
From Model Extraction to Model-based Reuse of
Enterprise Documents

Biplav Srivastava, Debdoot Mukherjee, Rema Ananthanarayanan, Vibha Sinha

IBM Research - India
New Delhi, India

{sbiplav,debdomuk,arema,vibha.sinha}@in.ibm.com

Abstract

The challenge in building software applications in ser-
vices is that they should be readily adaptable to cus-
tomers’ needs. The Model-driven Architecture and
Design approach promises to address this if the model,
i.e., a formalization of domain concepts and their inter-
relationships, is given. However, building a domain
model from scratch is time-consuming and cumber-
some. An appealing approach is to bootstrap model
acquisition by learning a probable model from sec-
ondary data sources like design documentation or web.
In this paper, we propose a semi-automated approach
to discover an information model, comprising of enti-
ties and relationships, by mining documentation about
a particular domain as captured in Word documents.
The approach was validated by both comparing it with
manually created models in one controlled setting and
by verifying with experts in another setting and was
found to be accurate, efficient and useful for building
applications for SAP engagements. The approach is
especially invaluable in large service engagements sit-
uations where no single expert knows the full domain
to give the model or the model changes with customers
and time.

1 Introduction

To build high-quality information systems, the trend
today is to use Model-driven Architecture and Design
(MDA/MDD) where-in concepts of the domain are
captured as models and used at every stage of devel-
opment to keep the system implementation on track.
In services, for software applications that need to be
built during engagements to meet customer require-
ments, the domain includes both customer dependent
and customer-independent concepts (e.g., industry-
specific). Furthermore, apart from model changing
with each customer, no single expert may know the
full domain to specify it upfront.

International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8–10, 2010
c©Computer Society of India, 2010

However it is well known that building the mod-
els from scratch is time-consuming and cumbersome[9,
19]. The bottleneck issue is the availability of quali-
fied domain experts. In services settings, it is quite
common to have large development projects spread
across multiple locations and spanning months and
many teams. Different teams are engaged in com-
plementary activities for the project and create dif-
ferent types of documentation as their output. Over
time, the participants become experts in the domain
concepts corresponding to the activities they were en-
gaged in. But for a complicated domain, no single
person may be the authoritative expert.

An example of such a domain is the the multi-
year business transformation projects using SAP’s
packaged applications (called SAP project, for short).
These projects involve hundreds of consultants and at
least 12 types of documents are created during design
dealing all the way from process description to data
conversions and testing1. No single expert knows the
global model of SAP projects while its sub-models are
evidenced in the different document types. The au-
thors worked with SAP business consultants (domain
experts) to create a sub-model for SAP customization
domain that reflected information captured in two doc-
ument types. The sub-model took 2 weeks to build by
interviewing subject matter experts, browsing through
project documents and having different experts nego-
tiate to build a consensus; and then many months to
stabilize. Figure 1 shows a fragment of the model pro-
vided by the experts. The prohibitive effort in extend-
ing this partial model to information in other docu-
ment types was the main motivation for this work.

An appealing approach to bootstrap the model ac-
quisition gap is to learn the model from secondary data
sources like web[5] or design diagrams[8]. However,
the authors are not aware of any approach to learn

1Document types used in paper (total 12): Process Description Documents

(PD), Business Process Procedure (BP), Test Conversions (TC), Interface Defi-

nitions (ID), Technical Design (TD), Enhancement Design (ED), Data Conver-

sions (DC), Function Specification (FS), Create (CR), Define (DE), Execute

(EX), Contracts (CO)



models from enterprise documents that are created by
word processors and where the domain model is frag-
mented into sub-models as reflected in the different
document types. We fill this gap with a method that
automatically harvests documents to separate content
from presentation, identifies candidate sub-model ele-
ments within a document type and relationships across
document types, consolidates and learns the aggre-
gated (global) model of the domain; and has well-
defined manual review steps to make domain-specific
decisions. The approach was validated by both com-
paring it with manually created models in one con-
trolled setting and by verifying with experts in another
setting. It was evaluated on different types of docu-
mentation created in SAP projects and it was found
to be accurate (up to 77% output concepts matched
that by experts, rest are new concepts) and efficient
(completed in less than 3 hours for under 100 docu-
ments and up to 10 document types). The approach
is especially invaluable in situations where no single
expert knows the full domain to give the model or the
model changes with time. Finally, we also show that
the created models realize their potential usage.

Our contributions in the paper are that we: (1)
propose unstructured formatted enterprise documents
as a source of model, (2) provide method for learning
sub-models from document types and then aggregating
sub-models across document types, (3) demonstrate
the accuracy and efficiency of the approach, and (4)
demonstrate the usage of learned model. In the re-
mainder of the paper, we give preliminaries describing
the terminology used, motivation and related work;
then present the problem and the solution, followed
by experiments demonstrating the benefits of the ap-
proach. Next we show the usage of the learned models
and conclude with pointers to future work.

2 Preliminaries & Related Work

Document: A document captures the output of a
specific activity of interest in a domain. At its sim-
plest, a document is a collection of plain text with
some formatting information for the text. In addition,
the document can contain objects such as diagrams
(e.g., entity-relation) and multi-media objects.
Semi-structured document: A semi-structured
document is a type of document whose content is op-
tionally structured with formatting constructs (like
document title, section headings and appendix). Word
processors allow complicated visual formatting as
well[18]. A semi-structured document can be repre-
sented in XML format. All documents we consider in
the paper are semi-structured documents.
Document Type (Category): A document type
documents the output of a type of sub-activity of in-
terest in the domain.

In enterprises, team-based document creation is
wide-spread. Such documents typically start from

Figure 1: Fragment of a model specified by an expert.
We refer to this later as M∗

PD−BP .

mandated templates but end up with rich variance.
Melnik[12] defines two types of metadata: control
metadata which is used to structure the sub-parts of
documents regardless of their content and guide meta-
data which are used to structure the content recorded
in the document. A project template is made up of
control metadata like document title, approver list,
table-of-content and appendix.
Example: Consider the domain of telecommuni-
cations. An enterprise may be engaged in software
development for this domain and generates different
documents. During software development for telecom-
munications, acceptance test specifications is a specific
type of document that specifies the checks needed to
prove that the software meets the stated requirements.
It is made up of guide metadata like preconditions,
test-path, success-criteria and coverage; and this type
of metadata will vary from one document type to an-
other. The set of documents during software devel-
opment for telecommunication is recorded by a set of
documents, D, made up of documents, di. Each docu-
ment is of a particular type, tj , corresponding to some
sub-activity in the domain (e.g., acceptance testing).
Hence, the set D is also {≺ Dj , tj �} where Dj = {
di s.t. type(di) = tj}. In the domain of SAP projects,
there at at least 12 document types (tj).
Related Work: Our effort to fill the model ac-
quisition gap has overlap with the areas of wrapper
induction, ontology creation and integration. Auto-
mated wrapper induction is a related problem that
has also been well studied [4],[17] to identify template
patterns and extract information from the web. The
prior work does not consider enterprise documents as a
source with their complexities of unrestricted format-
ting, object embedding and unstructured text.

Ontology techniques have been considered for ex-
tracting and integrating schemas. In [6], the authors



describe a conceptual modeling approach for data ex-
traction from the web where ontology is used to de-
scribe the data of interest, including relationships and
lexical appearance. Output from parsing the ontology
is used to recognize and extract data from unstruc-
tured text. In our context, the output models can be
considered as an ontology while the input is from en-
terprise documents.

The direction that we are looking at is best captured
in literature under the head of Information Extraction
from Semi-structured data (SSD). A good survey for
information extraction techniques is [16]. Our work
is unique in the type of input (formatted structured
documents created by word processors) and the variety
of document types considered.

3 Problem

We are given a document collection D and each of its
document di belongs to a document type tj . A docu-
ment type has associated with it, explicitly or implic-
itly, a set of concepts C.
Concept: A concept is a term or phrase that denotes
some meaningful information in the domain of inter-
est. Concepts are linked to each other through rela-
tionships.
Relationship: A relationship denotes how concepts
are related to one another.
Model: A model is a representation of a collection
of concepts and relationships between them. The con-
cepts are formally represented as models (M), a graph-
ical representation, where nodes (Mn) represent con-
cepts and edges Me represent relationships between
nodes.

Now, each document type ti records a fragment of
the global model M, represented Mti . Further, M ⊇⋃

i Mti
, since all available document types may still not

record the global model. We loosely call the aggregate
of all the sub-models as the global model since the only
evidence of the domain is from the available document
types. Figure 1 shows an example of a model provided
by an expert. Our aim is to learn such models from
documents.

Putting precisely, given a set of documents from
some domain, our goals are: (1) find the sub-models
Mtj

corresponding to each document type tj , (2) find
the aggregate model M .

4 Solution

Our approach for solving the problem needs to handle
the noise and variability of the individual documents,
the fragmentation of domain model as evidenced in
different document types, and the need to have a user
review, enhance and work productively with the re-
sulting model. The proposed approach is summarized
in Figure 2 and explained further in the section.

In steps 1-3, we first identify model elements that
may have been used to structure the documents (i.e.,
control metadata or template concepts). Such elements
are organization or project specific and do not reflect
any domain concept. Next, in steps 4-6, domain model
elements (domain concepts) are discovered on the com-
plete document pool. This has the potential to over-
come the noise of individual documents and focus on
candidate concepts from the global model as well as
sub-models of individual document types. The can-
didate concepts are characterized by high support in
the corresponding document collection. In steps 7-8,
now detailed relationships (links) are learned from in-
dividual documents of each document type, but only
for candidate concepts. In Step 9, the sub-models are
merged and finally, in step 10, it is output in any suit-
able representation.

4.1 Learning Concepts

Figure 3 gives the method we use to find the potential
model elements in a pool of documents of potentially
different document types. The method first parses
the documents to identify demarcating text fragments
(pre-processing, lines 1-7) and then looks at their sta-
tistical significance to determine if a fragment is a po-
tential model element (main steps, lines 1-3). The
method builds on the document harvesting techniques
of [18].

Algorithm: LearnModel
Inputs: A set of documents D with subsets Di

of type ti: {≺ Di, ti �}
Output: A model

Main Steps:
1. Run Concept-Learner on D, with raised

thresholds, to find template concepts
2. Manually review output
3. Remove template concepts (add in stop list)
4. Re-run Concept-Learner on D, with reduced

thresholds, to find likely concepts
5. Manually review output
6. Run Concept-Doctype-Refiner, to find likely

concepts per document type
7. Run Linkage-Learner, to find linkage/

relationships across document types
8. Consolidate concepts and relationship links
9. Manually review learnt links
10. Output learnt model in requested format

Figure 2: Pseudo-code of Model Learning.

Algorithm: Concept-Learner
Inputs: 1. A set of documents D

2. LOW and HIGH thresholds
Output: A set of concepts, M

Processing for each document di in D:
1. (MS Word specific) Convert di to XML representation
2. Parse di
3. Group characters along word boundaries
4. Group words along paragraph (formatting) boundaries
5. Record paragraphs
6. Remove non-textual and non-formatting content
7. Identify possible concepts at paragraph boundaries

Main Steps on document pool, D
1. Collect the list of concepts in the pool and

their frequency
2. Establish thresholds to establish segments that

are neither rare (LOW) nor overly abundant (HIGH)
3. Filter and return concepts that are within the thresholds

Figure 3: Pseudo-code of Concept Learner

Algorithm Concept-Learner works on the complete
document pool and produces overall candidate con-



cepts for the domain. Depending on the thresholds,
it can be used to find concepts at a particular level of
support in the document pool, and we run it separately
to find control and guide metadata (concepts).

In Algorithm Concept-DocType-Refiner (Figure 4),
the candidate concepts are used to find sub-models by
document types (Lines 1-3) and their co-occurrence in
each document type (Lines 4-7). The latter is only in-
formation about direct links between model elements.

Algorithm: Concept-DocType-Refiner
Inputs: 1. A set of concepts C,

2. D = {≺ Di, ti �} (Document subsets and
doc types)

Output: 1. C = {≺ Ci, ti �} (Set of concepts per
doc type)

2. Lc = {≺ ci

Tk→ cj �} (Set of co-occuring
concepts and associated document types)

1. For each ti

2. Ci =
⋃

j
cdj

, dj in Di

3. C =
⋃

j
Ci

4. For each di
5. For each co-occurring concept pair, cm

and cn in cdi

6. Lc

⋃
= {≺ cm

{tdi
}

→ cn �}
7. Consolidate Lc for elements with same concept pairs

Figure 4: Pseudo-code of Concept DocType Refiner

4.2 Learning Relationships

In order to find deeper links between model elements,
we turn to algorithm Link-Learner in Figure 5. Here,
in Steps 1-3, processing happens iteratively on each
document of a document type to extract its hierarchi-
cal structure made up of content containers (e.g., para-
graphs, tables) and their tree-based ordering. Then,
the content of all the documents are merged around
the trees’ hierarchical structure. Now in Steps 4-5,
the tree is searched for all adjacent container pairs
(4a) and they are used to infer directed relationships
between model elements. If the links are between can-
didate concepts, they are considered (4b), otherwise
ignored. Finally in Step 6, all transitive relationships
among included links are deduced.

Algorithm: Link-Learner
Inputs: 1. A set of documents Di of type ti

2. Candidate concepts, C
Output: L = {≺ cs, cd � (Set of pair of links

from source to destination concepts)
1. For each document di
2. pi = Parse di’s hierarchical structure

3. P = Merge(
⋃

pi)

4. For each container pairs in P , cm and cn,
where (a) cn is a child of cm
and (b) cm, cn ∈ C

5. L
⋃

= {≺ cm → cn �}
6. Transitively, find all relationships in L

Figure 5: Pseudo-code of Link Learner

In addition to learning the links, we can also distin-
guish their different types:
Containment: The Link Learner algorithm as shown
in Figure 5 learns only containment relationships be-
tween concepts, ci ∈ C. Containment stems from two
types of formatting elements: Section and Table. A

section may contain lists, paragraphs, tables and other
sections. A concept captured in a section heading is
deemed to contain concepts, which are encapsulated
by formatting units contained in the section. Simi-
larly, a concept represented at the level of a table row
is said to contain concepts listed at each of the cells.
Co-occurrence: The links output by Concept DocType
Refiner capture co-occurrence among concepts. Fur-
thermore, in the graph produced by Link Learner, con-
cepts that are siblings are said to co-occur. For exam-
ple, concepts in different paragraphs of the same sec-
tion co-occur with each other; concepts in the various
columns of a table co-occur, etc.
Similarity: If two nodes in the learnt graph have iden-
tical (or nearly identical) sub-trees rooted at them but
the concept names discovered for them differ, then the
concepts are marked as similar. Later, users may man-
ually collapse similar nodes in the model graph if they
indeed refer to the same concept.

The set of concepts Mn and qualified linkages Me

can help us to meaningfully index the content to drive
applications such as semantic search. However, in or-
der to create an E-R diagram and bootstrap a rela-
tional database, we need to do the following:
Differentiate between entities and attributes: As a sim-
ple rule, we may treat all concept nodes with only one
incoming link to be attributes and other concepts to
be entities. However, manual review and correction is
necessary to such a distinction precisely.
Define cardinalities on relationships: Formatting cues
can help us infer cardinalities to a large extent. For
example, if a concept B is represented as a bulleted
or numbered list, which is present in a section host-
ing concept A, then the link from A to B is said to
have a cardinality of 1 : n because many items of B
may be contained in a single A. On the other hand,
if B is captured as a paragraph inside section A, then
Cardinality(A→ B) will be 1 : n, unless we find mul-
tiple instances of such paragraphs inside the section.
Similarly, a concept underlying a section has a cardi-
nality 1:n with a concept emergent in a table contained
in the section. Cardinalities of the nature n:n are only
be defined when we aggregate across sub-models.

4.3 Aggregating Sub-Models

As a result of Concept Learner, one can learn the
concepts in the aggregated (global) model across all
the document types. However, since Link Learner
runs separately on each document type, we learn sub-
models corresponding to each document type. In order
to learn the overall model, we need to aggregate links
across the sub-models.

We make the assumption that concept names are
unique and unambiguous in the domain of discourse.
Hence, links across all the document types can be sim-
ply collected together to get the full inter-relationships
for domain concepts. The global model can be cre-



ated by selecting concepts and links from different sub-
routines, Concept Learner, Link Learner, Concept-
DocType-Refiner or a combination, following differ-
ent strategies depending on the level of human review
available on the output. In experiment section (Fig-
ure 8), we show the relative statistics for learnt con-
cepts and links. Some examples of the strategy are be-
low. We used the conservative strategy in the results
wherein only concepts that were common in the out-
put of all sub-routines is output, and the links are only
for these concepts as returned by Link Learner. In the
moderate strategy, no concept from Concept Learner
is dropped while in aggressive strategy, all links found
Concept Learner are also returned.
Conservative Strategy:

Mglobal =

(M
ConceptLearner
n

⋂
(
⋃

ti
MLinkLearner

n ),⋃
ti

MLinkLearner
e ) (1)

Moderate Strategy:

Mglobal = (MConceptLearner
n ,

⋃
ti

MLinkLearner
e ) (2)

Aggressive Strategy:

Mglobal =

(M
ConceptLearner
n ,

(MConceptDocTypeRefiner
e

⋃
(
⋃
ti

MLinkLearner
e )))

(3)

4.4 Nature of Manual Review

Algorithm Learn-Model has built in steps for manual
review. We now comment on the type of judgment
done at each step.
Step 2: One validates control metadata that is used to
structure content regardless of content. They can be
considered as document template concepts.
Step 5: One identifies concepts that need to be sup-
pressed because either they are sensitive (e.g., for
client documents) or frivolous (e.g., text used to for-
mat document).
Step 9: One decides whether to allow concepts to have
self-loops or not; characterizes the type of links; re-
solves incorrect links which are possible if unique name
assumption does not hold.

In addition, the raised and reduced threshold used in
Concept Learner needs human judgment but it did not
seem to have an impact across the datasets considered.
Finally, the aggregation strategy is decided for step 8
but the consideration is the time experts can spend to
review the output.

4.5 Representation of Output

As noted in Section 3, the output models M is a graph
with nodes (Mn) representing concepts and edges (Me)
representing relationships between nodes. The edges

can be undirected (e.g., in the case of co-occurrence) or
directed (e.g., output of Link-Learner). We present M
as a graph but can convert it into any representation
depending on usage. In Section 6, a software modeling
representation (EMF2) will be discussed.

5 Experiment
We conducted experiments to evaluate the quality of
learned models, the practicality of the approach and
application scenarios where the techniques could be
relevant. In the following sub-sections, we discuss the
data sets used, then report on the accuracy of the
learn models, the practicality of the approach, and its
suitability for scenarios like new model discovery and
model evolution.

5.1 Data Sets and Experimental Settings
We had a rich data-set of documents created during
blue-printing stage of SAP projects from multiple cus-
tomers. Recall that there are at least 12 document
types in this domain. The data-sets in the experiments
are summarized below:
DS1 : A collection of 96 Word documents made up of

55 PD and 41 BP documents. The files came from dif-
ferent client projects and had been manually cleansed
to remove client- and project-specific, non-reusable,
details.
DS2 : A collection of 10 Word documents of type PD

derived from a client project.
DS3 : A collection of 98 Word documents randomly

made up of types - TC(36), ID(15), TD(13), ED(2),
DC(16), FS(1), CR(4), DE(4), EX(6), CO(1).

In addition, we had access to a SAP sub-model cre-
ated by experts corresponding to the information cap-
tured in PD and BP document types. We will re-
fer to it by M∗

PD−BP and a fragment of it is shown
in Figure 1. Now, we can perform experiments in
broadly two settings: one where model from expert(s),
M∗

PD−BP , is already available and hence, the learned
model can be compared with them to establish the
former’s quality, and the second where no model is
available. In the second case, the learned models can
only be reviewed by experts.

5.2 Accuracy of Learned Models
5.2.1 Comparing Learned Model with Known

Model
To determine the accuracy of the learned models, we
ran algorithm Learn-Model through DS1 and DS2, and
compared the output with M∗

PD−BP . Figures 6 and 7
show the learned models on DS1 and DS2, respectively.
We observe that the output models are a collection of
sub-graphs containing directed edges and sometimes
cycles.

In Figure 8 the statistics of key sub-routines of
Learn-Model are shown. In the results for Concept-
Learner, the links found by Concept-Doctype-Refiner

2http://www.eclipse.org/emf/



Figure 6: The model MDS1 learned for DS1.

Figure 7: The model MDS2 learned for DS2.

are included; in Link-Learner results, the learned con-
cepts are not required to be common with the candi-
date concepts, C (hence condition 4(b) is disabled); in
CL+LL results, the candidate concepts are required to
be in C (hence condition 4(b) of Figure 5 is enabled).
We observe that the nodes and edges in the model
learned by CL+LL are conservative and that is what
we produce as the output of Learn-Model3.

In Table 1, the learned models are compared with
M∗

PD−BP . We find that 77% of learned concepts from
DS1 and 63% from DS2 match those in M∗

PD−BP . The
remainder of 23% concepts in DS1 and 37% from DS2
are new concepts that were not provided my experts
in M∗

PD−BP , and should be included. Due to manual
review steps in Learn-Model, no spurious concepts were
present in the output. The output links (for matching
concepts) were in agreement with those by experts.

5.2.2 Learning Unknown Model
We now consider the case of DS3 where no reference
model was available for comparison. Figure 9 shows
the output of Learn-Model on DS3. Here, the out-

3Another possibility is that along with output of CL+LL,
concepts returned by Concept-Learner are returned so that the
expert can use it as a reference (Model Strategy). These con-
cepts had high support across the data-set but relationships were
not found.

Figure 8: Comparing Accuracy across Data-Sets.
CL+LL represents the conservative strategy.

#Concepts M∗
P D−BP

MDS1 MDS2
46 30 43

#Matches (MDS1, (MDS2, (MD21,
(New Learned) M∗

P D−BP
) M∗

P D−BP
) MDS1)

23 (7) 27 (16) 7 (36)
%New 23% 37% 84%

Table 1: Comparing Different Models.

put model is built by processing on 10 different doc-
ument types (sub-models) and hence, the resulting
graph gives deep insights about the information cap-
tured in the corresponding documents.

This model was shown to a subject matter expert
to evaluate. It was found that the concepts are all
meaningful while the relationships are valid.

5.3 Practicality of Learning Models
We now check if the presented work can help users
build model for a new domain efficiently when only
documents are available. For reference, we knew that
M∗

PD−BP took more than 2 weeks to build by in-
terviewing subject matter experts, browsing through
project documents and having different experts nego-
tiate to build a consensus, and then many months to
stabilize.

Table 2 reports the time taken to build the mod-
els with Learn-Model. We see that although there is
wide diversity in the characteristics of the datasets (#
documents types, # documents), the overall process is
reasonably fast. The maximum time it took was less
than 3 hours with 10 different document types (sub-
models) and under 100 documents.

We also experimented with the number of docu-
ments needed to learn a good sub-model corresponding
to a document type. We found that the number varies
with dataset depending on how consistent the data in
the documents are, but 5 is usually a good choice4.

5.4 Discussion
Based on the experiments above, we found that the
approach leads to learning of accurate models in rea-
sonable time. This can be helpful in scenarios like
DS3 where there was no model in the beginning. The
output, MDS3 can be presented to experts who can
enhance it rather than start from scratch.

Another scenario where the approach will be help-
ful is in detecting the evolution of models. Over time,

4However, sometimes even 5 documents of a type may not
be available as in DS3.



Figure 9: The model MDS3 learned for DS3.

Approach Step DS1 DS2 DS3
Docs: 96 Docs: 10 Docs: 98

Step 1 48 6 49
Step 2 2 2 4
Step 3 1 1 2
Step 4 48 6 49
Step 5 2 1 10
Step 6 1 1 1
Step 7 24 3 25
Step 8 1 1 1
Step 9 2 1 10
Step 10 1 1 1

Total 130 23 152

Table 2: Time (in mins) Spent in Different Steps.
Steps 1 and 4 take 30secs/doc while Step 8 takes 15
secs/ doc.

all models change. In the context of SAP projects, the
information captured on a project changes with ev-
ery new project. Service providers, who do numerous
projects over time, want to detect the changes so that
they can know changing industry trends and client
preferences. In our setting, DS2 is a client project
which may capture different information (leading to
new model) that what the service provider prescribes
in DS1. The third column in Table 1 shows this. We
find that in DS2, 84% more concepts are created over
DS1. Any service provider, who only had MDS1, would
want to incorporate these changes.

6 Usage of Learned Model

We now show how the learned model can be used to
generate software applications using MDA principles
in services setting and the benefits. Often, informa-
tion in enterprises get siloed in documents with un-
structured formats such as MS Word and Excel. This
leads to the disadvantage that once individual mean-
ingful categories of information are collated into a sin-
gle document, it is difficult to distinguish them indi-
vidually at a later time. For example, if we consider a
PD document, then it is difficult to identify automat-
ically that it actually contains information on process
description and process steps.

Our presented method helps extract the informa-
tion model from a collection of enterprise documents.
The information model identifies the key information
concepts of a domain as inferred from the documents

Figure 10: Learned model expressed in EMF.

and the relationship between different concepts. Exis-
tence of this information model is a pre-requisite to be
able to capture and store structured data. We store
the inferred information model as a EMF model, a
popular modeling notation. Figure 10 shows an ex-
tract of the inferred model definition in EMF.

Using the EMF model, we automatically generate a
user interface using which the users can enter informa-
tion. For each concept, we generate an editor. Each
editor has a list of sections corresponding to each con-
cept it can be linked to. There is a single section for all
simple properties of the concept. Rich text sections are
used for those properties of the concept that allow for
formatted text. Using the editor user can create a new
concept. Using the individual sections, the concept
instance can be linked to other concepts. Figure 11
shows an example of generated editor for BP. There
is an ”Attributes” section where information on BP
name and menuPath can be entered. There are rich
text sections for ”Results/Outputs” and ”Screen” as
these are properties of BP (see inferred model in Fig-
ure 10) that allow formatted content. There is a sec-
tion called ”Process” that allows users to link instances
to BP to Process. Once users have entered information
in these editors, the information is already captured in
a structured format. Additionally, we provide a util-
ity that can pull content from this structured model
and generate a corresponding document version for the
same. Figure 11 shows the generated word-based BP
document.

7 Conclusion and Future Work

We have presented an approach on learning sub-
models and the global model from different semi-
structured document types in the enterprise domain.
Our system performs well in terms of accuracy of ex-
tracting concepts, discovering new concepts not explic-
itly mentioned in the initial templates and in terms of
performance time. While our tests are on SAP project



Figure 11: Editor generated from learned model in
EMF.

documentation, all the steps are generic and would fit
in the scope for any enterprise project documentation,
where the documents are of a semi-structured nature
and at least implicitly have an underlying model. We
believe this is one of the first works in this area to
tackle this problem with high potential impact.

One can extend the work along many lines. First,
we made the unique name assumption for concept
names and this needs to be relaxed. Second, a detailed
study is needed on the relative trade-off between differ-
ent sub-model aggregation strategies. Third, further
investigation is needed on what type of links can be
learned or distinguished. Fourth, the approach needs
to be tested on datasets from other domains. Finally,
it may be possible to reduce the manual review steps
further.

References

[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura,
H. Sakamoto, and S. Arikawa. Efficient substructure
discovery from large semi-structured data. In R. L.
Grossman, J. Han, V. Kumar, H. Mannila, R. Mot-
wani, R. L. Grossman, J. Han, V. Kumar, H. Mannila,
and R. Motwani, editors, SDM. SIAM, 2002.

[2] J. Biskup and D. W. Embley. Extracting information
from heterogeneous information sources using onto-
logically specified target views. In Information Sys-
tems, volume 28, pages 169–212, 2003.

[3] G. Cong, L. Yi, B. Liu, and K. Wang. Discovering fre-
quent substructures from hierarchical semi-structured
data. In In Proc. of the 2nd SIAM International Con-
ference on Data Mining (SDM), pages 175–192, 2002.

[4] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrun-
ner: Towards automatic data extraction from large
web sites. In VLDB, 2001.

[5] H. Davalcu, S. Vadrevu, S.Nagarajan, and I. V. Ra-
makrishnan. Ontominer: bootstrapping and popu-
lating ontologies from domain-specific web sites. In
IEEE Intell. Sys., Vol: 18, Iss: 5, 24-33, 2003.

[6] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W.
Liddle, Y.-K. Ng, D. Quass, and R. D. Smith. A con-
ceptual modeling approach to extracting data from
the web. In Proc. 17th Concept. Model., 1998.

[7] E. Hovy. Using an ontology to simplify data access.
In Communications of the ACM, volume 46, pages
47–49, 2003.

[8] K. Kannan and B. Srivastava. Promoting reuse via ex-
traction of domain concepts and service abstractions
from design diagrams. In Proc. SCC, 2008.

[9] V. Kashyap and A. Sheth. Semantic heterogeneity
in global information systems: The role of metadata,
context and ontologies. In Cooperative Information
Systems: Current Trends and Directions, 1996.

[10] J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and
P. Shenoy. Corpus-based schema matching. In Work-
shop on Information Integration on the Web, 2003.

[11] I. R. Mansuri and S. Sarawagi. Integrating unstruc-
tured data into relational databases. In Proceedings
of ICDE, 2006.

[12] S. Melnik. Generic model management: Concepts and
algorithms. In Springer, ISBN: 3540219803, 2004.

[13] T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida,
K. Takahashi, and H. Ueda. Discovery of frequent
tag tree patterns in semistructured web documents.
In PAKDD ’02: Proceedings of the 6th Pacific-Asia
Conference on Advances in Knowledge Discovery and
Data Mining, pages 341–355, London, UK, 2002.
Springer-Verlag.

[14] S. Nijssen and J. N. Kok. Efficient discovery of fre-
quent unordered trees. In Proceedings of the First In-
ternational Workshop on Mining Graphs, Trees and
Sequences (MGTS), 2003.

[15] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. In The VLDB Journal,
2001.

[16] S. Sarawagi. Information extaction. In Foundations
and Trends in Databases, Vol. 1, No. 3, Pg. 261 to
377, 2007.

[17] S. Soderland. Learning information extraction rules
for semi-structured and free text. In Machine Learn-
ing Journal, 1999.

[18] B. Srivastava and Y. Chang. Business insight from
collection of unstructured formatted documents with
ibm content harvester. In ACM Intl. Conf. Mgmt. of
Data (COMAD), Mysore, India, 2009.

[19] V. C. Storey, R. Chiang, and G. L. Chen. Ontology
creation: Extraction of domain knowledge from web
documents. In Conceptual Modeling - ER, 2005.

[20] H. Vache, T. Vogele, , U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann, and S. Hubner. Ontology-
based integration of information - a survey of existing
approaches. 2001.

[21] K. Wang and H. Liu. Discovering structural asso-
ciation of semistructured data. IEEE Transactions
on Knowledge and Data Engineering, 12(3):353–371,
2000.

[22] M. J. Zaki. Efficiently mining frequent trees in a for-
est: Algorithms and applications. In IEEE Trans-
action on Knowledge and Data Engineering, pages
1021–1035, 2005.

[23] Y. Zhai and B. Liu. Structured data extraction
from the web based on partial tree alignment. IEEE
Transactions on Knowledge and Data Engineering,
18(12):1614–1628, 2006.


