Bayesian net-

Algorithm 1 OutlierMiner
Input: Bayesian model(BN(N,E)), paremeters minconf
and maxconf, and a testset
Output: top n low probability data points in a testset
1. Compute minsupp for all parents nodes X ∈ BN(N,E)
2. For every testcase in testset, repeat steps(3-4)
3. Compute conditional probability in child node given
their parent(s), i.e., P(y)=Pr(y | Pa(y)) where Pa(y)∈ X
4. Apply rules R1 and R2 to uncover anomalous patterns
and compute joint probability
5. Sort joint probability
6. Output top n low scored data points

work: 1) Bayesian structure given, simulated dataset 2)
given dataset, learnt Bayesian model and parameters. For
the first case, we chose validated Bayesian model from
Netica Bayesian net library [1] and simulated dataset us-
ing Netica software. For the second category, we learnt
Bayesian model from the real datasets taken from UCI
repository[2] and B-Course[3]. In order to learn Bayesian
model, we divided the dataset into training and testset.
Training set was used for the learning task, whereas, testset
was used for the experiments. This process is illustrated in
step (1), Figure 6. We used B-Course software for learn-
ing Bayesian model and parameters. Next, learnt Bayesian
structure was used in Netica and an algorithm OutlierMiner
was developed using Netica Java API for calculating the
probability of a given data point.

Testset was used for two different set of experiments,
which infact highlights our contributions. Our first set of
experiments were focused on identification of top n out-
liers and describing why these n data points are outliers as
shown as Task 1 in Figure 6. In another set of experiments,
we present analysis on data points discovered as outliers
by our approach and nearest neighbor approach. Answers
were sought for the following three questions:

1. What patterns are observed using our own definition
of discovering outliers using Bayesian network ?

2. What approach does nearest neighbor technique fol-
low to discover outliers?



3. Why is it that an outlier discovered by Nearest
neighbor technique is not necessarily an outlier from
Bayesian point of view and vice-versa ?

This process is summarized as Task 2,Figure 6
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Figure 6: Methodology

4.2 Assumptions

Our experiments are based on the following key assump-
tions.

1. As outlier mining is an unsupervised technique, we
deleted class labels from the real datasets and tested
our approach in an unsupervised way. Though it is
difficult to claim relevance of our approach in absence
of labels, yet we prove by the quality of our results
that our approach is intuitive and meaningful.

2. In order to estimate precision of nearest neighbor tech-
nique, we took n, i.e., number of outliers to discover
to be 5.

4.3 Datasets

We selected in total ten datasets, out of which five were
simulated from validated Bayesian model and rest were
real datasets from which Bayesian models were learnt. The
outline of each dataset is described below. In addition,
we also present the structure of Bayesian models for few
datasets. Due to the limitation of space, Bayesian model for
few datasets are only shown. For each dataset, the notation
(i × j) indicates that the dataset had i number of instances
and j number of attributes.

4.3.1 Given Bayesian network,simulated dataset

Below are the description of five Bayesian model taken
from Netica net library through which datasets were sim-
ulated.

1. ChestClinic(256 × 8): a simple Bayesian network to
diagnose patients arriving at a clinic. All features of
this domain were discrete. Figure 7(a) represents the
Bayesian network for this domain. Every node encap-
sulate the attribute name, plausible states and support
of every possible state in the dataset. For example,
Bronchitis is the attribute name which has two possi-
ble states namely, present and absent with 45% and
55% as support, represented by bars next to the states.

2. Busselton(1000 × 15): a Bayesian network to predict
risk of Coronary Heart Disease. This domain had a
mixture of discrete and continuous features. Detail
description of this Bayesian model can be found on
Netica website[1].

3. Balpha(1000 × 10): an environmental Bayesian net-
work for the fungus Bondarzewia mesenterica[1].
Features were both discrete and continuous types.
Bayesian network is available on Netica website.

4. Diabetes(1000 × 9): a medical Bayesian network for
Diabetes. Figure 7(b) represents Bayesian model. All
features were discrete as shown in the Figure .

5. System Performance(1000 × 22): a general Bayesian
model for troubleshooting. This domain had a mixture
of discrete and continuous features. Bayesian network
is available on Netica website.

4.3.2 Given dataset, learnt Bayesian structure and pa-
rameters

We chose five real datasets, of which four were taken form
the UCI archive and other was taken from a web-based data
analysis tool for Bayesian modeling called B-Course[3].
During the learning process, attributes which were numeri-
cal where automatically discretized by the software. Below
are the description of the datasets:

1. Hepatitis(155 × 19): a medical dataset on Hepatitis
disease taken from UCI repository. Attributes were
mixture of categorical and real data types.

2. Breast cancer(184 × 9): a medical dataset on Breast
cancer. For this domain, all attributes were discrete.
Bayesian model learnt is represented in Figure 7(c)
.This dataset is from UCI repository.

3. Statlog(1000 × 20): a financial dataset which de-
scribes important attributes which are accessed before
grating credit to the person. Features were mixture of
categorical and integer data type. This dataset is from
UCI repository. Bayesian model has not been shown
due to the limitation of space.
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Figure 7: (a) Bayesian Network of the ChestClinic dataset. Where nodes represents name of the attributes, possible states
and support of individual state indicated by bar next to the state name in the Bayesian network. (b) Bayesian Network of
the Diabetes dataset.(c) Bayesian network of the Breast cancer dataset.(d) Bayesian network of the Ecoli dataset.

4. Ecoli(336 × 8): a life science dataset taken from UCI
repository. All features were real. Bayesian network
learnt is shown in Figure 7(d)

5. Boston housing(516 × 14): dataset concerns housing
values in suburbs of Boston. All features were numer-
ical. This dataset is from B-Course website[3].

4.4 Experiments and Analysis

As mentioned in the methodology section, we divided ex-
periments in two parts, i.e., “identification and description”
and “analysis of false outliers” respectively.

4.5 Identification and description

We applied our methodology on all ten datasets described
in above section and explored top n outliers. Instances
which scored low joint probability in Bayesian network
were treated as outliers. In addition to this, we present
subspaces which define outliers. We set the thresholds
minconf=10% and maxconf=80%. As our goal is to
discover outliers based on causation and correlation,
therefore, attributes which were independent like attributes
Tumorsize and Breastquad in Breast cancer datatset were

not used in the experiments. Due to the limitation of the
space, we present top outliers of few datasets only. Top
outliers of these datasets are followed by the description
on subspace which defines why these data points were
outliers. Description follows the annotation X(x) → Y(y).
X represents set of parent(s) and Y represents children
corresponding to parent(s)in X. Whereas, x stands for
support of the parent in the dataset and y, confidence
in child node given parent node(s). For example, in the
ChestClinic dataset, shown data point is an outlier in three
dimensional space of Cancer, Bronchitis and Dyspnea.
Support of both the parent nodes are greater than their
minsupp parameter, i.e., 92.6% and 55% (refer Figure 7(a)
) whereas, confidence in child node Dyspnea given support
of parent nodes is low(10%). This rule is example of high
support and low confidence(rule R2).

Dataset: ChestClinic
Identification: absent,abnormal,false,absent,present,absent,
visit,smoker
Description: Instance is outlier in
1. 2D space of Visit to Asia(1%) → Tuberculosis(95%)
2. 2D space of smoke(50%) → lungcancer(90%)



3. 2D space of cancer(92.6%) → Xray(5%)
4. 3D space of cancer(92.6%), bronchitis(55%)
→ dyspnea(10%)
Dataset: Diabetes
Identification: low,lean,few,youth,lean,low typeI,normal,
normal,not diabetic
Description: Instance is outlier in
1. 3D space of B(13.86%), Pr(55.62%)
→ T(98.7%)
2. 5D space of B(13.86%), Pr(55.62%),
D(38.9%),Age(29.54%) → Dia(97.7%)
3. 3D space of Dia(62.9%), Db(83.4%)
→ I(0.2%)
Dataset: Ecoli
Identification: 0.52,0.81,0.48,0.5,0.72,0.38,0.38
Description: Instance is outlier in
1. 3D space of Mch(40.8%), Lip(96.3%) → Gvh(0.9%)
2. 3D space of Mch(40.8%), Gvh(14.1%)
→ Alm1(100%)
3. 3D space of Lip(96.3%), Gvh(14.1%)
,Alm1(44.3%)→ Alm2(7.27%)
Dataset: Breast cancer
Identification: twenties,premeno,s3539,s02,no,two,right,
rightup,no
Description: Instance is outlier in
1. 2D space of Menopause(58.2%) → Age(1%)
2. 3D space of Invnodes(92.4%), Breast(49.3%)
→ Nodecaps(95%)

4.6 Relevance of our approach

Our emphasis in this section is on the usefulness and rel-
evance of our approach in discovering genuinely anoma-
lous patterns. Any outlier detection technique is novel if
it can validate anomalous behavior of the observations and
can provide insights into the fact as to why these obser-
vations are suspicious. Such insights not only give under-
standing on data but helps in improving knowledge of the
domain. The most authentic way to validate outliers dis-
covered by any outlier detection technique is by evaluating
observations using domain knowledge. However, as exper-
tise of the particular domain is not always readily available
to disseminate knowledge about the domain and validate
outliers; a model representing domain knowledge could be
a promising solution in this direction.

We present relevance and quality of our results by
discussing an outlier instance discovered by our approach.
The idea is, if an explanation of a data point to be anoma-
lous is justified by the domain as an unseen yet interesting
knowledge then that observation is a true outlier and
therefore an indication of relevance of our approach. We
chose dataset ChestClinic for explanation. The reason of
choosing this dataset is because the relationship among
attributes and the general knowledge of the domain is
very easy to understand and hence explaining an outlier
instance of this dataset will be effective. Following is the
top outlier of ChestClinic dataset with description.

Dataset: ChestClinic
Identification: absent,abnormal,false,absent,present,absent,
visit,smoker
Description: Instance is outlier in
1. 2D space of Visit to Asia[visit](1%) →
Tuberculosis[absent](95%)
2. 2D space of smoke[smoker](50%) →
lungcancer[absent](90%)
3. 2D space of cancer[false](92.6%) →
Xray[abnormal](5%)
4. 3D space of cancer[false](92.6%),
broncitis[absent](55%) → dyspnea[present](10%)

We amended rule X(x)→ Y(y) with additional informa-
tion which is represented in angular braces. Information in
angular braces represents state of the variable. Referring to
Figure 7(a), we explain four outlier subspaces identified as
follows:

1. Percentage of people who makes visit to Asia(1%)
is unlikely to have tuberculosis(95%). This is a
suspicious event because we do not have enough
evidence(1%, which is very small) to this fact.

2. Referring to second subspace, there is one cause of
lungcancer, i.e., smoking. A lay mans opinion says, a
person who smokes is mostly likely to get affected by
lungcancer. For the given instance, value of the vari-
able smoker is “smoker” and value of lungcancer is
“absent”. Which obviously indicates a new dimension
to knowledge that there could be other causes leading
to lungcancer. The support of smoke is 50%, which is
considered as minsupp because smoke has only states
with same probabilities.

3. In the third subspace, intuitively, a person suffering
for cancer should have abnormal xray. Whereas, for
this observation, cancer is absent but still xray report
is abnormal. It raises question as to why xray is ab-
normal when cancer is absent. This lead us to a new
knowledge that abnormal xray is not only affected by
the presence of cancer but there could exist other fac-
tors causing abnormal xray.

4. Similarly, for the fourth subspace, two causes of dis-
ease dyspnea namely, cancer and bronchitis are absent
but still disease dyspnea is present.

4.7 Analysis on genuine and false outliers

In this section, we address on why there is a mismatch be-
tween outliers as observations “which are far away from
their neighbors” and “real” outliers as identified using
Bayesian approach. To start with, we found top n outliers
using distance based technique and validated these anoma-
lies against the Bayesian model built. When any outlier
found by distance based technique, stands among top n out-
liers in the domain, then these data points were considered
true outliers. We calculated precision of nearest neighbor
approach on all ten datasets mentioned above.



Table 1: Precision obtained by Nearest Neighbor tech-
nique. Parameter n, number of outliers to discover was set
to five.

Dataset name Precision
ChestClinic 20%
Busselton 80%
Balpha 0%
Diabetes learned 60%
System Performance 0%
Hepatitis 40%
Breast cancer 20%
Statlog 80%
Ecoli 20%
Boston housing 20%

Table 1 summarizes results we achieved. The first col-
umn of the tables represents the name of the dataset and
second column specifies precision as obtained by the dis-
tance based technique. We used algorithm presented in[10]
for discovering outliers using distance based criteria. Ham-
ming and Euclidean distance measures were implemented
in the algorithm for categorical and numerical data types
respectively. As observed from the results, accuracy of dis-
tance based technique lies in the range of 0%-80%. For
most of the datasets, precision is not more than 40%. Below
we present analysis on, search methodology of Bayesian
approach, search methodology of distance based technique
and finally why distance based outlier is not a genuine out-
lier from domain perspective.

4.7.1 What Bayesian approach follows ?

Bayesian network tightly integrates relationships among
features of the domain and plausibility of an event in prob-
abilistic terms. By exploiting relationships, low and high
likely events can be interpreted. Probability that a series
of events will happen concurrently can be answered by cal-
culating joint probability. Bayesian networks provides ef-
ficient graphical representation of joint probability; by tak-
ing advantage of conditional independence, dimensionality
of the dataset can be factored into smaller groups indicating
dependent attributes and extent of correlation in probabil-
ity. In other words, joint probability of several variables can
be calculated from the product of individual probabilities of
the nodes following chain rule of probability. For example,
joint probability of all the attributes in the Bayesian model
in Figure 7(a) is represented by Equation below.

P (A, S, T, L, B, C, X, D) = P (X|C)× P (D|C,B)
×(C|T, L)× P (T |A)× P (L|S)

×P (B|S)× P (S)

Where A,S,T,L,B,C,X,D represents initials of eight vari-
ables in the Bayesian network. Following definition of joint
probability in Bayesian network, we explored inner struc-
ture on similar lines for top n outliers discovered by our

approach for every dataset. It is important to mention here,
top n observations where scored low in the Bayesian net-
work because they were having maximum patterns of two
qualitative rules we pointed above. However, by structur-
ing these anomalous instances in individual probabilistic
terms we can observe these anomalous patterns. Such rep-
resentation not only indicates search methodology of our
technique but also gives understanding on data in general.

Graphs in Figure 8(a) and Figure 8(b) represents pat-
tern of top outlier in terms of conditional probabili-
ties(confidence) and prior(support) which together consti-
tutes joint probability in the Bayesian network. The graphs
in Figure 8(a) and 8(b) are for datasets ChestClinic and Di-
abetes respectively. We chose datasets with minimum num-
ber of attributes so that analysis through graph can easily
be explained. The attribute names are represented by tak-
ing initials as represented in the respective Bayesian net-
work. The X-axis of the graph represents attributes and
Y-axis represents support of parent node in bars and con-
fidence in child node through trend line. Here, support of
the parent node is defined using Eq.3. For graph in Fig-
ure 8(a), first six attributes are child node whereas, rest two
are independent nodes. Referring to Figure 7(a) and first
bar in graph of the Figure 8(a) indicates, support in parent
node Visit to Asia is nearly zero, but confidence in direct
child(Tuberculosis) of this parent node (Visit to Asia) is
above 95% which is quite high as represented by the point
on the trend line just above the bar.

More than one bar at the same position represents num-
ber of parents linked with that child. Like, child node
Cancer has two parents namely Tuberculosis and Lung-
cancer and hence shown by two different support bars in
fourth term. Trend shown in Figure 8(a) specifies sub-
spaces which define outlier. Terms first, second, fifth and
sixth were uncovered by the qualitative rules. Not only out-
lying subspaces are visible but normal subspaces can also
be interpreted by the observing the graph. Subspace Tuber-
culosis, Lungcancer and Cancer is example of high support
and high confidence and hence is normal. Similar explana-
tion can be followed for the graph in Figure 8(b).

4.7.2 What Nearest neighbor technique follows ?

The major difference between Nearest neighbor and
Bayesian approach can be summarized as follows: distance
based technique treats every attribute of the domain uni-
formly whereas, for the Bayesian approach, treatment with
attributes depends upon relationship among attributes. Any
distance based approach will find a pair wise distance be-
tween two objects and will declare an object to an outlier
which is far away from k nearest neighbors. Intuitively,
it implies that an object declared as an outlier does not
have enough support by the nearest neighbors, so, is iso-
lated and far away from the dense area. Contrary to this,
a dense cluster is formed by those data points which has
similar support from the nearest neighbors which is the rea-
son they satisfy condition of k nearest neighbor and hence
are normal. Thus distance based approaches look for those
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Figure 8: (a) Pattern of top BN outlier in the ChestClinic dataset. The bars represent support of the parent attribute(s)
and conditional probability in a child node is represented by the trend line. Terms first, second, fifth and sixth were
uncovered by the qualitative rules.(b) Pattern of top BN outlier in the Diabetes dataset. Terms first, second and fifth were
uncovered by the qualitative rules.(c) Pattern of top and nth NN outlier in the ChestClinic dataset. The bars represents
minimum and maximum support of the attribute in the Bayesian network and two trend lines represents NN’s top and nth

outliers respectively. Top outlier(indicated by yellow line) has six attributes with low support whereas, nth outlier(indicated
by black line) has five attributes with low support.(d) Pattern of top and nth NN outlier in the Diabetes dataset. Top
outlier(indicated by yellow line) has five attributes with low support whereas, nth outlier(indicated by black line) has three
attributes with low support.

data points where maximum number of attributes have low
support. On the other hand, Bayesian approach considers
both conditional probability(confidence) and unconditional
probability(support) in order to discern between abnormal-
ity and normality.

Analysis on two datasets namely ChestClinic and Di-
abetes are shown using graphs in Figure 8(c) and Figure
8(d) respectively. Due to the limitation of space we could
not present analysis on every dataset. The X-axis repre-
sents attributes of the domain and Y-axis represents sup-
port of the attributes. Two bars on every attribute of X-axis
represents minimum and maximum support attribute has in
the Bayesian network. Minimum support of the attribute
follows Eq.2 and maximum support of an attribute in the
Bayesian network is represented by Eq.7. Where X stands
for any parent node in the Bayesian network and xi refers
to any state of this node.

maxsupp(X) = maxi(support(Xi)) (7)

In addition, two trend line reveal the pattern of top
and nth outlier discovered by distance based technique.
Interestingly, top outlier has six attributes with low sup-
port(indicated by yellow trend line) whereas, for nth out-

lier, five attributes have low support(indicated by black
trend line) for the ChestClinic dataset as represented by the
graph in Figure 8(c). Similar pattern is observed in Figure
8(d). For few datasets we found, distance based outliers
chose those data points as outliers where support of few at-
tribute is near to minimum support if not minimum support
exactly.

4.7.3 Why distance based outlier is not an outlier in
Bayesian network ?

To answer this question, we simply took an outlier discov-
ered by distance based technique and analyzed pattern of
this outlier from Bayesian perspective. As discussed above,
for Bayesian approach, any data point will be an outlier
which satisfies two quantitative rules. If any data point
scores high probability in Bayesian network it is simply
because that data point does not have any anomalous pat-
tern. Graph in Figure 9 represents a data point which is
abnormal by the definition of distance based technique but
normal from domain’s standpoint. We took example out-
lier from Breast cancer dataset where precision of distance
based technique is very low. Graph in Figure 9, represents
patterns which either are example of high support and high



confidence or low support and low confidence and hence
normal from the Bayesian viewpoint.
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Figure 9: Pattern of NN nth outlier in the Breast cancer
dataset which is not an outlier in domains perspective. The
bars represent support of the parent attributes and condi-
tional probability in the child attribute is represented by the
trend line. All patterns are either example of high support
and high confidence or low support and low confidence.

5 Conclusion and future scope of work
In this paper we have introduced an approach to find mean-
ingful outliers using domain knowledge captured by the
Bayesian network. We propose outliers are unlikely events
under the current favored theory of the domain. By struc-
turing domain knowledge in Bayesian framework, anoma-
lous patterns were uncovered using two quantitative rules.
Instances were ranked based on the score of the joint prob-
ability distribution in the Bayesian network.

We presented the explanation on subspaces which de-
fines outlier. Such explanation contributes to a new, vi-
tal knowledge for the domain. Our approach illustrated
why distance based technique fails to discover true out-
liers in mere support-based mining framework as compared
to our approach which works in support and confidence
based mining framework. Netica[1], a powerful applica-
tion for Bayesian networks was integrated with our algo-
rithm through its Java API(NeticaJ).

As for future work, we intend to work on high dimen-
sional datasets. We also plan to apply our techniques to a
specific domain and work with specialists in the domain to
help uncover potentially useful anomalies.
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