
Aggregate Skyline Join Queries: Skylines with Aggregate
Operations over Multiple Relations

Arnab Bhattacharya B. Palvali Teja

Dept. of Computer Science and Engineering,
Indian Institute of Technology, Kanpur, India

arnabb@iitk.ac.in

Amazon Development Centre,
Hyderabad, India

tpalvali@amazon.com

Abstract

The multi-criteria decision making, which is possible with
the advent of skyline queries, has been applied in many
areas. Though most of the existing research is concerned
with only a single relation, several real world applications
require finding the skyline set of records over multiple re-
lations. Consequently, the join operation over skylines
where the preferences are local to each relation, has been
proposed. In many of those cases, however, the join of-
ten involves performing aggregate operations among some
of the attributes from the different relations. In this pa-
per, we introduce such queries as “aggregate skyline join
queries”. Since the naı̈ve algorithm is impractical, we pro-
pose three algorithms to efficiently process such queries.
The algorithms utilize certain properties of skyline sets, and
processes the skylines as much as possible locally before
computing the join. Experiments with real and synthetic
datasets exhibit the practicality and scalability of the algo-
rithms with respect to the cardinality and dimensionality of
the relations.

1 Introduction
The skyline operator, introduced by Börzsönyi et al. [2],
addresses the problem of multi-criteria decision making
where there is no clear preference function over the at-
tributes, and the user wants an overall big picture of which
objects dominate (equivalently, are better than) other ob-
jects in terms of preferences set by her. The classic ex-
ample involves choosing hotels that are good in terms of
both price and distance to beach. The skyline set of hotels
discard other hotels that are both dearer and farther than a
skyline hotel.

For every attribute, there is a preference function that
states which objects dominate over other objects. For ex-
ample, the preference function for both price and distance
to beach is <, i.e., a hotel with a lower price and at a closer
distance to the beach than another hotel will dominate the

International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8–10, 2010
c©Computer Society of India, 2010

second one. Consequently, the second hotel is never going
to be preferred, and does not require any further consider-
ation. The skyline query returns all such objects that are
not dominated by any other object. The importance and
usefulness of skyline queries has provoked the commercial
database management systems to incorporate these queries
into existing systems [3].

In real applications, however, there often exists a sce-
nario when a single relation is not sufficient for the appli-
cation, and the skyline needs to be computed over multiple
relations [16]. For example, consider a flight database. A
person traveling from city A to city B may use stopovers,
but may still be interested in flights that are cheaper, have a
less overall journey time, better ratings and more amenities.
In this case, a single relation specifying all direct flights
from A to B may not suffice or may not even exist. The
join of multiple relations consisting of flights starting from
A and those ending at B needs to be processed before com-
puting the preferences.

The above problem becomes even more complex if the
person is interested in the travel plan that optimizes both on
the total cost as well as the total journey time for the two
flights (other than the ratings and amenities of each airline).
In essence, the skyline now needs to be computed on at-
tributes that have been aggregated from multiple relations
in addition to attributes whose preferences are local within
each relation. The aggregate operations that are commonly
used are sum, average, minimum, maximum, etc.

Table 1 shows an example. The first table lists all flights
from city A and the second one lists all flights to city B. A
join of the two tables with the destination of the first table
equal to the source of the second table and departure time
more than arrival time will yield all flights from A to B with
one stopover. As shown in Table 1(c), it also contains the
total cost, total journey time, ratings and amenities of the
two flights. The user wants a skyline on this joined relation
using these attributes. While the total cost and total journey
time are aggregated attributes, the ratings and amenities are
local to each table. In this example, flight (13, 23) is dom-
inated by flight (11, 21) in all the attributes, and hence,
will not be preferred. On the other hand, flight (11, 21) is
not dominated by any other flight and, therefore, is part of

the skyline set that the user wants to examine it more thor-
oughly. We name the above queries that retrieve skylines
over aggregates of attributes joined using multiple relations
as AGGREGATE SKYLINE JOIN QUERIES (ASJQ).

The above query can be specified in SQL as:

SELECT f1.fno, f2.fno,
f1.dst, f2.src, f1.arr, f2.dep,
f1.rtg, f2.rtg, f1.amn, f2.amn,
cost as f1.cost + f2.cost,
duration as f1.duration + f2.duration

FROM FlightsA as f1, FlightsB as f2
WHERE f1.dst = f2.src AND

f1.arr < f2.dep AND
SKYLINE of cost min, duration min,

f1.rtg max, f2.rtg max,
f1.amn max, f2.amn max

Thus, database systems that have the skyline operator built
into them [5] can easily allow the users to run such queries.

The preferences in the general skyline join problems are
local to each relation, and hence, the skyline operations
can be performed before the join [16]. For ASJQ queries,
however, the skyline is computed over the aggregate val-
ues of attributes from multiple relations. This leads to per-
formance degradation, since, the cardinality of joined rela-
tions is in general large, and the skylines cannot be pro-
cessed unless the aggregate values have been computed.
The aggregation function must be monotonic, i.e., if val-
ues s and u are preferred over values t and v respectively,
the aggregated value of s and u must be preferred over the
aggregated value of t and v. The aggregation operation is
reminiscent of the problem of finding top-k objects using
multiple sources [6]. However, the ASJQ queries differ sig-
nificantly by retrieving the skylines in which the aggregate
values are only part of the attribute set. ASJQ queries, thus,
involve three separate problems—skyline queries, join and
aggregation from multiple sources—together, and high-
lights the connections among them.

The ASJQ queries are pertinent in many application do-
mains. For example, the situation with flights described
above is quite a routine task for tour planners and travel-
ing salespersons. Another interesting application is in the
cricket leagues. Clubs want to buy both good batsmen and
good bowlers. Batsmen have attributes such as average,
cost and rating. Similarly, bowlers have strike rate, cost
and rating. The clubs optimize their chances of winning
by considering options from the skyline set of batsman-
bowler combinations with preferences for high average,
high strike rate, low total cost and high total rating. In
the same way, to choose an optimal combination of digi-
tal camera and a compatible memory card from a products
database, it is necessary to join the individual tuples con-
taining the attributes of a camera and those of a memory
card on an attribute such as compatible memory card type
(e.g., SD, XD, CF etc.), and optimize an aggregate attribute
such as total cost, in addition to local attributes such as op-
tical zoom (for camera) and storage capacity (for memory
card). ASJQ queries can also be applied in the context of

multimedia data retrieval [6], geographic information sys-
tems [8], dynamic resource allocation on the grid [12], e-
commerce [15], etc.

The naı̈ve method of implementing ASJQ involves three
steps: (i) performing the join operation over the relations,
(ii) performing the aggregate operations on the attributes
of multiple relations, and (iii) performing the skyline query
on the joined relation. For large relations, this demands
impractical computational costs. By intuition, one can ob-
serve that non-skyline points in each relation cannot appear
in the final result set. Hence, performing a skyline opera-
tion on each relation before joining reduces the size of the
relations to be joined and, thus, reduces the processing cost.

To reduce the costs further, we designed three algo-
rithms. The first approach, Multiple Skyline Computations
(MSC) algorithm, utilizes the fact that certain joins of non-
skyline sets from the individual relations need not be tested
for skyline criteria, and can be pruned. The Dominator-
based algorithm and the Iterative algorithm improve on the
MSC approach by pruning records even from the skyline
sets of individual relations before they are joined, and are
thus more efficient.

Our contributions in this paper are:

1. We define a novel query “Aggregate Skyline Join
Query”.

2. We propose three algorithms that efficiently solves
them.

3. We thoroughly investigate the effects of different pa-
rameters on the algorithms in terms of computational
costs both analytically and through experiments.

The rest of the paper is organized as follows. The Ag-
gregate Skyline Join Query (ASJQ) is formally defined in
Section 2. A brief literature review is presented in Sec-
tion 3. Section 4 proposes and analyzes three algorithms
that efficiently solves the ASJQ queries. Section 5 de-
scribes the experimental results before Section 6 concludes.

2 Problem Statement
We begin by recapitulating the definition of skyline queries
for a relation. Certain attributes of the relation partici-
pate in the skyline and are called the skyline attributes.
For each skyline attribute, preference functions are spec-
ified as part of the skyline query. In a relation R, a tu-
ple ri = (ri1 , ri2 , . . . , rik

) dominates another tuple rj =
(rj1 , rj2 , . . . , rjk

), denoted by ri � rj , if for all skyline
attributes c = {s1, . . . , sk′} ⊆ {1, . . . , k}, ric

is preferred
over or equal to rjc , and there is at least one attribute d
where rid

is strictly preferred over rjd
. A tuple r is in the

skyline set of R if there does not exist any tuple s ∈ R that
dominates r.

For our problem, i.e., ASJQ, the attributes of a relation
are categorized into three types: (i) local (L): attributes on
which skyline preferences are applied locally to each rela-
tion, (ii) aggregate (G): attributes on which skyline pref-

Join (H) Aggregate (G) Local (L)
fno dep arr dst duration cost amn rtg
11 06:30 08:40 C 2h 10m 162 5 4
12 07:00 09:00 E 2h 00m 166 4 5
14 08:05 10:00 E 1h 55m 140 3 4
15 09:50 10:40 C 1h 40m 270 3 2
13 12:00 13:50 C 1h 50m 173 4 3
16 16:00 17:30 D 1h 30m 230 3 3
17 17:00 20:20 C 3h 20m 183 4 3

(a) Flights from city A (FlightsA)

Join (H) Aggregate (G) Local (L)
fno src dep arr duration cost amn rtg
21 C 09:50 12:00 2h 10m 162 5 4
26 C 16:00 18:49 2h 49m 160 2 3
23 C 16:00 18:45 2h 45m 160 4 4
25 D 16:00 17:49 1h 49m 220 3 4
22 D 17:00 19:00 2h 00m 166 4 5
27 E 20:00 21:46 1h 46m 200 3 3
24 E 20:00 21:30 1h 30m 160 4 3

(b) Flights to city B (FlightsB)

f1.fno f2.fno f1.dst f2.src f1.arr f2.dep f1.amn f2.amn f1.rtg f2.rtg cost duration Skyline
11 21 C C 08:40 09:50 5 5 4 4 324 4h 20m Yes
11 23 C C 08:40 16:00 5 4 4 4 322 4h 55m Yes
13 23 C C 13:50 16:00 4 4 3 4 333 4h 35m No
15 23 C C 10:40 16:00 3 4 2 4 430 4h 25m No
12 24 E E 09:00 20:00 4 4 5 3 326 3h 30m Yes
14 24 E E 10:00 20:00 3 4 4 3 300 3h 25m Yes

(c) Part of the joined relation (FlightsA on FlightsB)

Table 1: Example of an Aggregate Skyline Join Query (ASJQ).

erences are applied after the aggregate operations are per-
formed during join, (iii) join (H): attributes on which no
skyline preferences are specified, but are instead used for
joining the two relations.

Definition 1 (Local attributes). The attributes of a relation
on which preferences are applied for the purposes of sky-
line computation, but no aggregate operation with an at-
tribute from the other relation is performed, are denoted as
local attributes.

Definition 2 (Aggregate attributes). The attributes of a re-
lation, on which an aggregate operation is performed with
another attribute from the other relation, and then prefer-
ences are applied on the aggregated value for skyline com-
putation, are denoted as aggregate attributes.

Definition 3 (Join attributes). The attributes of a relation,
on which no skyline preferences are specified, but are used
to specify the join conditions between the two relations, are
denoted as join attributes.

Denoting the local attributes by l, the aggregate at-
tributes by g, and the join attributes by h, the two relations
can be represented as:

R1 = {h11 , . . . , h1j
, l11 , . . . , l1m1

, g11 , . . . , g1n
}

R2 = {h21 , . . . , h2j
, l21 , . . . , l2m2

, g21 , . . . , g2n
}

where R1 and R2 has m1 and m2 local attributes respec-
tively, and n aggregate attributes. The join condition is a
conjunction of j comparisons between the corresponding
j attributes (hij) of A and B. In this paper, we assume
that join attributes are separate from local and aggregate
attributes. The final joined relation R = R1 on R2 is

R = {h11 , . . . , h1j
, h21 , . . . , h2j

, l11 , . . . , l1m1
, l21 , . . . , l2m2

,

g11 ⊕1 g21 , . . . , g1n
⊕n g2n

}

where ⊕i, etc. denote the join condition.
For the example in Table 1, the local attributes are

amn and rtg, the aggregate attributes are cost and
duration, and the join attributes are dst and arr for
FlightsA, and src and dep for FlightsB.

The AGGREGATE SKYLINE JOIN QUERY (ASJQ) is
defined as:

Definition 4 (Aggregate Skyline Join Queries (ASJQ)).
The ASJQ queries retrieve the skyline set from the joined re-
lation according to the preference functions of its m1 +m2

local and n aggregate attributes.

Dominance relationships between records can be de-
fined based on the attributes on which a record dominates
other records. A tuple r in relation Ri fully dominates an-
other tuple s ∈ Ri if r dominates s in both the local and
the aggregate attributes of Ri. If r dominates s only in the
local attributes, it is said to locally dominate s.

The above definitions assume that whenever a tuple
t′ = u on v′ exists in the final relation, the tuple t = u on v,
where v′ � v, also exists. However, the join attributes of
v′ and v may be such that only v′ satisfies the join condi-
tion with u, but v does not. Consider flight 15 in Table 1.
It is dominated by flight 16 in the local attributes. How-
ever, since they have different destinations, 15 can join with
other flights originating from C (e.g., 23) which flight 16
cannot. Hence, it must not be considered to be dominated
by flight 16. In such cases, t′ may also exist as a skyline in
the final result as there is no t to dominate it. The problem
is that the local dominance did not take into account the
join attributes.

In order to handle this, the join attributes must be taken
into account when full and local dominance relationships
are defined. Suppose, the join condition that two join at-
tributes a from A and b from B participate in is A.a�B.b

Join condition u ∈ A � u′ ∈ A if v ∈ B � v′ ∈ B if
A.a = B.b u.a = u′.a v.b = v′.b
A.a < B.b u.a ≤ u′.a v.b ≥ v′.b
A.a ≤ B.b u.a ≤ u′.a v.b ≥ v′.b
A.a > B.b u.a ≥ u′.a v.b ≤ v′.b
A.a ≥ B.b u.a ≥ u′.a v.b ≤ v′.b

Table 2: Converting join conditions to skyline preferences.

where�may be any of the following five comparison oper-
ators: =, <,≤, >,≥ (we do not consider other operations
in this paper).

Now, consider the tuple u′ ∈ A. If it is dominated by
tuple u ∈ A, then it must be ensured that whenever u′ joins
with v ∈ B, u must also satisfy the joining condition, i.e.,
if u′ on v is true, then u on v must be true as well. For
example, if � denotes =, then this translates to u.a = u′.a
(both being equal to v.b); if � denotes <, this translates to
u.a < u′.a, and similarly for the rest. (The comparison
conditions are reversed for relation B.) This condition can
be incorporated in the skyline finding routines as follows.

The join attribute is also considered as a skyline attribute
with the preference function set appropriately as summa-
rized in Table 2. This automatically ensures that whenever
a tuple u′ is dominated by u, u′ can be discarded as the join
of u with v can always be formed which will ultimately
dominate the tuple formed by joining u′ with v.

Based on the above discussion, the definitions of domi-
nance relationships are modified as follows.

Definition 5 (Full dominance). A tuple r in relationR fully
dominates a tuple s if r dominates s in local, aggregate and
join attributes of R.

Definition 6 (Local dominance). A tuple r in relation R
locally dominates a tuple s if r dominates s in local and
join attributes of R.

henceforth, whenever we mention local or aggregate at-
tributes in the context of dominance, we assume that the
join attributes are incorporated within them.

Note that full dominance implies local dominance, but
not vice versa. The corresponding definitions of full dom-
inator and local dominator are also specified. Using these
definitions, two kinds of skyline sets are also defined. A
tuple r in relation R is in the full skyline set if no tuple in
R fully dominates r, and it is in the local skyline set if no
tuple in R locally dominates it. A tuple that is in the local
skyline set is also in the full skyline set, but not vice versa.

3 Related Work
The maximum vector problem or Pareto curve [11] in
the field of computational geometry has been imported to
databases forming the skyline query [2]. After the first sky-
line algorithm proposed by Kung et al. [11], there were
many algorithms devised by exploring the properties of
skylines. Some representative non-indexed algorithms are
SFS [4], LESS [7]. Using index structures, algorithms such
as NN [10] and BBS [13] have been proposed.

Algorithm 1 Naı̈ve Algorithm
Input: Relations A,B, preferences p, aggregate opera-

tions a
Output: Aggregate skyline join relation S

1: J ← computeJoin(A,B)
2: R← Aggregate(J, a)
3: S ← computeFullSkyline(R, p)

In [9], Jin et al. proposed the multi relational skyline op-
erator. They also designed algorithms to find such skylines
over multiple relations. In [16], Sun et al. coined the term
“skyline join” in the context of distributed environments.
They extended SaLSa [1] and also proposed an iterative al-
gorithm that prunes the search space in each step. ASJQ
queries differ in that it extends the skyline join proposed
in [9] with aggregate operations performed during the join.
This renders the use of the existing techniques inapplicable
as they work only on the local attributes.

There are various algorithms for joining such as nested-
loop join, indexed nested-loop join, merge-join and hash-
join [14]. Nested-loop joins can be used regardless of the
join condition. The other join techniques are more efficient,
but can handle only simple join conditions, such as natural
joins or equi-joins. Any of these join algorithms that is
applicable for the given query can be used with ASJQ al-
gorithms.

4 Algorithms
In this section, we describe the various algorithms that
have been designed to process the ASJQ queries. We start
with the naı̈ve one before moving on to the more sophisti-
cated algorithm that uses the multiple skyline computations
(MSC) approach. The last two algorithms—dominator-
based and iterative—improves upon the MSC approach.
For each algorithm, we also provide an analysis of its com-
putation cost.

The pseudocode of the algorithms assume the proce-
dures for computeFullSkyline, computeLocalSkyline, com-
puteJoin, and aggregate methods. The algorithms for these
methods are not shown, since any efficient skyline or join
algorithm can be plugged into these methods. The aggre-
gate method simply computes the aggregate operations on
the specified attributes. Even though the efficiency of the
entire method depends on the complexities of these algo-
rithms, we have not experimented with them as the focus
of this paper is on processing the ASJQ part.

4.1 Naı̈ve Algorithm

The naı̈ve method of processing ASJQ queries is shown
in Algorithm 1. It computes the join of the two input rela-
tions and applies the aggregate operations, before comput-
ing the skyline on the joined and aggregated relation using
the preferences. There are two costs involved in this al-
gorithm, joining cost and cost for the skyline computation.
The cost of aggregation is not included, because it can be
done when two tuples are joined, without any extra cost.

Set Flight numbers

A0

A1 11, 12

A′
1

A2 13, 14
A′

2 15, 16
A′

0 17

Table 3: Categorization of relation FlightsA from Table 1.

4.1.1 Analysis

We denote the cost of a skyline operation on a relation of
N tuples having a attributes by S(N, a). The cost of a join
operation on two relations of size N1 and N2 is denoted
by J(N1, N2). Since the aggregate operations are done as
part of the join, the cost of those operations are not taken
into account separately. Rather, if g attributes are aggre-
gated, the cost of the join is denoted by J(N1, N2, g), by
incorporating the parameter within it.

Assuming the relations A and B contain NA and NB

tuples respectively with n aggregate attributes, the cost of
joining and aggregation is J(NA, NB , n). The joined re-
lation contains at most NANB tuples, each having m1 +
m2 + n attributes, and therefore, the cost of skyline opera-
tion is S(NANB ,m1 +m2 + n).

When operating on large relations, the above costs are
impractical. However, an advantage of the algorithm, apart
from being the simplest to implement, is the fact that it is
independent of the distribution of the data.

4.2 Performing Skylines before Join

Processing ASJQ queries can be made more efficient by
pushing the join operation after the full skylines have been
evaluated in each relation, thereby discarding tuples that
are fully dominated by other tuples. These records are guar-
anteed not to exist in the ASJQ result set.

Denoting the full skyline sets in each relation by A0 and
B0 respectively, and the non-skyline sets by A′

0 and B′
0

respectively, i.e., A′
0 = A − A0 and B′

0 = B − B0, the
following theorem shows that any tuple formed by joining
a tuple from either A′

0 or B′
0 or both cannot be part of the

final skyline set.

Theorem 1. A tuple formed by joining a tuple that is not
a full skyline in the individual relation never exists in the
final skyline set.

Proof. Consider a tuple t′ ∈ A0 on B′
0 formed by joining

a tuple u ∈ A0 with a tuple v′ ∈ B′
0. Since v′ is not a full

skyline, there exists a tuple v ∈ B0 that fully dominates
v′. Consider the tuple t = u on v. The attributes in l1 of
t are equal to those of t′, but dominate in l2. Consider an
aggregate attribute g′

i = g1i⊕i g
′
2i

of t′. The corresponding
attribute value for t is gi = g1i

⊕i g2i
. Since g2i

dominates
g′
2i

and ⊕i is a monotone aggregate function, gi dominates
g′

i. Hence, overall, the tuple t dominates t′. Thus, t′ cannot
be part of the skyline.

Similarly, any tuple in A′
0 on B0 or A′

0 on B′
0 is dom-

inated by the tuple formed by joining the corresponding

Set Flight numbers

B0

B1 21, 22

B′
1

B2 23
B′

2 24, 25
B′

0 26, 27

Table 4: Categorization of relation FlightsB from Table 1.

dominators, and will never exist in the final skyline set.

As an example, consider flights 11 and 17. Flight 11
fully dominates flight 17 and satisfies the conditions for the
join attributes as well. This ensures that any other flight
joined with 17 (e.g., 21) can be joined with 11 as well, and
the resulting joined tuple (11, 21) will surely dominate (17,
21). Hence, flight 17 need not be considered any further.
On the other hand, even though flight 24 dominates flight
26 in the local and aggregate attributes, the join attributes
are not compatible as the sources of the flights are different.
Hence, a tuple joined with 26 will not be dominated by that
joined by 24 as the latter tuple is invalid according to the
join criteria.

Thus, following the above theorem, the tuples from the
sets A′

0 and B′
0 can be discarded. The remaining tuples

may or may not exist in the final result set. For example,
consider flight 23 in the second relation. It joins with three
tuples from the first relation as shown in Table 1(c). Of
these, (11, 23) exists in the final skyline set while (13, 23)
and (15, 23) do not as they are dominated by (11, 23).

However, not all possible joined tuples from A0 and B0

need to be examined. Each full skyline set can be further
divided by extracting the local skylines from them. Sup-
pose, the local skyline sets for A0 and B0 be A1 and B1

respectively. Correspondingly, let A′
1 and B′

1 be the set of
non-skyline points withinA0 andB0 respectively, i.e., they
are full skylines but not local skylines. Mathematically,
A′

1 = A0−A1 andB′
1 = B0−B1. The following theorem

shows that any tuple formed by joining a tuple from either
A1 or B1 or both must be part of the final skyline set.

Theorem 2. The tuples formed by joining either or both of
the tuples which are local skylines in the individual rela-
tions must exist in the final skyline set.

Proof. Consider a tuple t ∈ A1 on B′
1 formed by joining

a tuple u ∈ A1 with a tuple v′ ∈ B′
1. Since u is a lo-

cal skyline, there exists no tuple u′ ∈ A that locally (and
therefore, fully) dominates u. Thus, for any other joined
tuple t′ ∈ A on B, t′ cannot have local attributes of A that
dominate over t. Thus, t must be part of the skyline.

Similarly, any tuple in A′
1 on B1 or A1 on B1 is not

dominated by any other tuple in all the attributes, and will
therefore, always exist in the final skyline set.

Consider flight 11 in the first relation and 21 in the sec-
ond relation. Both are local skylines in the corresponding
full skyline sets, i.e., they are part of A0 and B0 respec-
tively. Any tuple joined with 11 (e.g., 23) must be part of

Algorithm 2 MSC Algorithm
Input: Relations A,B, preferences p, aggregate opera-

tions a
Output: Aggregate skyline join relation S

1: A0 ← computeFullSkyline(A)
2: B0 ← computeFullSkyline(B)
3: (A1, A

′
1)← computeLocalSkyline(A0)

4: (B1, B
′
1)← computeLocalSkyline(B0)

5: J ← computeJoin(A1, B1) ∪ computeJoin(A1, B
′
1) ∪

computeJoin(A′
1, B1)

6: R← Aggregate(J, a)
7: J ′ ← computeJoin(A′

1, B
′
1)

8: R′ ← Aggregate(J ′, a)
9: S ← R ∪ computeFullSkyline(R′, R) /* finds sky-

line points in R′ by treating the current skyline as R
*/

the final skyline as no other tuple can dominate (11, 23) in
the local attributes of the first relation, i.e., f1.amn and
f1.rtg.

However, nothing can be concluded directly about the
tuples formed by joiningA′

1 withB′
1—they may or may not

exist in the ASJQ result set. Though their local attributes
will be dominated, their aggregate attributes may be better,
and therefore, they may be part of the skyline. Consider
the joined tuple (13, 23). It is dominated by (11, 21) even
in the aggregate attributes, and is, hence, not a skyline. On
the other hand, the tuple (14, 24) is a skyline, even though
14 is locally dominated by 11 and 24 by 21; however, the
aggregate attributes of (14, 24) are more preferable. Hence,
the tuples in A′

1 on B′
1 needs to be processed to determine

the ASJQ records in it.
The ASJQ algorithms utilize Theorem 1 and Theorem 2

to reduce the processing by first determining the skyline
sets before joining.

In addition to the high processing costs, the naı̈ve al-
gorithm suffers from the problem of non-progressive result
generation, i.e., it presents the results only after complete
processing of the algorithms. In real applications with large
datasets, query processing may take a lot of time, and this
large response time, even for the first result, may be unde-
sirable for many users. This can be handled by devising
online algorithms that generate a subset of the full results
quickly and progressively generates the tuples thereafter.
Though the full results are still output only after complete
processing, these can be used in real-time applications.

MSC and the next set of algorithms achieve this by gen-
erating tuples that are sure to be in the final skyline set with-
out processing all the tuples in the joined relation.

4.3 Multiple Skyline Computations Algorithm

The Multiple Skyline Computations (MSC) algorithm
uses the results of the above two theorems, and imme-
diately outputs the tuples in A1 on B1, A1 on B′

1, and
A′

1 on B1. It then examines the tuples from A′
1 on B′

1

to determine whether they are part of the final skyline set.
Algorithm 2 shows the complete algorithm.

A
1

A
2

...

A
0

A’
1

A’
0

L G

Figure 1: Break-up of skyline sets for iterative algorithm.

Moreover, processing the joined relation, which is gen-
erally large, constitutes most of the processing cost. Hence,
algorithms that reduce the number of comparisons in the
joined relation without processing the whole relation im-
proves the efficiency of ASJQ processing.

Table 3 and Table 4 respectively show the division of the
setsA andB from Table 1 into the different categories. The
naı̈ve algorithm finds the skyline by examining 11 joined
tuples. Theorem 1 reduces the number of joined tuples to 6
(as shown in Table 1(c)). By applying Theorem 2, the MSC
algorithm reduces it further by computing the sets A′

1 and
B′

1. The total number of tuples in A′
1 on B′

1 on which the
final skyline needs to be computed is only 3.

4.3.1 Analysis

We next analyze the costs of the MSC algorithm. Using the
same notation as in the analysis of the naı̈ve algorithm, the
first two full skyline computations has a cost of S(NA, j +
m1 + n) + S(NB , j + m2 + n), where nC denotes the
cardinality of the set C. The cost of computing the local
skylines next are S(NA0 ,m1) + S(NB0 ,m2).

The total cost of computing the three joins, A1 on B1,
A1 on B′

1, andA′
1 on B1, is J(A1, B1, n)+J(A1, B

′
1, n)+

J(A′
1, B1, n). The full skyline operator is applied on the

tuples from A′
1 on B′

1, thereby incurring a cost of at most
S(NA′

1
.NB′

1
,m1 +m2 + n).

The MSC algorithm performs significantly better than
the naı̈ve one when the cardinality of the full skyline set
is low but that of the local skyline sets is high. A number
of skyline tuples can be generated quickly and only a few
ones (those in A′

1 on B′
1) require a complete investigation.

Since the skylines are computed locally, the number of lo-
cal attributes plays a big role. With more number of local
attributes, the size ofA1 (B1) grows. However, in that case,
the cardinality of A0 (B0), and hence, that of A′

1 (B′
1) will

be large as well, thereby reducing some of the benefits of
the MSC algorithm. Section 5 analyzes the effect of these
parameters.

4.4 Dominator-Based Approach

In order to further reduce the processing cost of tuples from
A′

1 on B′
1, the following two algorithms are designed. The

first algorithm makes use of dominator properties among
the tuples and prunes away unnecessary comparisons while
determining the ASJQ records within the set A′

1 on B′
1.

Algorithm 3 Dominator-Based Algorithm
Input: Relations A,B, local preferences l, preferences p,

aggregate operations a
Output: Aggregate skyline join relation S

1: A0 ← computeFullSkyline(A)
2: B0 ← computeFullSkyline(B)
3: (A1, A

′
1)← computeLocalSkyline(A0)

4: (B1, B
′
1)← computeLocalSkyline(B0)

5: (A1, A
′
1, DA)← findLocalDominators(A0, l) /* us-

ing Algorithm 4 */
6: (B1, B

′
1, DB)← findLocalDominators(B0, l) /* us-

ing Algorithm 4 */
7: J ← computeJoin(A1, B1) ∪ computeJoin(A1, B

′
1) ∪

computeJoin(A′
1, B1)

8: R← Aggregate(J, a)
9: J ′ ← computeJoin(A′

1, B
′
1)

10: R′ ← Aggregate(J ′, a)
11: S ← R∪ computeSkylineUsingDominators(R′, DA, DB)

/* finds skyline points in R′ by using dominator sets
DA, DB (Algorithm 5) */

Consider a tuple t′ ∈ A′
1 on B′

1 formed by joining tuples
u′ ∈ A′

1 and v′ ∈ B′
1, i.e., t′ = u′ on v′. The tuple t′ can be

dominated by only certain records of the skyline set (A1 on
B1) ∪ (A′

1 on B1) ∪ (A1 on B′
1). Identifying these records

avoids comparing with the whole sets. Suppose, the local
dominators of u′ (v′) are represented by ld(u′) (ld(v′)).
The following lemma proves that t′ can be dominated by
only those tuples t that are in ld(u′) on ld(v′), and nothing
else.

Lemma 1. A tuple t′ = u′ on v′ in A′
1 on B′

1 can be
dominated by only those tuples that are formed by join-
ing tuples in the local dominator sets of u′ and v′, i.e., in
ld(u′) on ld(v′).

Proof. Consider a tuple t′ = u′ on v′ ∈ A′
1 on B′

1. Also,
consider u which is not a local dominator of u′, i.e., u /∈
ld(u′), and a tuple t formed by joining u with any v ∈ B.
The local attributes l1 of t′ are not dominated by those in t
as then u′ would have been dominated by u. Thus, t cannot
dominate t′. Similarly, any t formed by joining any u with
v /∈ ld(v′) cannot dominate t′ as the local attributes of the
second relation will not be dominated. Hence, if t′ can only
be dominated by t ∈ ld(u′) on ld(v′).

The records in ld(u′) on ld(v′) are not guaranteed to
dominate t′ though. This is due to the fact that u′ con-
tains aggregate attributes that are not dominated by those
of ld(u′) (the reason being u′ belonging to the set A0, i.e.,
it is a full skyline). Hence, the tuple t′ may need to be
compared with all the tuples in ld(u′) on ld(v′). This re-
duces the computation cost of the last step of the MSC al-
gorithm significantly as it is not compared with all tuples
of (A1 on B1) ∪ (A′

1 on B1) ∪ (A1 on B′
1).

However, the previous steps perform more work by find-
ing the dominator sets for each tuple not in the local skyline
set. In other words, by increasing the cost of the MSC step

Algorithm 4 Skyline Computation and Finding Domina-
tors
Input: Relation A0, local preferences p
Output: Skyline set A1, Non-skyline set A′

1, Dominator
set D1

1: while r′ ← readRecord(A0) do
2: flag ← 0
3: while r ← readRecord(A0) do
4: if r locally dominates r′ using preferences p then
5: D(r′)← D(r′) ∪ r
6: flag ← 1
7: end if
8: end while
9: if flag = 0 then

10: A1 ← A1 ∪ r′

11: else
12: A′

1 ← A′
1 ∪ r′

13: D1 ← D1 ∪D(r′)
14: end if
15: end while
16: S ← (A1, A

′
1, D1)

to draw some conclusions among the records, the overall
computational cost is reduced by utilizing those properties
in the latter stages of the algorithm.

Algorithm 3 summarizes the approach. It uses Algo-
rithm 4 to find the local dominator sets for each record that
is in A′

1 (and B′
1). Algorithm 5 shows the subroutine that

utilizes these local dominator sets to determine whether a
tuple is in the final skyline set.

In the example in Table 1, flight 13 is locally dominated
by flights 11 and 12 while flight 23 is locally dominated by
flights 21 and 22. Therefore, to determine whether tuple
(13, 23) is a skyline in the ASJQ set, it needs to be checked
only against (11, 21). (The other combinations do not gen-
erate valid joined tuples.) This is a large improvement as
opposed to the MSC algorithm that checks (13, 23) against
5 joined tuples from (A1 on B1)∪(A′

1 on B1)∪(A1 on B′
1).

4.4.1 Analysis

We now analyze the costs of the dominator-based algorithm
with respect to the MSC algorithm. The first two full sky-
line computations has the same cost of S(NA,m1 + n) +
S(NB ,m2+n). The local skylines are computed next hav-
ing a total cost of S(NA0 ,m1) + S(NB0 ,m2).

In addition to the skyline computations, the dominator
sets are computed. Denoting the cost of dominator compu-
tation byD, the cost isD(NA0)+D(NB0). Note that even
though the dominators for only A′

1 andB′
1 tuples are main-

tained, all the tuples of A0 and B0 need to be processed.
Suppose, the size of the dominator sets are dA′

1
and dB′

1
respectively.

The skyline operator is next applied on the tuples from
A′

1 on B′
1 using the dominators found in the previous step.

This cost is at most SD(NA′
1
.NB′

1
, dA′

1
× dB′

1
, n). Note

that the dimensionality of the skyline operation using domi-
nators here is only n, i.e., only the aggregate attributes need

Algorithm 5 Skyline Computation using Dominators
Input: Non-skyline set R′, Dominator sets DA, DB , pref-

erences p, aggregate operations a
Output: Skyline set R

1: while r′ ← readRecord(R′) do
2: r′ ← u on v
3: flag← 0
4: while dA ← readDominator(r′, DA) do
5: /* read record from DA that locally dominates u

*/
6: while dB ← readDominator(r′, DB) do
7: /* read record from DB that locally dominates

v */
8: r ← Aggregate(dA on dB , a) /* read full

record from R that has dA and dB */
9: if r fully dominates r′ according to preferences

p then
10: discard r′

11: flag← 1
12: break
13: end if
14: end while
15: if flag = 1 then
16: break
17: end if
18: end while
19: if flag = 0 then
20: R← R ∪ r′

21: end if
22: end while

to be checked for dominance, as the local attributes are, by
definition, dominated by the local dominators.

Finally, the total cost of computing the three other joins,
A1 on B1, A1 on B′

1, and A′
1 on B1, is the same as that of

the MSC algorithm, and can be denoted by J(A1, B1, n)+
J(A1, B

′
1, n) + J(A′

1, B1, n).
The dominator-based algorithm thus performs well

when the dominator sets are small. Otherwise, the over-
head of dominator computation may be too large to gain
any speedup over the MSC algorithm. Section 5 compares
these algorithms experimentally.

4.5 Iterative Algorithm

The dominator-based algorithm involves computation of
local dominator sets which can be costly. By eliminating
the costly dominator computations, we devise another algo-
rithm which is iterative in nature and is an attractive online
algorithm.

The main cost of the MSC algorithm is the skyline com-
putation on the join of the two sets A′

1 and B′
1. This al-

gorithm reduces the complexity of this cost by further di-
viding the setA′

1 (B′
1) into local skylinesA2 (B2) and non-

skylinesA′
2 (B′

2). Iteratively, this is proceeded until the car-
dinality of the non-skyline set is less than a preset threshold
δ. The relation A0 (similarly, B0) is thus subdivided into
A1, A2, . . . , Ak, A

′
k, as shown in Figure 1.

Algorithm 6 Iterative Algorithm
Input: Relations A,B, local preferences l, preferences p,

aggregate operations a
Output: Aggregate skyline join relation S

1: A0 ← computeFullSkyline(A)
2: B0 ← computeFullSkyline(B)
3: i← 1
4: while |A′

i| ≤ δ do
5: Ai+1 ← computeLocalSkyline(Ai)
6: i← i+ 1
7: end while
8: LA ← i /* Number of levels of skyline sets in A */
9: j ← 1

10: while |B′
j | ≤ δ do

11: Bj+1 ← computeLocalSkyline(Bj)
12: j ← j + 1
13: end while
14: LB ← j /* Number of levels of skyline sets in B */
15: J ← computeJoin(A1, B1) ∪ computeJoin(A1, B

′
1) ∪

computeJoin(A′
1, B1)

16: G← Aggregate(J, a)
17: S ← G
18: i← 1, j ← 1
19: while i ≤ LA do
20: while j ≤ LB do
21: J ′

ij ← computeJoin(A′
i, B

′
j)

22: G′
ij ← Aggregate(J ′

ij , a)
23: S ← S ∪ computeSkylineUsingTargetSets(G′

ij)
24: j ← j + 1
25: end while
26: i← i+ 1
27: end while

By observing certain relationships among these sets, we
can determine that the dominators of the records of a set
exist only in a few of the other sets, and it needs to be
compared only with those sets. For example, a tuple in
A2 on B2 needs to be compared with tuples in A1 on B1

only, thereby eliminating unnecessary comparisons with
tuples in (A1 on B′

1) ∪ (A′
1 on B1) ∪ (A′

1 on B′
1).

Lemma 2. A tuple in A2 on B2 can be dominated only
by a tuple in A1 on B1 and not by any tuple in (A1 on
B′

1) ∪ (A′
1 on B1) ∪ (A′

1 on B′
1).

Proof. Consider a tuple t′ = u′ on v′ ∈ A2 on B2. Con-
sider any other tuple t = u on v ∈ A′

1 on B1. If t dominates
t′, then the l1 local attributes of t pertaining to umust dom-
inate that of u′. However, since A2 is in the local skyline
set ofA′

1, this contradicts the fact that no tuple inA′
1 locally

dominates a tuple in A2. Similarly, no tuple in A1 on B′
1 or

A′
1 on B′

1 can dominate t′.

For each such set Ai on Bj , there exists target sets,
within which it has to search for its dominators and test
for the ASJQ requisites. We show the target sets up to two
iterations in Table 5.

The iterative algorithm is summarized in Algorithm 6.
In each relation, the skyline sets are computed till the

Set Target Sets
A2 on B2 A1 on B1

A2 on B′
2 A1 on B1, A1 on B′

1

A′
2 on B2 A1 on B1, A′

1 on B1

A′
2 on B′

2 A1 on B1, A1 on B′
1, A′

1 on B1

Table 5: Target sets for iterative algorithm.

threshold δ is reached. All combinations of such non-
skyline sets are then joined, and the dominators for ag-
gregates are checked only against the corresponding target
sets.

The computeSkylineUsingTargetSets method men-
tioned in the algorithm determines the skyline records in
the set Sij by comparing only with the target sets corre-
sponding to it as shown in Table 5. The first iteration of the
iterative algorithm remains the same as in the MSC algo-
rithm. In the second iteration, the setsA2 andB2 are joined
and these are compared with only the target sets shown in
Table 5. Similarly, in the next iteration, local skyline is fur-
ther computed inA′

2 andB′
2, and so on until the cardinality

falls below the threshold δ.
For the running example given in Table 1, the break-

up of the relations into the different sets A1, A2, etc. are
shown in Table 3 and Table 4. Here, A′

2 and B′
2 are not

further categorized, as they have only two tuples, and no
tuple dominates the other. In other words, A3 = A′

2 and
B3 = B′

2, and the sets A′
3 and B′

3 are empty. Hence, this is
considered as the last iteration.

4.5.1 Analysis

The cost analysis of the iterative algorithm depends heavily
on the cardinality of the non-skyline sets produced progres-
sively. The number of tuples that are joined remains the
same as in the MSC approach. However, the ASJQ compu-
tation cost for the tuples in A′

i on B′
j reduces significantly,

since the search space for each tuple is iteratively pruned,
and is thus, optimized.

As a result, it performs significantly better in compar-
ison to the other algorithms for datasets with large non-
(full)skyline sets. This is due to the fact that the non-skyline
sets are not blindly joined with each other, but rather only
the relevant records are joined and compared in a progres-
sive manner. This cuts down many unnecessary skyline
tests, thereby improving the efficiency.

4.6 ASJQ with Single Aggregate Attribute

A special case of the Aggregate Skyline Join Query is when
it involves only a single aggregate attribute. The processing
then becomes substantially easier. As shown in Section 4.2,
the records which do not exist in the full skyline set of each
relation (i.e., those in A′

0 and B′
0) are discarded. However,

when the number of aggregate attributes is one, even the
tuples formed by joining A0 with B0 do not need to be
examined. An interesting observation, summarized in the
following lemma, leads to the expeditious generation of the

Parameter Symbol Value
Number of local attributes L 2

Number of aggregate attributes G 2
Cardinality of datasets N 40000
Number of categories C 10

Distribution of datasets D Correlated

Table 6: Default parameters for synthetic data.

skyline points. The tuples in A0 on B0 are guaranteed to be
part of the final skyline set.

Lemma 3. When there is only one aggregate attribute, the
tuples formed by joining the full skyline points of each re-
lation always exist in the ASJQ result set.

Proof. Consider the set A0 (B0) to be divided it into lo-
cal skyline set A1 (B1) and non-skyline records A′

1 (B′
1).

Using Theorem 2, the tuples in A1 on B1 exist in the final
skyline set.

Consider a tuple t′ = u′ on v′ ∈ A′
1 on B′

1. We claim
that there does not exist any tuple t = u on v that dominates
t′ fully. To counter the claim, assume that such a tuple t
exists. Since t dominates t′, the local attributes of t must
dominate those in t′. Thus, u � u′ and v � v′. Next,
consider the aggregate attribute of t′, expressed as gt′ =
gu′⊕gv′ . Note that since u′ is a full skyline record, no tuple
and in particular u, can dominate u′ in all the attributes.
That is to say, u′ must dominate u in the aggregate attribute,
since it is being dominated in all the other (local) attributes,
i.e., gu′ dominates gu. Similarly, gv′ dominates gv . Since
the aggregate function ⊕ is a monotone function, gt′ =
gu′ ⊕ gv′ dominates gt = gu ⊕ gv . Therefore, the claim
that t dominates t′ fully is false. Consequently, the tuple t′
must be in the final skyline set.

Similarly, any tuple in (A′
1 on B1) ∪ (A1 on B′

1) must
also be a skyline record. Together, all the tuples in A0 on
B0 exist in the ASJQ result set.

Therefore, when there is only one aggregate attribute, an
algorithm that divides the full skyline sets into local sky-
lines and non-skylines, and returns the join of the two local
skyline sets as the final ASJQ result, is the optimal algo-
rithm.

5 Experimental Evaluation
In this section, we evaluate the ASJQ algorithms exper-
imentally. We implemented them in Java on an Intel
Core2Duo 2GHz machine with 2GB RAM in Linux envi-
ronment. We used the synthetic dataset generator given in
http://www.pgfoundry.org/projects/randdataset/ and used
in [2]. We also used a real dataset of statistics of basket-
ball players obtained from http://www.databasebasketball.
com/. For the skyline algorithm, we employed the SFS
method [4]1, and used hash-join [14] for implementing the
join.

1The choice of SFS versus other algorithms such as LESS [7] does not
matter as the focus is on the join and not the skyline computation.

N D L G C

Setting 1 10000 Correlated 2 3 10
Setting 2 10000 Correlated 3 2 10
Setting 3 3162 Independent 2 2 10
Setting 4 316 Anti-Correlated 1 2 10
Setting 5 316 Independent 2 1 10

Table 7: Experimental settings.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

1 2 3 4 5

R
un

ni
ng

 ti
m

e
(s

)

Settings

Naive
MSC

Dominator
Iterative

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 2 3 4 5

C
ar

di
na

lit
y

of
 A

S
JQ

Settings

(a) Running time. (b) Cardinality of ASJQ.

Figure 2: Comparison with naı̈ve algorithm.

We analyze the execution times of the four algorithms:
(1) Naı̈ve, (2) MSC, (3) Dominator-based, and (4) Itera-
tive, based on the following parameters: (i) number of lo-
cal attributes (L), (ii) number of aggregate attributes (G),
(iii) cardinality of datasets (N), (iv) number of categories in
each relation for joining attribute assuming equi-join (C),
and (v) distribution of datasets (D). Unless mentioned oth-
erwise, the default settings of the five parameters for exper-
iments with the synthetic data are given in Table 6.

5.1 Performance of the naı̈ve algorithm

The first experiment examines the difference in perfor-
mance of the naı̈ve with the other ASJQ algorithms. We
use five random settings of synthetic datasets as shown in
Table 7. The plots in Figure 2 compare the execution times
of the different algorithms. The join condition is an equi-
join on a single attribute.

For all the five settings, the naı̈ve algorithm requires
much higher running times. Further, while the performance
of the other algorithms depends on the final cardinality of
the ASJQ result set and is proportional to it, the naı̈ve al-
gorithm is more or less independent of the final cardinality.
This is due to the fact that it spends most of the time in com-
puting the join of the relations and then applies the skyline
operator on the large joined relation.

Due to the large gap in the running times, we conclude
that the naı̈ve algorithm is not practical in comparison to
the other algorithms. Consequently, we do not report the
results of the naı̈ve algorithm any further.

5.2 Effect of dimensionality

The first experiment measures the effect of the number of
local attributes (L) on the algorithms. Figure 3(a) shows
that the running time increases sharply when L increases.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

Number of local attributes, L

MSC
Dominator

Iterative

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 2 3 4 5 6

C
ar

di
na

lit
y

of
 A

S
JQ

Number of local attributes, L

(a) Running time. (b) Cardinality of ASJQ.

Figure 3: Effect of number of local attributes.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)
Number of aggregate attributes, G

MSC
Dominator

Iterative

 300

 600

 900

 1200

 1500

 1800

 2100

1 2 3 4 5 6

C
ar

di
na

lit
y

of
 A

S
JQ

Number of aggregate attributes, G

(a) Running time. (b) Cardinality of ASJQ.

Figure 4: Effect of number of aggregate attributes.

This can be attributed to the fact that the cardinality of
the ASJQ result set increases almost exponentially (Fig-
ure 3(b)). As the dimensionality of the datasets (i.e., the
number of attributes) increases, the probability of a tu-
ple being dominated in all the attributes decreases, thereby
sharply increasing the number of skyline records.

The iterative algorithm shows the best scalability since
it processes the skyline sets progressively. At lower dimen-
sions, the time to find the full skyline sets in the individual
relations is the dominating factor of the overall time, and
hence, there is little difference between the algorithms.

Figure 4(a) and Figure 4(b) show similar trends. Inter-
estingly, the absolute times are much lower than the cor-
responding number of local attributes. Incrementing the
number of local attributes increases the dimensionality in
the joined relation by two, whereas it only increases by one
for aggregate attributes. Thus, the effect of dimensional-
ity is less pronounced. Consequently, the cardinality of the
final ASJQ set is less.

The MSC algorithm performs better than the dominator-
based algorithm since the number of local attributes is
small and the local dominator sets are larger. Consequently,
the overhead of dominator computation and comparison
offsets the advantages.

5.3 Effect of dataset cardinality

The next experiment measures the effect of the cardinality
of the individual relations on ASJQ processing. The car-
dinality of the joined relation increases quadratically with

 0

 20

 40

 60

 80

 100

 120

10000 20000 30000 40000 50000

R
un

ni
ng

 ti
m

e
(s

)

Cardinality of datasets, N

MSC
Dominator

Iterative

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

0 10000 20000 30000 40000 50000

C
ar

di
na

lit
y

of
 A

S
JQ

Cardinality of datasets, N

(a) Running time. (b) Cardinality of ASJQ.

Figure 5: Effect of dataset cardinality.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Cor Ind AntiCor

R
un

ni
ng

 ti
m

e
(s

)

Distribution

MSC
Dominator

Iterative

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Cor Ind AntiCor

C
ar

di
na

lit
y

of
 A

S
JQ

Distribution

(a) Running time. (b) Cardinality of ASJQ.

Figure 6: Effect of dataset distribution.

the individual cardinality, assuming that the data distribu-
tion remains the same. For example, assume two datasets
withN = 104 tuples each. If an equi-join condition is used
where the number of categories of the joining attributes is
assumed to be 10, each category has on an average 103

tuples. Hence, the total cardinality of the joined relation
becomes 10× (103)2 = 107.

Figure 5, however, shows that the cardinality of the
ASJQ result set does not increase quadratically. (The figure
reports results for 4 local and 4 aggregate attributes. The
cardinality and the running time for L = 2 andG = 2 were
too low.) The number of skyline records depends more on
other parameters of the dataset, such as dimensionality and
distribution. Consequently, the scalability of the ASJQ al-
gorithms with N is better.

5.4 Effect of dataset distribution

We measured the effect of three standard data
distributions—correlated, independent, and anti-
correlated—on the ASJQ algorithms. The results are
shown in Figure 6. The cardinality for the correlated
dataset is very small, while that for the anti-correlated
dataset is quite large. In a perfectly correlated dataset,
there is only one skyline record, which dominates all other
records. In a perfectly anti-correlated dataset, every record
is in the skyline set. The independent dataset is mid-way,
and the cardinality depends on the dimensionality. This
behavior is reflected in the results.

For the correlated and the independent datasets, the run-

 0

 5

 10

 15

 20

 25

 30

 35

1 5 10 50 100

R
un

ni
ng

 ti
m

e
(s

)

Number of categories, C

MSC
Dominator

Iterative

 1200

 1500

 1800

 2100

 2400

 2700

 3000

1 5 10 50 100

C
ar

di
na

lit
y

of
 A

S
JQ

Number of categories, C

(a) Running time. (b) Cardinality of ASJQ.

Figure 7: Effect of number of categories of join attribute.

ning times of the three algorithms are similar, while for
the anti-correlated dataset, the iterative algorithm shows an
advantage, as it processes the large dominator sets progres-
sively by only comparing it with certain target sets.

5.5 Effect of number of categories of join attribute

The final experiment on synthetic data measures the effect
of the number of categories of the join attribute. We as-
sume that only one attribute used for joining the two rela-
tions, and the join condition is an equi-join. The number of
categories signifies the possible values of the join attribute.

For datasets with cardinality N and number of cate-
gories C, assuming an uniform distribution of the join at-
tribute, the total cardinality of the joined relation is C ×
(N/C)2 = N2/C. Hence, as C increases, the cardinality
decreases. WhenC = 1, the join degenerates to a Cartesian
product of the two relations with N2 tuples.

The cardinality of the ASJQ, however, does not decrease
with C. As shown in Figure 7(b), it attains a maximum
in the middle. When C is low, even though the number
of tuples is high, the chance of a tuple dominating others
is higher as the join attribute is same for more number of
tuples. At higher values of C, the number of joined tuples
becomes small, leading to lower ASJQ cardinality.

Figure 7(a) shows that regardless of the cardinality, the
running time increases with increasingC. WhenC is more,
the initial full skyline sets (A0 andB0) are larger as there is
less probability of a tuple matching another tuple in the join
attribute, and therefore, dominating it. Consequently, the
latter stages of the algorithm are affected and the running
time increases.

5.6 Real Datasets

In this section, we evaluate the performance of the ASJQ
algorithms for a real dataset. The real dataset consists of the
statistics of basketball players obtained from http://www.
databasebasketball.com/. The cardinality of the dataset was
N = 104 with 3 local attributes (L = 3) and 2 aggregate
attributes (G = 2). We performed a self-join of the dataset
with the join condition as equality.

Four settings were created by varying the number of join
attributes. In setting 1, year was used as the join attribute,
while in setting 2, the dataset was joined on the team. For

 0

 300

 600

 900

 1200

 1500

1 2 3 4

R
un

ni
ng

 ti
m

e
(s

)

Settings

MSC
Dominator

Iterative

 0

 4000

 8000

 12000

 16000

 20000

 24000

 28000

1 2 3 4

C
ar

di
na

lit
y

of
 A

S
JQ

Settings

(a) Running time. (b) Cardinality of ASJQ.

Figure 8: Real datasets.

setting 3, no join attribute was used, which corresponds to
the Cartesian product of the relations. Setting 4 used both
the attributes for joining.

The results are summarized in Figure 8. The cardinality
of the final ASJQ result set was the highest when no join
attribute was used (setting 3) and was lowest when both
the attributes were used (setting 4). The running times re-
flected the trends of the cardinalities. The iterative algo-
rithm performed the best, followed by the dominator-based
approach. The MSC algorithm was the slowest. The strat-
egy of the iterative algorithm to prune progressively proved
to be the best.

6 Conclusions
In this paper, we have proposed a novel query, the AG-
GREGATE SKYLINE JOIN QUERY (ASJQ). This extends
the general skyline operator to multiple relations involving
joins using aggregate operations over attributes from differ-
ent relations. The ASJQ processing is explained with the
MSC approach, dominator-based approach and the itera-
tive approach, in addition to the naı̈ve algorithm. Extensive
experiments confirm that our algorithms perform well with
real datasets, and also scale nicely with dimensionality and
cardinality of the relations. In future, we would like to ex-
tend ASJQ to distributed environments and devise parallel
algorithms to process the queries more efficiently.

References
[1] I. Bartolini, P. Ciaccia, and M. Patella. SaLSa: Com-

puting the skyline without scanning the whole sky. In
CIKM, pages 405–414, 2006.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The sky-
line operator. In ICDE, pages 421–430, 2001.

[3] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust car-
dinality and cost estimation for skyline operator. In
ICDE, page 64, 2006.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Sky-
line with presorting. In ICDE, pages 717–719, 2003.

[5] H. Eder. On extending PostgreSQL with the skyline
operator. Master’s thesis, Vienna University of Tech-
nology, 2009.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggre-
gation algorithms for middleware. In PODS, pages
102–113, 2001.

[7] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In VLDB, pages 229–
240, 2005.

[8] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu.
Processing queries by linear constraints. In PODS,
pages 257–267, 1997.

[9] W. Jin, M. Ester, Z. Hu, and J. Han. The multi-
relational skyline operator. In ICDE, pages 1276–
1280, 2007.

[10] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: an online algorithm for skyline queries. In
VLDB, pages 275–286, 2002.

[11] H. T. Kung, F. Luccio, and F. P. Preparata. On finding
the maxima of a set of vectors. J. ACM, 22(4):469–
476, 1975.

[12] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and
evaluation of a resource selection framework for grid
applications. In HPDC, page 63, 2002.

[13] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An opti-
mal and progressive algorithm for skyline queries. In
SIGMOD, pages 467–478, 2003.

[14] A. Silberschatz and H. F. Korth. Database System
Concepts. McGraw-Hill, 1991.

[15] M. Stonebraker and J. M. Hellerstein. Content inte-
gration for e-business. In SIGMOD, pages 552–560,
2001.

[16] D. Sun, S. Wu, J. Li, and A. K. H. Tung. Skyline-join
in distributed databases. In ICDE Workshops, pages
176–181, 2008.

