A Robust Active Learning Framework using Itemset
based Dynamic Rule Sampling

Bhanukiran Vinzamuri
vinzamuri@research.iiit.ac.in

Vikram Pudi

vikram@iiit.ac.in

International Institute of Information Technology
Gachibowli, Hyderabad
Andhra Pradesh, India

Abstract

Active learning is a rapidly growing field of machine
learning which aims at reducing the labeling effort
of the oracle (human expert) in acquiring informa-
tive training samples in domains where the cost
of labeling is high. Associative classification is a
well established prediction method which possesses
the advantages of high accuracy and faster learning
rates in classification. In this paper, we propose a
novel algorithm which unifies associative classification
with active learning. The algorithm has two major
procedures of Rule generation and rule pruning.
The algorithm selects unlabeled instances from the
pool of available samples and uses a unique dynamic
rule sampling procedure for updating the model.
The rules are dynamically sampled class association
rules (CAR) which are generated using the mined
Minimal infrequent itemsets. The results derived
over 10 datasets from the UCI-ML repository for our
approach have been compared with those from the
ACTIVE-DECORATE algorithm. We also analyze
our sampling method against the state of art sampling
frameworks and show that our method performs
better.

1 Introduction

Active learning is a well known problem in the field of
Machine learning [18, 19]. It has been applied in ap-
plications where either the amount of unlabeled data
is voluminous or the cost of labeling is high. Few ex-
amples of such applications include video annotation,
speech recognition and information extraction. The al-
gorithm requests the human expert (oracle) for labels
of unlabeled instances and presents them as queries.
The goal of this process is to achieve high accuracy

International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8—10, 2010
© Computer Society of India, 2010

using as few labeled instances as possible. An impor-
tant feature of every active learning algorithm is the
mechanism by which the queries are chosen to be pre-
sented to the oracle. This sampling strategy directly
effects the performance of the algorithm.

Active learners differ from the traditional passive
learners in the manner through which the classifica-
tion model is built. Passive learners do not generate
queries to seek training examples to learn from like
active learners. We have depicted the basic difference
between them in Figure 1.

In the existing literature, there are many settings
for active learning [18] but mostly the pool based cy-
cle is preferred. In the pool based cycle, instances are
selected from the unlabeled data in a greedy fashion
based on their value of metric such as entropy, informa-
tion gain etc. Many sampling frameworks have been
applied in this setting such as uncertainty, random and
selective sampling [18]. Amongst all these settings here
we focus on the uncertainty sampling framework [9].
The pseudo code of this uncertainty sampling frame-
work is as shown in Algorithm 1.

In line 3 of Algorithm 1 a function has been used

Algorithm 1 Active Learning with Uncertainty Sam-
pling

Require: initial training set L and test set 7. Use L
to train the classifier C.

1: repeat

2: Use C to label the unlabeled examples in T’

3: Use uncertainty sampling to find out k& most in-
formative examples and ask oracle H to label
them

4: Augment L with these k& examples and remove
them from T

5: Use L to retrain the current classifier C

6: until predefined stopping threshold is met

to find out the most informative examples. Few of the
functions which have been used in this scenario are
the Least confidence LC utility which is based on an

m
- - -
Respon

Figure 1: Active vs Passive learners

a-posteriori probability of the most likely label for an
example. A simple approach however is to consider
the margin between the first and second best label.

A small margin implies that the decision between
the first and second best label is hard and hence such
instances are said to be ambiguous. An important ad-
vantage of uncertainty sampling is it’s low computa-
tional complexity compared to other statistical opti-
mal approaches. Empirical studies also have found
good performance for uncertainty sampling in practi-
cal use [19]. Based on this we define the Margin utility
function (MAUtility) as follows.

Definition 1 MAUtility function: Suppose that for
an example p = (x) the classification label space is Y
then the MAutility function is defined as follows

U{\JA(p, 0) = .
_(ma’XyIEY P@(y ‘.’L‘) — maxyuey P@(y |.'L'))
where y” #* y,

1.1 Associative classification

Let L = {I;,I5...1;} be a set of items. An item-
set I is a subset I C L. Suppose I is frequent and
it consists of an item X then an association rule is
defined as an implication of the form X — Y where
Y=I — X. X is called the antecedent and Y is said
to be the consequent. These rules are derived from
the frequent itemsets which are mined from categor-
ical datasets. Frequent itemset mining (FIM) algo-
rithms [23, 24] such as Apriori, FP-Growth etc can be
used to generate these rules. Associative classification
is a method which uses association rules for classifi-
cation [20]. However, in this method only those rules
are selected whose consequents are class labels. Such
rules are called Class Association Rules (CAR). The
associative classification process has been displayed in
Figure 2.

The motivation for us to use associative classifica-
tion in pool based active learning is

1. Higher accuracy and scalability values in compar-
ison to other contemporary classifiers.

2. Association rules can be easily interpreted by an
oracle because of their intuitive structure.

Training Data

Apply on testing data

FIM algorithms

Fregquent itemsets|

GenerateAR | _ |Select subset of CAR

Figure 2: Associative classification

3. Incompleteness problem: General associative
classifiers use CAR mined from FIM algorithms
for classification. The model built from such rules
is generally pretty robust and accurate at classi-
fying most of the records in the test set. However,
it is noticed that these rules are not so successful
in dealing with ambiguous records (explained in
Introduction). So this effectively states that the
knowledge acquired by the model is incomplete
and we need additional knowledge for classifying
ambiguous records correctly.

In this perspective it is observed that even in-
creasing the training data size is not a satisfactory
solution. Hence, it boils down to effectively ex-
tracting knowledge from selected samples of data
in the form of rules which can resolve the ambigu-
ities. Omne must observe that the training data
is always absolutely incomplete. However, one
can definitely work on enhancing the performance
of the classifier built on limited training samples
with respect to the ambiguous records.

The paper is structured in the following manner. In
Section 2 we discuss the basics of itemset theory and
provide the theoretical background for our approach.
In Section 3 we provide an overview of our approach
and we also cover each of the preprocessing steps and
settings associated with Step 1. In Section 4 we cover
Steps 3-6 of our algorithm along with explaining their
functionality and importance in the architecture we
have provided. Section 5 consists of our experimental
results which describe the data utilization and sam-
pling experiments. Finally, we present our conclusions
and assessments concerning the working and real time
applicability of the framework.

2 TItemset theory and MIF theorems

In the context of association rule mining (ARM), we
come across the idea of minimal infrequent itemsets.
We begin by describing the definitions and settings in
itemset theory.

Definition 2 Itemset: Let D = {t1,t2...t.} repre-
sent a collection of R records. Each record consists of
many items. Let L = {I1,I5...I;} be a set of items.
An itemset I is a subset I C L.

Output accuracy

Definition 3 Support of itemset: Given an itemset I
a record t; is said to contain I if I C t;. The support
set of an itemset I with respect to the dataset D is
D(I)={t; € D, I C t;}. The support of an itemset I
in dataset D is defined as the cardinality of the support
set of I. So Supp®(I) = |D(I)|.

Definition 4 Frequent and Infrequent itemsets: The
relative support of an itemset which is the one used in
FIM algorithms is Supp®(I)/|D|. We then define a
threshold which is called minimum support I'. Based
on the comparisons between the relative support and
minimum support we can classify itemsets as the fol-
lowing. An itemset I is

T-occurrent if |D(I)| =T.
D-frequent if |D(I)| > T.
T-infrequent if |D(I)| < T.

This kind of categorization helps us identify differ-
ent kinds of itemsets present in D. In addition to this
now let us look at the notion of minimal infrequent
itemsets.

Definition 5 Minimal infrequent itemset:We say
that an itemset I is minimal U-infrequent if I itself
is T-infrequent and all of its proper subsets are I'-
frequent.

These set of Minimal InFrequent itemsets (MIF)
have also been referred to as the negative border in the
literature. [11, 12]. Few algorithms have also been pro-
posed to mine MIF [3] in the datasets and this is a NP-
Complete problem. MIF have many utilities and have
been used to identify rare patterns in domains such
as fraud detection, informatics and risk assessment.
In our current itemset based active learning scenario
we try to exploit the information provided by MIF
to identify rare and informative patterns which could
help the active learner distinguish between classes ef-
fectively. We now provide few basic properties of MIF.
These properties will help us understand the usability
of MIF in our framework and we shall also use them
to support our algorithmic procedures later

Lemma 2.1 Rareness property: If an itemset I is an
MIF then Supp® (I) < T.

If an itemset is minimal I'-infrequent then it must
be minimal A-occurrent for some A < I'. However it
must be noted that minimal A-occurrent-c-itemset I
is not a minimal I'-infrequent for all ' > A. There
may be some (¢ — 1) subset of I with support € for
A<e<T.

This lemma proves that there must exist certain item-
sets in D for an MIF to exist. The records holding
these itemsets are called as support rows.

Theorem 2.2 Given a minimal I'-infrequent set I =
{i1,12...9c}, with Supp®?(I) = A, A < T, for each
1<j<c there must exist ' — A support rows in D con-
taining itemset I — {i;} but not item ;.

Proof Suppose for some j there e;cists fewer than I' —
A support rows in D containing I = I — {i,} but not
item i;. Then I' which exists in D(I) has Supp® (I') <
I" which implies I "is I-infrequent and hence I is not
minimal I'-infrequent.

There are many other properties of MIF [6] such as
Recursive itemset property and others but these two
properties and their related definition would be used
in the next few sections for theoretical validation and
justification.

3 Overview of our approach
3.1 Architecture

In this section, we present an overview of our algo-
rithm and the major steps involved in it. The diagram
given below in Figure 3 presents the architecture of our
algorithm. The over all data available is initially par-
titioned into two groups of train and unlabeled pool
data. The process flow of the algorithm is indicated
in the diagram. We shall briefly explain each step’s
functionality in our algorithm here

1. Step 1: This deals with building the training
model of CAR (Model) from the training data
available.

2. Step 2: This deals with applying the current
model on the unlabeled pool of samples and se-
lect instances to label based on our query frame-
work. The output obtained here are a set of newly
generated CAR which are generated based on the
instances selected.

3. Step 3: This deals with effectively adding the
CAR generated from Step 2 to the current model
(Model) and updating it. This can also be called
the actual active learning phase of our algorithm.

4. Step 4: This deals with applying the Model on
the testing data. The testing data itself is ex-
tracted from the unlabeled pool. The outputs at
this stage are the evaluation metrics of the learner
on the testing data and the validation data which
will be used later at periodic intervals. This vali-
dation data is generated over certain fixed number
of active learning samplings over the unlabeled
pool which is indicated by the multiple arrows.

5. Step 5: Once the validation data is generated
we assess the rules added in the Model through
the active learning process. This assessment is
done based on the validation data to prune some
redundant rules from the model. The output at
this stage is the Updated Model.

6. Step 6: At the beginning of the next cycle the
updated model is now used for sampling over

Training data

l Stepl

Step3 Step2

~

Updated M odel

Step4

Unlabeled pool

Step6

Step5

Testing data

Evaluation

Validation Data

Figure 3: Architecture of the AAL algorithm

the unlabeled pool and the cycle repeats from
Steps 3-5 until required number of active learning
cycles are exhausted over the pool of data.

3.2 Pre-Processing

In this subsection, we describe the preprocessing stages
associated with Step 1 of our architectural model. The
two basic stages of pre-processing here are

1. Generation of Association Rules (AR) from train-
ing data and choosing a subset of Class Associa-
tion Rules (CAR).

2. Building a preliminary associative classification
model.

3.3 Generation of CAR

First we discretize the numerical data into categorical
data using procedures which are listed in our experi-
mental setup (Section 5.1). Once the data is prepared
then we apply the Apriori algorithm [1] on the train-
ing data to derive the association rules. Later we sepa-
rate the rules and retain those which satisfy minimum
conviction [7] threshold value. We apply our prun-
ing strategy here to eliminate the redundancies in the
rules.

Superset pruning: It is known that rules with
long antecedent lengths generally contribute less to as-
sociative classification as many such specific rules tend
to make the model bulky. So such rules form a good
search space for pruning. Our pruning criterion works
as follows:

A rule is pruned if the conviction of the rule is lesser
than any of its subsets and both of them share the same
consequent.

Associative classification Model Once we have
extracted the association rules from the dataset we iso-
late the set of CAR. From these set of CAR we identify

a subset of CAR to use for classification. The crite-
rion for selection of the subset of rules is based on the
coverage.

The coverage for a rule is defined as the number of
tuples covered by the rule. A rule covers a data tuple
if the tuple satisfies the conditions on the left hand
side/antecedent of the rule. The rules finally selected
form our classification model.

4 Associative Active Learning

In this section, we look at the major procedures associ-
ated with our algorithm. This is followed by discussing
the Steps 3-6 of our architectural design in detail.

4.1 Sampling function

As with any pool based active learning scenario we
need to define our sampling function. The importance
of the sampling function chosen impacts the active
learning process tremendously. We looked at the un-
certainty sampling strategy in the introduction which
uses a function to identify the most informative exam-
ples.

Here we propose a sampling function for our cur-
rent itemset based active learning framework. Sup-
pose D = {ty,ts...t.} is a collection of R records
and the label space consists of the classes C =
{C1,C5...C,}. Suppose that after building an asso-
ciative classification model on D we obtain the model
R = {7”1,7“2. . .’I“p}.

While applying R on t, where t;, € D, let R =
{r1,72... 75} be the set of CAR which cover record t,.
This implies that all rules in R’ can be applied on t,
to predict the consequent.

Then based on the coverage of the rules in R onD
we can assign scores to the contending classes in the
predicted label space. Let S = {S7,S52...5,} be the
set of scores for the predicted label space. Based on S
we can define individual probabilities for the record ¢,

to be classified in the n classes.

n

Py(Cilty) = Si/ (D _ Si)- (1)

i=1

Based on eqn 1 we can derive the set of probabil-
ities for all n classes. Once this is done we apply the
Margin utility (MAUtility) function (1) to decide the
ambiguity of the record.

Whenever a record’s MA Utility does not satisfy the
minimum threshold, it is called an ambiguous record.
Such kinds of records are sampled and are queried for
their labels. Step 2 of our model uses the MAUtility
function to sample instances from the unlabeled pool.
In every iteration a fixed number of instances are sam-
pled and are passed on to Step 3.

4.2 Rule Generation

The instances sampled from Step 2 are now used in
Step 3 which is the Rule generation phase of our al-
gorithm. Once a record has been sampled the oracle
provides the label for this record (the label from the
original data provided is used). In this case we assume
the original labelled data to act as an oracle H to label
the sampled/queried instances (line 1 of Procedure 1)
After this we generate rules from the instance instead
of adding the instance to the set of existing training
samples as in regular active learning algorithms.

These rules are generated using the Minimal Infre-
quent Itemsets (MIF). The MIF itself are generated
during the ARM process. As a pre-processing step we
remove all itemsets in the MIF which consist of the
class labels. The pseudo code for the Rule generation
phase is provided below.

Procedurel:Rule_generation

Require: MIFItemSet NB, Ambiguous in-
stance I , TrainRuleSet Train, Oracle H
Acquire the label for I from H as !
RB=MineMIF(NB,I)
if len(RB) > 0 then
repeat
choose itemset in RB
Append the itemset with [and generate
CAR {itemset — 1}
Add this CAR to Train
8 until All itemsets have been used
9: else
10: Append T to I to generate CAR {I — [}
11: Add this CAR to Train
12: end if
13: return Train

In this Rule_generation phase we have used a
method called MineMIF. This procedure simply mines

the MIF N B to find all the itemsets which are subsets
of the feature set of I. The condensed set consisting of
all such full or partial matches is called the Retrieved
Border RB (line 2 of Procedurel).

As we had earlier seen in Theorem 2.2 that for an
MIF to exist the dataset must consist of certain item-
sets. So considering Theorem 2.2 one can safely say
that the MineMIF routine would retrieve such item-
sets from I where I € UnlabeledPool. However, it
is not necessary that every ambiguous instance I we
sample in this process has to be a support row. So this
would lead to two cases of generating rules separately
from support and non support rows. The condition in
line 3 determines the kind of rules we generate here.

1. I is a Support row : This implies that RB would
consist of itemsets obtained through N B from the
MineMIF routine. In this case, we simply choose
the itemsets which are stored in RB. While se-
lecting the itemsets to generate the rules we only
include those itemsets which satisfy minimum an-
tecedent length threshold. The CAR are generated
as explained in the pseudo code in Procedure 1.

2. I is not a Support row: This implies that RB
would be an empty set. In this case as we find no
full or partial matches in RB, we simply create
one rule here. For this rule the antecedent is [
and the consequent is [.

Lines 4-10 of Procedure 1 deal with the generation
of dynamic rules. In lines 7 and 11 we update the
current training model with the dynamic rule sampled
in either case. We update the model with the rules to
have an immediate impact. We also believe that this
should definitely help in reduction of the number of
labeling queries being posed.

However, since we are dealing with real life datasets
it is quite possible that not all the dynamic rules being
generated contribute dominantly towards the classifier
performance. So, rather than simply adding rules we
use another periodic pruning procedure to remove few
of the generated dynamic rules.

4.3 Rule Pruning

In this subsection we look at Steps 4 and 5 in detail.
As explained earlier our algorithm applies a periodic
rule pruning strategy which aims at assessing the rules
generated in Step 3 and controlling the rule size of the
model. Simply speaking it tries to identify those dy-
namic rules among the ones added to the model which
are being used frequently for classifying instances in
the test data.

The data from the unlabeled pool which has been
used by the active learner is separated and we create
the testing data from the remaining instances. In Step
4 the model built so far until Step 3 is applied on the
testing data. We then acquire the predicted labels of

instances in the testing data. Evaluation metrics such
as accuracy etc are also obtained in this step.

Based on our interval size we then separate the set
of records classified so far along with the labels pre-
dicted by the model for them. This data is called the
validation data which is also simultaneously generated
in Step 4. The applied supports of all the rules which
were added in Step 3 of our algorithm are then cal-
culated on the validation data generated during the
interval. The formula for the applied support is given
in eqn 2.

Let us suppose that the number of times the rule
was used after being added to the model in this
interval=n.

Let the total number of instances classified in this in-
terval by the model=n;,¢q;-

Appliedsupport = ngs/Niotal (2)

Once we have calculated the applied support values
in the interval we only retain the top k& rules with the
highest values of applied supports. The rule param-
eter k is chosen individually for each of the datasets
we consider. The detailed information on setting this
parameter is provided at 5.3. This process of updat-
ing the model based on the validation data is done in
Step 5. So, this local assessment we do here in Steps
4 and 5 helps us bound the number of rules added to
the model.

Procedure2: Rule_Pruning

Require: TrainRuleSet Train, rule parameter

k, ValidationData Validation

1: repeat

2: Choose dynamic rule r in Train

3: Calculate the applied support for r in

Validation using eqn2

4: until All dynamic rules in Train are evalu-
ated

5: Retain in Train only the top k rules

6: return Train

However, while pruning this method does not com-
promise on pruning the effective rules discovered in the
process from Step 3. In Step 6 once we have the up-
dated model after the end of the iteration we then ap-
ply it again on the unlabeled pool of instances. Steps
3-5 are then carried on until the required number of
instances have been sampled.

4.4 Associative Active Learning (AAL) algo-
rithm

In this section, we look at our Associative active learn-
ing (AAL) algorithm which unifies all the steps men-
tioned above. In line 2 of Algorithm 2 we build the
associative classifier on the initial training set. Using

the MAUtility function we identify the records from
the pool (Step 2) to be passed on to Step 3 which is
the rule generation phase. If the record satisfies the
criterion then the Rule_generation procedure is called
upon in line 7 to sample dynamic rules as explained
earlier in Step 3. The labels are provided by the oracle
H. These rules are then updated in the model.

As in all active learning frameworks we consider
this instance as being utilized by the learner and we
delete it from Pool. After the iteration is over the
testing data is generated as Test and the accuracy of
the classifier is calculated based on the current model
(Step 4) built so far (line 11). Here Test consists all
the instances which remain in the unlabeled pool after
sampling is done (line 8).

Then in line 12 once the validation data Validation
is simultaneously generated in Step 4, we prune the
rules through the Rule_pruning procedure as explained
earlier in Step 4. The updated model at the end of the
iteration is UpdI'rain. Finally in line 13 we set the
model T'rain as the updated model UpdTrain (Step
5) for further sampling iterations.

Algorithm 2 AAL Algorithm

Require: Oracle H, TrainRuleSet Train, Unlabeled
Pool Pool, MIFItemSet N B, Threshold p1, rule
parameter k, Number of iterations max
iter=1
while iter < max do
Use the associative classification model Train
for all record r in Pool do
Calculate MA Utility for r
if M AUtility < pp then
Acquire the label for r as [from H
UpdRules=Rule_generation(Train,r,N B,l)
Remove r from Pool
end if
end for
AssociativeClassifiy(UpdRules, Test)

==
e e

13: Train=UpdIrain
14: end while

4.5 Illustrative example

Here we present the working of our algorithm on a
small example for a 2 class classification problem (0,1).
The total number of examples considered here are 12.
Let the initial number of examples used for building
the training data be 4 examples (Table 1). The model
is now built using the training samples. We will use
this model and apply it on the unlabeled pool (Table
2).

In each sampling iteration we choose 1 ambiguous
sample and generate rules and update the model. This
process is continued for 2 samplings. The way in which
the new rules are generated and the validation and

UpdT'rain=Rule_pruning(UpdRules,k,V alidation)

Table 2: Unlabeled pool

id Features Table 3: Validation data
Table 1: Training data 5 A B [C JEF id Features PClass
id Features Class| | 6 | A | C | B | E+ 6 |A|C |B |E |0
1]/A |B |A |B |1 7T1A |A | C | E+ T|IA |A|C |E |1
2| A |D |B |C |0 8 | A |C | A | E+ 8| A |C |A |E |1
3/A |E |B |[B |0 9 A |B |D | E* 10]C |B |E | D |0
4| B |C |E |B |1 10]C | B | E | D+ 11/D |A |B | C |0
11/D | A | B | C+ 12/C |C |A |B |0
12/ C | C | A | B+

testing data are used is explained in the working be-
low. Also suppose that the minsupport value used here
for ARM is 0.01.

Suppose that the records marked with * are am-
biguous (id 5 and 9) according to the definition we have
provided earlier. Then after applying the Apriori algo-
rithm on the training data (Table 1) as described above
the entries in NB = (E, D), (A, C, E). Then based on
the method explained above the Retrieved Border RB
would be computed for the ambiguous records.

Suppose the labels assigned for these ambiguous in-
stances are 1 and 0 respectively. Then the following
set of rules would be added to the associative classi-
fication model. For id 5 the Retrieved Border would
consist of (A, C, E) and hence we would add the rule
AANC AN E — 1 to the model. For id 9 the Retrieved
Border would consist of (D, E) and we would add the
rule EA D — 0.

Once these rules are added to the model and at
the end of 2 samplings the validation data (Table 3)
is generated. The validation instances are marked in
the unlabeled pool with a + sign. The labels (PClass)
for instances in the validation data are assigned by
the model as explained earlier during the rule prun-
ing/Step 4. The process of applied support calculation
over the validation data is displayed. Then we calcu-
late the applied support values of the added rules over
the validation data and retain the top &k ones that sat-
isfy the minimum support criterion alone. The applied
support for A A C A E — 1 over the validation data
would be 2/6 = 0.333 and that of E A D — 0 would be
1/6 = 0.166. Assume that k here is set to 2. As the ap-
plied support values of both rules is greater than 0.01
(Apriori min support) both these rules are retained in
the model.

The example we have provided here is very generic
in nature and the same working is used for bigger real
life datasets. More information about this will be pro-
vided in detail in the experimental section.

5 Experiments

In this section, we present the results derived for our
AAL algorithm. We ran three major kinds of experi-
ments which are

1. To measure the data utilization of AAL.

2. To analyze the error rate patterns at different
learning stages of AAL.

3. To look at the labeling plots obtained for different
datasets.

5.1 Experimental Setup

To evaluate the performance of the proposed AAL
algorithm we ran experiments on 10 representative
datasets from the UCI repository *. To facilitate
the initial pre processing tasks such as normalization,
replacing missing values and most importantly dis-
cretization we have used the Weka toolkit . In this
manner the nominal data is prepared to build an as-
sociative classification model.

We compare the performance of our algorithm
against ACTIVE-DECORATE [14] from the data uti-
lization perspective. ACTIVE-DECORATE is an al-
gorithm which initially generates DECORATE [13]
committees and later samples records from the testing
data to update the committee members. DECORATE
committees are generated by generating synthetic sam-
ples in the process generating many models. Further
information about this can be derived from the related
work section and references. All results reported be-
low have been generated after a 5 fold cross validation.
The set of available examples from real life datasets
were separated as a pool of unlabeled instances and
few training instances initially. The few training in-
stances initially are needed to initiate the process of
active learning. This has also been depicted in our ar-
chitectural design in Figure 2.

In each iteration the AAL algorithm selects cer-
tain number of samples to be labeled and added to
the training set. As the characteristics of each of the
datasets are quite different from each another so we
have used different sample sizes for each of them. The
exact sample sizes will be mentioned explicitly when
we explain the learning curves generated over these
datasets. The ambiguity threshold p; in AAL has been
universally set to 0.3 for all the datasets. The configu-
ration of the system used for running the experiments
is a Pentium 4 Dual Core processor with 2 GB DDR2
RAM. The code was written in Python language.

*UC Irvine repository:http://archive.ics.uci.edu/ml/
TWeka: http://www.cs.waikato.ac.nz/ ml/weka/

5.2 Data utilization

As mentioned earlier active learning attempts to min-
imize the number of training samples and their cor-
responding labels required by the learner. In this ex-
periment we will assess our AAL based on it’s data
utilization ratio. Before we define data utilization it is
necessary to understand the definition of Target error.
Target error here is defined as the error achieved by
DECORATE determined by averaging the error values
over the points corresponding to the last 50 training
examples on the learning curve.

The data utilization factor is then defined as as the
number of training examples an active learner requires
to reach the target error rate divided by the number of
samples required by the DECORATE algorithm. The
formula is provided below.

Suppose for a given dataset D we use DECORATE
and compute the Target error Err and the number of
samples it needs to acquire Err on D as ng. Suppose
for D again we use any arbitrary active learner L and
compute the target error rate Err’ and the number
of samples. Now the data utilization ratio is com-
puted by finding the number of samples L needs so
that Err' =Err. Let us suppose that the number of
samples needed by L in this case are n;. Then the data
utilization ratio for active learner L is defined as the
ratio of.

Data Utilization Ratio=n;/nq

So this factor helps us understand how efficiently
learner L uses instances from the unlabeled pool in
comparison to DECORATE.

So essentially based on the definition of data uti-
lization ratio we can compare ACTIVE-DECORATE,
AAL against the DECORATE algorithm and also
compare both the active learners individually. Table 4
presents the results derived on 10 UCI -ML datasets.

In Table 4, the columns indicate the number of
data samples used by the each of the active learners
with AAL being the rightmost. Each entry in the row
also represents the data utilization percentage which
is computed for ACTIVE-DECORATE and AAL us-
ing the number of samples used by DECORATE alone
as a standard. For example if we consider the dia-
betes dataset the data utilization ratio of ACTIVE-
DECORATE would be 201/234 = 0.86 and that of
AAL would be 83/234 = 0.35.The learner with the
least data utilization percentage (marked in bold) is
considered ideal in each case and we compute the num-
ber of wins over 10 datasets for all the three learners.

It can be observed that out of 10 datasets AAL out
performs ACTIVE-DECORATE in 7 of them. In par-
ticular for datasets such as diabetes, sonar and lymph
the data utilization ratio is significantly lesser than the
others. It is also noticed that over these ten datasets
the average data utilization ratio of AAL is 77.2% of
that used by ACTIVE-DECORATE.

5.3 Learning curves/Error rate patterns

Apart from the data utilization perspective we can
evaluate and visualize the learning process of an active
learner and understand their error rates. The learning
curves can be generated by recording the error values
reported by our model at the end of each sampling
iteration. Ideally it is expected that the error rate
must decrease as more number of instances are uti-
lized. We evaluate the occurrence of this phenomenon
in the current experiment. In this experiment we have
selected four datasets which are diabetes, german, im-
age segmentation and soybean for plotting the learn-
ing curves. The learning curves are plotted by con-
sidering the number of iterations/samplings (x-axis)
against the error rates (y-axis) observed.

After each sampling iteration we add a fixed num-
ber of rules specific to the dataset to the model before
proceeding for the next iteration. For the diabetes,
german datasets the number of rules generated and
added after each iteration (k rule parameter) was set
to 4 and for the segment dataset it was set to 7.

The k parameter is chosen from the range of values
defined in an interval. The bounds for this interval are
decided based on the minimum and mazimum num-
ber of queries(instances) we can use for active learning
here. The k values denoted here are the ones for which
AAL performed the best (lowest error rate) with min-
imum data utilization among all the values considered
in the interval. In this manner once the sampling iter-
ation size has been decided on each dataset AAL was
run over for 20 iterations.

While comparing the learning curves we used dif-
ferent kinds of sampling methods available in the liter-
ature. The sampling methods used for the experiment
below are as follows

1. Random Sampling: In this we randomly choose
a sample from the available distribution and add
it to the model. Each sample has the same chance
of being chosen to be added.

2. Uncertainty Sampling: As explained in the in-
troduction we choose the samples which the model
is most uncertain about. This has been explained
in the Introduction section.

3. Selective sampling using Label varia-
tion/Variation Sampling: In this method we
use a selective sampling procedure which chooses
samples to label based on how much expected
change it brings to the base model. The change
is calculated through a defined function and those
examples are chosen which are assigned the max-
imum expected change scores. [8]

4. Dynamic Rule Sampling: The sampling
method used by our proposed AAL algorithm.

Table 4: Data utilization with respect to ACTIVE-DECORATE

Dataset DECORATE | ACTIVE- AAL Target er-
DECORATE ror
Iris 32(1.0) 30(0.94) (O 94) 5.25%
Diabetes 234(1.0) 201(0.86) (O 35) 25.1%
Glass 118(1.0) 100(0.85) (O 686) 27%
Breast-w 30(1.0) 39(1. 30) (0 67) 3.94%
Heart-h 49(1.0) 39(0 8) (O 612) 19.93%
Heart-c 50(1.0) 36(0.72) 30(0.6) 20.97%
Hepatitis 39(1.0) 23(0. 59) (1 07) 16.96%
Lymph 27(1.0) 24(0. 88) (0 48) 22.21%
Sonar 125(1.0) 99(0 79) () 18.39%
Soybean 492(1.0) 144(0.29) 190(0.386) 6.59%
Number of | 0 3 7
Wins
0.5 T T T 0.5 T T T
. ,'\‘ -- —randoml --- random'
’ N —e— uncertainty 045+ —e— uncertainty |
0451 ! ‘ variation variation
y —— dynamic rule —— dynamic rule}{

04r

Error rate
o
&

0.3

0251

0.2
0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 4: Diabetes dataset (k=4)

5.3.1 On Binary datasets

We obtain the learning curves for the diabetes and ger-
man datasets below with the settings described earlier.
Here each iteration implies a sampling routine where
records are sampled and used by the learner. The k
parameter from the AAL algorithm chosen for each
dataset is mentioned below the figures.

It is noticed that for the diabetes dataset (Figure
4) uncertainty sampling and dynamic rule based sam-
pling(DR) used by AAL attain the lowest error rates.
For the german dataset (Figure 5) we notice that DR
closely ties with the variation based sampling with DR
being better. However, both these datasets are sim-
ple binary datasets, so we further explore the learning
curves obtained from a few multi class datasets.

5.3.2 On multiclass datasets

The datasets here for the next sampling experiment
are are soybean(19 classes) and Image segmentation(7
classes). As variation sampling is known to be highly

Error rate

0.1
0

2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 5: German dataset (k=4)

computationally intensive on multiclass datasets we
avoid including it here in this experiment on multi
class datasets. To effectively compare the performance
of AAL here we compare it against a multi class svm
and active learning framework (SVM+AL).

The sampling procedure we use for comparison
is called representative sampling. [22, 16] It differs
from the earlier methods in sampling points which are
also effective representatives of the distribution in the
dataset. We have used the multiclass svim suite here
for inferring the margin and points lying within the
margin. It is noticed from the learning curves that for
the segment dataset (Figure 6) uncertainty, represen-
tative perform well with DR being marginally better.
However for the soybean dataset (Figure 7) represen-
tative and DR outperform other routines with both of
them ending up at the same error rate.

After observing the learning curves over these four
datasets one can say that the dynamic rule (DR) sam-
pling is more robust and consistent than the other sam-
pling methods. The phenomenon of decrease in error

) - = -random

0.45 —e— uncertainty
representative
RN _ ~_ | ——dynamic rule]

Error rate

2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 6: Segment dataset (k=T)

rates with iterations is prominently visible with DR
sampling in all the datasets especially with multi class
datasets. This can be attributed to the following rea-
son.

In multi class domains general classifiers have to
face many ambiguous instances while classifying. This
is because the predicted space is also highly populated.
In such cases rules which can help us discriminate be-
tween classes can be very effective. As our AAL based
DR sampling effectively generates such rare rules from
the Minimal infrequent itemsets (MIF) present in the
dataset, the results are more pronounced in multi class
datasets.

5.4 Labeling rate plots

In this experiment we look at the labeling rate plots
derived for the datasets we have considered. In our
earlier experiments itself we have proved how our AAL
was superior to ACTIVE-DECORATE from the the
data utilization perspective. In continuation with our
first experiment on data utilization here we look at
the labeling plots obtained from AAL on few datasets.
These plots will help us understand the number of
learning queries being posed by the learner during each
sampling iteration. The x-axis represents the num-
ber of records seen (labeled + unlabeled) and the y-
axis represents the number of labels requested by the
learner.

We produce the labeling plots for the diabetes
(Figure 8) and waveform (Figure 9) datasets respec-
tively. For the diabetes dataset one can observe that
the initial number of queries posed are very high which
is followed by a steep and pronounced decrease as the
number of iterations increase. The plot obtained here
is pretty much as expected. However, in the case of
the waveform dataset the phenomenon of decreasing
queries is visible after a few iterations. The behav-
ior patterns cannot be standardized for all the real
life datasets because of their differing complexity and

0.7

- - -random
—e—uncertainty ||
representative

1 —— dynamic rule
05 .

0.6

Error rate
o o
w B

: :

0.2

0.1r

0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 7: Soybean dataset(k=10)

structure. However, the consistent dip in the number
of queries being posed should be visible after a few it-
erations.

So all these experiments prove that sampling rules
dynamically is a superior procedure in comparison to
the remaining sampling frameworks. Even though as-
sociation rules summarize datasets pretty effectively
they cannot encompass all the necessary information.
Hence the knowledge from the Minimal infrequent
itemsets (MIF) may be crucial to build better learning
models. We believe that these results also support our
initial hypothesis of using MIF in active learning.

6 Related Work

In this section, we look at the related work in the area
of active learning. The earliest active learning proce-
dure suggested was QBC(Query by committee) which
builds a committee of learners and accordingly chooses
samples to be labeled by the oracle. QBC was found
to detect controversial examples and spend less time
on sampling outliers. Query by bagging and boosting
procedures were further developed which applied the
bagging and adaboost machine learning techniques in
a QBC framework [10] to create the committee mem-
bers intelligently. However it was observed that Query
by Boosting did not consistently outperform Query
by bagging. Active learning with multiple views [15]
was then proposed by Muslea where all the commit-
tee members represent redundant views on the learner.
This method was called Co-testing. These disjoint fea-
ture vectors can be independently used for classifica-
tion.

Melville and Mooney [13] further proposed the
DECORATE algorithm which relies on generating di-
verse committees. The committee members are gen-
erated using synthetic samples always ensuring that
the models added to the committee are superior in
comparison to their predecessors. ACTIVE DECO-
RATE [14] was also developed which used DECO-

i

=

12

©

Number of labels requested
=
> 5

~

0 50 100 150 200 250 300 350 400
Number of data points seen

Figure 8: Diabetes dataset

RATE committees in an active learning scenario and
sampled records whose margin was pretty small. This
work has been extended to further enhance the diver-
sity of the committee members by using misclassifi-
cation sampling procedures while generating the di-
versity data. Support vector machines have also been
employed in active learning [21]. Cohn and David [17]
proposed an svim based active learning approach where
instances closer to the margin hyperplane were evalu-
ated based on an predictive error function. The evalu-
ation was based on computing the cumulative error for
the instances by adding them with the labels (-1,41)
in the model.

Apart from different algorithms many sampling
procedures have also been proposed for active learn-
ing. Variation in labels based [8], representative based
[22] and density based sampling [5] are few procedures
of choosing records to be labeled by the oracle. In
representative sampling using SVM those points are
identified which lie within the margin. These points
are later clustered using a k means algorithm and the
cluster centers are then sampled for labeling.

On the other hand density based sampling uses ex-
pectation maximization principles and a logistic re-
gression classifier to estimate the posterior probabil-
ities. It has generally proven to be effective because
it considers the underlying distribution and chooses
representatives of large clusters. One major advan-
tage is that it tries to cover the input space quickly.
Our method in comparison to this exhibits faster re-
duction in error. It along with density sampling is a
dynamic strategy in comparison to the static strate-
gies proposed above. Hybrid methods such as DUAL
sampling [5] which combine both density and uncer-
tainty sampling have also been proposed.

SIMPLE, SELF-CONF and KFF [2] are few fa-
mous online active learning algorithms. Each of them
have different induction components. For each trial
the querying function requests the expert to label the
object and this is added to the training data. Every

Number of labels requested

0 100 200 300 400 500 600 700 800 900 1000
Number of data points seen

Figure 9: Waveform dataset

time a new classifier is induced for each of these tri-
als. Apart from individually applying active learners
even an ensemble of active learners like COMB can
be applied for obtaining better performance. More re-
cently Dasgupta and Kalai have proposed perceptron
based active learning approaches [4]. The algorithm
uses a modified perceptron based update where in it
only stores the current hypothesis rather than storing
previously seen data points. The goal of their work is
to provide a simpler solution for the problem of devel-
oping a linear separator for data distributed uniformly
over the unit sphere.

7 Conclusions and Future Work

In this paper, we have handled the problem of active
learning from an itemset point of view. The problem of
active learning is popular among the research commu-
nity because it facilitates in building effective learners.
Online learning and Meta learning approaches are be-
ing applied in different kinds of domains such as music
retrieval, protein structure prediction etc.

To identify rare and informative occurrences in
data we have used the idea of Minimal Infrequent Item-
sets (MIF) here. Our motivation here relies on the fact
that traditional learners obviously train well on the fre-
quent patterns but do not train adequately on the rare
and informative patterns. We believe such information
is important as it can definitely help in building high
precision discriminative learners.

Traditional active learning so far has been per-
ceived in various forms such as ensemble based, unit
sampling and hybrid sampling but this is the first
of its kind approaches which unifies association rules
with active learning. The problem of Associative ac-
tive learning can be perceived and designed in further
ways by modifying the sampling function being used
etc. Further research could be focused on developing
efficient performance metrics for active learners.

References

[1]

[13]

R. Agrawal and R. Srikant. Fast algorithms for
mining association rules in large databases. pages
487-499. VLDB, 1994.

Y. Baram, R. Yaniv, and K. Luz. Online choice of
active learning algorithms. pages 255-291. Jour-
nal of Machine Learning Research, 2004.

E. Boros, V. Gurvich, and L. Khachiyan. On
the complexity of generating maximal frequent
and minimal infrequent itemsets. pages 133-141.
19th Annual Symposium on Theoretical Aspects
of Computer Science, 2002.

S. Dasgupta, A. Kalai, and C. Monteleoni. Anal-
ysis of perceptron-based active learning. pages
281-299. Journal of Machine Learning Research,
20009.

P. Donmez, J. Carbonell, and P. Bennet. Dual
strategy active learning. pages 116-127. ECML
PKDD, 2007.

D. Haglin and A. Manning. On minimal infre-
quent itemset mining. pages 141-147. DMIN,
2007.

A. Jorge and P. Azevedo. An experiment with
association rules and classification: Post-bagging
and conviction. pages 137-149. Discovery Science,
2005.

P. Juszczak and R. Duin. Selective sampling
based on the variation in label assignments. pages
375-378. ICPR, 2004.

W. Lewis, D. Gale. A sequential algorithm for
training text classifiers. pages 3—12. ACM SIGIR,
1994.

H. Mamitsuka and N. Abe. Efficient data mining
by active learning. pages 258-267. Progress in
Discovery Science, 2002.

H. Mannila and H. Toivonen. Multiple uses of fre-
quent sets and condensed reprepsentations. pages
189-194. KDD, 1996.

H. Mannila and H. Toivonen. Level wise search
and borders of theories in knowledge discovery.
pages 241-258. Data Mining and Knowledge Dis-
covery, 1997.

P. Melville and R. Mooney. Constructing diverse
classifier ensembles using artificial training exam-
ples. pages 505-512. International Joint Confer-
ence on Artificial Intelligence IJCAI, 2003.

P. Melville and R. Mooney. Diverse ensembles for
active learning. pages 584-591. ICML, 2004.

[15]

[16]

[17]

[18]

[19]

[22]

[23]

I. Muslea, S. Minton, and C. Knoblock. Selec-
tive sampling with redundant views. pages 621—
626. National conference on Artifical intelligence,
AAAT, 2000.

H. Nguyen and A. Smeulders. Active learning
using pre-clustering. ICML, 2004.

G. Schohn and D. Cohn. Less is more: Active
learning with support vector machines. ICML,
2000.

B. Settles. Active learning literature survey. Num-
ber 1648, 2009.

B. Settles, M. Craven, and L. Friedland. An anal-
ysis of active learning strategies for sequence la-
beling tasks. pages 1069-1078. Empirical methods
in Natural Language processing, 2008.

F. Thabtah. A review of associative classification
mining. pages 36-65. The Knowledge engineering
Review, Volume 22, 2007.

S. Tong and D. Koller. Support vector machine
active learning with applications to text classifi-
cation. pages 45—66. Journal of Machine Learning
Research, 2001.

Z. Xu and K. Yu. Representative sampling for
text classification using support vector machines.
ECIR, 2003.

M. Zaki and M. Ogihara. Theoretical foundations
of association rules. ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge
Discovery, 1998.

M. Zaki, S. Parthasarathy, and M. Ogihara. New
algorithms for fast discovery of association rules.
pages 283-286. KDD, 1997.

