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Abstract

In this paper, we present a program transformation
approach to compute the stable models of general de-
ductive databases. Stable models have important ap-
plications in knowledge representation, database in-
tegration and repairs as well as in efficiently solving
NP-complete problems. The method introduced in the
paper first transforms the given deductive database
with arbitrary negation into a “semantically” equiv-
alent deductive database with “limited” negation. It
then computes the “Fitting” model (a weaker form of
the well-founded model) in a bottom-up manner. The
Fitting model is a unique 3-valued model and the pro-
posed method uses this model as a starting point to
generate-and-test models for stability. Experimental
analysis shows a large speed-up compared to generat-
ing the stable models from definition.

The transformation algorithm introduces two new
predicates, p plus and p minus, for each predicate p in
the original deductive database. These new predicates
collect the positive and negative conclusions for the
predicates from the database defined by the Fitting
model. The transformed database does not contain
the original negations as they are replaced by the plus
and minus versions of the predicates. Although the
transformation algorithm introduces negations, these
are easily handled by traditional bottom up evalua-
tors as these negations are always present in a limited
manner.

1 Introduction

Deductive databases were introduced over 30 years ago
([5, 6, 7]) as a powerful extension to the relational data
model with recursive views. A deductive database con-
sists of a set of facts that correspond to a relational
database and a set of logical rules that define new
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predicates that correspond to relational views. How-
ever, unlike relational databases where the views are
restricted to be non-recursive, deductive databases can
express recursive views. For example, the following is a
deductive database expressing data related to a graph
and a recursive view defining the predicate path:

edge(a,b).
edge(b,c).
edge(c,d).
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

Deductive rules with arbitrary negation in their
bodies are much more expressive and can represent
many views that are not possible with rules without
negation or with restricted negation such as strati-
fied negation, where negation is not allowed within
a recursive view. Deductive databases with arbitrary
negation in the body of rules have important appli-
cations in knowledge representation, data integration
and database repairs, and many other emerging areas.

The semantics of deductive databases with negation
have been studied in great detail over the past sev-
eral decades and two popular semantics have emerged.
These are the well founded model semantics ([17]) and
the stable model semantics ([8]). These semantics are
well understood but there has not been sufficient re-
search in devising efficient methods to compute these
models. In [2], a bottom-up algebraic approach to
compute the Fitting model (a weaker version of the
well-founded model) was proposed which utilized a
paraconsistent relational model and algebra ([1]). The
paraconsistent data model extends the traditional re-
lational model with explicit negation by allowing both
positive and negative facts to be stored in paraconsis-
tent relations. The relational algebraic operators were
appropriately extended to operate on paraconsistent
relations.

In this paper we use some of the ideas from the
paraconsistent relational model and algebra to devise
a program transformation method which transforms



a deductive database with arbitrary negation into a
Fitting-model equivalent deductive database in which
the negation is present in a very controlled manner.
In particular, the negations that are introduced in
the transformed database always appear in predicates
whose argument variables are constrained to take val-
ues from the domain of all values. The transformed
database has several advantages including the possi-
bility of using traditional bottom up evaluators that
have been proven to be efficient in computing the de-
sired models of the database. The bottom-up evalua-
tor is easily able to handle the constrained negations
by using the difference operator of the relational alge-
bra.

The unique 3-valued Fitting model generated in a
bottom-up manner provides the starting point for a
generate-and-test procedure to compute the different
stable models of the original deductive database. The
“unknowns” are assigned truth values and the result-
ing complete model is tested for stability. Experimen-
tal results indicate a considerable speed-up compared
to computing the stable models from definition.

Computing stable models have important appli-
cations in speeding up solutions to a class of NP-
complete problems. NP-Datalog ([10, 9]) is a sim-
plified version of Datalog with unstratified negation,
which allows the user to express NP search and opti-
mization problems in a simple and intuitive way. The
solutions to the NP-complete problems are obtained
by computing the stable models of NP-Datalog pro-
grams. We envision that the methodology proposed in
this paper to compute the stable models can provide a
better (and faster) alternative to solve the NP-Datalog
formulations of the intrinsically difficult problems in
NP search and optimization.

The paper is organized as follows: Section 2
presents some background information necessary to
follow the rest of the paper, Section 3 introduces the
database transformation algorithm along with exam-
ples, Section 4 presents the stable model computation
approach, and Section 5 discusses the experimental re-
sults. Finally, Section 6 presents concluding remarks
and possible directions for future work.

2 Background

In this section we give a brief overview of general de-
ductive databases and two popular semantics: the Fit-
ting model and the Stable model. For a detailed ex-
position the reader is referred to ([4] and [8]).

We assume an underlying language with a finite set
of constant, variable, and predicate symbols, but no
function symbols. A term is either a variable or a
constant. An atom is of the form p(t1, . . . , tn), where p
is a predicate symbol and the ti

′s are terms. A literal
is either a positive literal A or a negative literal ¬A,
where A is an atom. For any literal l we let l′ denote its
complementary literal, i.e. if l is positive then l′ = ¬l,

otherwise l = ¬l′.
Definition 1: A general deductive database is a finite
set of clauses of the form

a← l1, l2, . . . , lm

where a is an atom, m ≥ 0 and each li is a literal.
A term, atom, literal, or clause is called ground if

it contains no variables. A ground instance of a term,
atom, literal, or clause Q is the term, atom, literal, or
clause, respectively, obtained by replacing each vari-
able in Q by a constant. For any general deductive
database DB, we let DB? denote the set of all ground
instances of clauses in DB. Note that since the under-
lying language has no function symbols, unlike logic
programs, DB? is always finite.

The Herbrand Base of the underlying language is
the set of all ground atoms. Any subset of the Her-
brand Base is termed a Herbrand interpretation (atoms
in the interpretation are assumed to be true and those
outside the interpretation are assumed to be false). A
Herbrand interpretation is a model of the database if
all the facts and rules evaluate to true in the inter-
pretation. A model is a minimal model if none of its
proper subsets is a model.
Definition 2: A partial interpretation is a pair I =
〈I+, I−〉, where I+ and I− are any subsets of the Her-
brand Base.

2.1 Fitting Model

The Fitting model of a general deductive database DB
is the least fixpoint of the immediate consequence func-
tion TF

DB on consistent partial interpretations defined
as follows:
Definition 3: Let I be a partial interpretation. Then
TF
DB(I) is a partial interpretation, given by

TF
DB(I)+ = {a | for some clause a← l1, . . . , lm in DB?,

for each i, 1 ≤ i ≤ m,

if li is positive then li ∈ I+, and

if li is negative then l′i ∈ I−},
TF
DB(I)− = {a | for each clause a← l1, . . . , lm in DB?,

there is some i, 1 ≤ i ≤ m,

such that

if li is positive then li ∈ I−, and

if li is negative then l′i ∈ I+}.

It is obvious that TF
DB is monotonic and thus pos-

sesses a least fixpoint, which is referred to as the Fit-
ting model for DB. In other words, starting from an
empty partial interpretation as the initial value of I,
if we repeatedly apply the TF

DB operator to the previ-
ous value of I to generate the next value of I, we are
assured to reach a steady state where no more values
are added to the input I in the output.

Let DB be the following general deductive
database:



r(a,c).
r(b,b).
s(a,a).
p(X) :- r(X,Y), not p(Y).
p(Y) :- s(Y,a).

We start with the empty partial interpretation:
〈∅, ∅〉. Then,

(TF
DB(< ∅, ∅ >)+ = { r(a,c), r(b,b), s(a,a) }

(TF
DB < ∅, ∅ >)− = { r(a,a), r(a,b), r(b,a),

r(b,c), r(c,a), r(c,b),

r(c,c), s(a,b), s(a,c),

s(b,a), s(b,b), s(b,c),

s(c,a), s(c,b), s(c,c)}

TF
DB(TF

P (< ∅, ∅ >))+ = I ∪ TF
DB(< ∅, ∅ >), where

I is the partial interpretation 〈 {p(a)}, {p(c)}〉. At
this point we reach a steady state. Note that in the
Fitting model the atom p(a) is true and the atom p(c)
is false. No truth value is assigned to the atom p(b).

2.2 Stable Model

The stable model semantics was originally introduced
by Gelfond and Lifschitz ([8]) as a two-valued model
for general deductive databases. They defined a trans-
formation, called the GL-transform, that converted a
(ground) general deductive database into a negation-
free (ground) deductive database based on a given Her-
brand interpretation. The given interpretation was
called stable if it coincided with the minimal model of
the transformed database. The GL-transform is dis-
cussed now.

For any set S of atoms from the Herbrand base
of a general deductive database DB, let DBS be the
program obtained from DB by deleting:

1. each rule with a negative literal not Bi in body
with Bi ∈ S, and

2. all negative literals from bodies of remaining rules.

If S is a minimal model of DBS , then S is a stable
model of DB.

Consider the program

p(1,2).
q(x) :- p(x,y), not q(y).

The set of constants is {1,2} and the set of ground
atoms is {q(1), q(2), p(1,1), p(1,2), p(2,1),
p(2,2)}. Let δ be obtained from the program with
the second rule replaced by its ground instances:

p(1,2).
q(1) :- p(1,1), not q(1).
q(1) :- p(1,2), not q(2).
q(2) :- p(2,1), not q(1).
q(2) :- p(2,2), not q(2).

Let S={q(2)}. Then δS is

p(1,2).
q(1) :- p(1,1).
q(2) :- p(2,1).

The minimal Herbrand model of this program is
{p(1,2)}, which is different from S, thus S is not sta-
ble. Now let S={p(1,2),q(1)}. In this case, δS is

p(1,2).
q(1) :- p(1,2).
q(2) :- p(2,2).

The minimal Herbrand model of this program is
{p(1,2), q(1)}, i.e., S. Hence {p(1,2), q(1)} is
stable.

3 Database Transformation

Consider a general deductive database, DB, consisting
of an extensional part EDB and an intensional part
IDB. Without loss of generality, we will assume that
there are no predicates common to EDB and IDB.
For each predicate p of DB, we introduce two predi-
cates p plus and p minus in the transformed general
deductive database tr(DB). p plus will be used to
collect all positive consequences of the database under
predicate p. Similarly, p minus will collect all negative
consequences of p.
Example 1: We will illustrate the steps of the trans-
formation algorithm on the following general deductive
database (found in [15]):

%% Extensional Database
t0(1).
g(1,2,3).
g(2,5,4).
g(2,4,5).
g(5,3,6).
%% Intensional Database
t(Z) :- t0(Z). %% rule 1
t(Z) :- g(X,Y,Z), t(X). %% rule 2
t(Z) :- g(X,Y,Z), not t(Y). %% rule 3

This database instance with rules is inspired from
an electronic circuit shown in Figure 1. In the circuit,
each logic gate consists of one positive input and one
negative input. The EDB predicate g(X,Y,Z) states
the input-output relationship for a logic gate; here X
is the positive input, Y is the negative input, and Z is
the output. There is a second EDB predicate t0 that is
true of those input terminals that are set externally to
1. Input terminals that are set to 0 do not appear in
t0. The three rules define a predicate t(Z) which gives
the value at a particular terminal. If a gate has either
positive input X or negative input Y, then its output
is 1 or “true” if and only if either X is 1 (“true”) or Y
is 0(“false”).



Figure 1: Circuit for Example 1 (source: [15])

3.1 Transformation Algorithm

The transformation of DB is done in four steps:

Step 1: Domain Predicate:

Introduce a unique unary predicate dom. For each con-
stant symbol, a, present in DB, output the fact:

dom(a).

For the example database, the following facts are pro-
duced in the output of Step 1:

dom(1).
dom(2).
dom(3).
dom(4).
dom(5).
dom(6).

Step 2: Extensional Database:

For each fact p(a1,...,an) in EDB, output the fact:

p_plus(a1,...,an).

For each predicate p with arity k in EDB, output the
rule:

p_minus(X1,...,Xk) :-
dom(X1),...,dom(Xk),
not p_plus(X1,...,Xk).

For the example database, the following facts and rules
are produced in the output of Step 2:

t0_plus(1).
t0_minus(X) :- dom(X), not t0_plus(X).

g_plus(1,2,3).
g_plus(2,5,4).
g_plus(2,4,5).
g_plus(5,3,6).
g_minus(X,Y,Z) :-
dom(X), dom(Y), dom(Z),
not g_plus(X,Y,Z).

Step 3: Intensional Database:

Consider a rule in IDB of the form:

p(W1,...,Wl) :-
q1(X1), ..., qn(Xn),
not r1(Y1), ..., not rm(Ym).

where p, q1, ..., qn, r1, ..., rm are positive
predicates, W1,..., Wl are distinct variables, and
X1, ..., Xn, Y1, ..., Ym are vectors of vari-
ables/constants. For each such rule, perform Steps
3a and 3b.

Step 3a. Output “plus” rule:

Output the following rule for p plus:

p_plus(W1,...,Wl) :-
q1_plus(X1), ..., qn_plus(Xn),
r1_minus(Y1), ..., rm_minus(Ym).

For the example database, the following plus rules will
be produced:

t_plus(Z) :- t0_plus(Z).
t_plus(Z) :- g_plus(X,_,Z), t_plus(X).
t_plus(Z) :- g_plus(_,Y,Z), t_minus(Y).

Step 3b. Output temporary “minus” rules:

Let V1, ..., Vk be the distinct variables present in
the body of the rule. We shall assume that the distinct
variables present in the head of the rule are also present
in the body of the rule (an assumption usually made in
general deductive databases to ensure safety of rules).
Let W1, ..., Wl be the distinct variables in the head
of the rule.

Step 3b-1:

For each positive subgoal in rule, qi(Xi), output:

temp_p_j(V1,...,Vk) :-
dom(U1),..., dom(Ua), qi_minus(Xi).

where j is the unique rule number and {U1,..., Ua}
is the set of variables present in {V1,...,Vk} but not
in Xi.

Step 3b-2:

For each negative subgoal in rule, not ri(Yi), output:

temp_p_j(V1,...,Vk) :-
dom(U1),..., dom(Ua), ri_plus(Yi).

where j is the unique rule number and {U1,..., Ua}
is the set of variables present in {V1,...,Vk} but not
in Yi.

Step 3b-3:

Output the following two rules:



temp_p_j_2(W1,...,Wl) :-
dom(V1), ..., dom(Vk),
not temp_p_j(V1,...,Vk).

p_minus_j(W1, ...,Wl) :-
dom(W1), ..., dom(Wl),
not temp_p_j_2(W1,...,Wl).

For the example database, the following temporary mi-
nus rules are generated:

%% rule 1
temp_t_1(Z) :- t0_minus(Z).
temp_t_1_2(Z) :-
dom(Z), not temp_t_1(Z).

t_minus_1(Z) :-
dom(Z), not temp_t_1_2(Z).

%% rule 2
temp_t_2(X,Y,Z) :- g_minus(X,Y,Z).
temp_t_2(X,Y,Z) :-
dom(Y), dom(Z), t_minus(X).

temp_t_2_2(Z) :-
dom(X), dom(Y), dom(Z),
not temp_t_2(X,Y,Z).

t_minus_2(Z) :-
dom(Z), not temp_t_2_2(Z).

%% rule 3
temp_t_3(X,Y,Z) :- g_minus(X,Y,Z).
temp_t_3(X,Y,Z) :-
dom(X), dom(Z), t_plus(Y).

temp_t_3_2(Z) :-
dom(X), dom(Y), dom(Z),
not temp_t_3(X,Y,Z).

t_minus_3(Z) :-
dom(Z), not temp_t_3_2(Z).

Step 4. Output “minus” rules:

For each IDB predicate p defined in rules numbered
i1,...,in, output the following rule:

p_minus(W1,...,Wl) :-
dom(W1),...,dom(Wl),
p_minus_i1(W1,...,Wl),
...,
p_minus_in(W1,...,Wl).

For the example database, the following minus rules
are generated:

t_minus(Z) :-
dom(Z),
t_minus_1(Z),
t_minus_2(Z),
t_minus_3(Z).

This ends the description of the transformation algo-
rithm.

A bottom-up evaluation of the output program for
the example database results in the following values
for t plus and t minus:

t_plus = {<1>,<3>}
t_minus = {<2>}

This is verified by computing the “minimal model”
of the output program using bottom-up computation
until a steady state is reached. It can also be easily
verified that the model produced by our transformed
program coincides with the Fitting model for the input
program.

3.2 Discussion

The rationale behind the steps of the algorithm is
discussed now. The main idea behind the transfor-
mation is motivated by the paraconsistent relational
model and algebra that was used to compute the Fit-
ting model of general deductive databases in [2]. The
approach in this program transformation method is to
explicitly use predicates for both positive as well as
negative consequences of the database.

Step 1 of the transformation algorithm introduces
dom, a unary predicate that collects all constants (ele-
ments of the Herbrand Universe).

Step 2 of the algorithm is also straightforward; it
explicitly states that the facts specified in the EDB are
positive facts and those that are missing are negative
facts.

Step 3a of the algorithm is also reasonably straight-
forward. The “plus” component of the IDB predicate
defined in the head of the rule is obtained by replacing
positive body predicates by the corresponding “plus”
predicates and the negative body predicates by the
corresponding “minus” predicates. The reason is that
for the positive body predicate to be true, a tuple (cor-
responding to the arguments of the predicate) must be
present in the “plus” predicate and for the negative
body predicate to be true, a tuple (corresponding to
the arguments of the predicate) must be present in the
“minus” predicate.

To understand Step 3b of the algorithm, we briefly
present the paraconsistent model ([1]) and the relevant
algebraic operators. A paraconsistent relation R is
defined as a pair 〈R+, R−〉, where R+ and R− are sets
of tuples in the relational schema, where tuples in R+

denote positive facts and tuples in R− denote negative
facts. Some of the relevant algebraic operations are
shown below (note the dot on top of the paraconsistent
relational operator - to distinguish it from the ordinary
operator):
Definition 4: Let R and S be paraconsistent relations
on scheme Σ. Then,

(a) the union of R and S, denoted R ∪̇ S, is a para-
consistent relation on scheme Σ, given by

(R ∪̇ S)+ = R+∪S+, (R ∪̇ S)− = R−∩S−



(b) the intersection of R and S, denoted R ∩̇ S, is a
paraconsistent relation on scheme Σ, given by

(R ∪̇ S)+ = R+∩S+, (R ∪̇ S)− = R−∪S−

(c) the complement of R, denoted −̇ R, is a paracon-
sistent relation on scheme Σ, given by

(−̇ R)+ = R−, (−̇ R)− = R+

If Σ and ∆ are relation schemes such that Σ ⊆ ∆,
then for any tuple t ∈ τ(Σ), we let t∆ denote the
set {t′ ∈ τ(∆) | t′(A) = t(A), for all A ∈ Σ} of all
extensions of t. We extend this notion for any T ⊆
τ(Σ) by defining T∆ = ∪t∈T t∆.
Definition 5: Let R and S be partial relations on
schemes Σ and ∆, respectively. Then, the natural join
(or just join) of R and S, denoted R .̇/ S, is a partial
relation on scheme Σ ∪∆, given by

(R .̇/ S)+ = R+ ./ S+,

(R .̇/ S)− = (R−)Σ∪∆ ∪ (S−)Σ∪∆,
where ./ is the usual natural join among ordinary

relations.
It is instructive to observe that (R .̇/ S)− contains

all extensions of tuples in R− and S−, because at least
one of R and S is believed false for these extended
tuples.
Definition 6: Let R be a paraconsistent relation on
scheme Σ, and ∆ ⊂ Σ be any scheme. Then, the
projection of R onto ∆, denoted π̇∆(R), is a paracon-
sistent relation on ∆, given by

π̇∆(R)+ = π∆(R+),

π̇∆(R)− = {t ∈ τ(∆) | tΣ ⊆ R−}
where π∆ is the usual projection over ∆ of ordinary

relations.
Now, we return to the discussion on Step 3b of the

algorithm.
The first point to note is that the negative com-

ponent of the “join” of paraconsistent relations corre-
sponds to a union of extension of tuples from each of
its operands. This is the reason behind producing a
separate rule (using temp predicates) for each of the
positive (Step 3b-1) and negative (Step 3b-2) predi-
cates in the body of the rules, thereby implementing
the “union”. It should also be noted that tuples are
extended to the full schema of the body by adding
dom(X) in the body of the temp rules for each X that
is not present in the predicate.

Step 3b-3 of the algorithm can be justified by look-
ing at the “projection” operator on paraconsistent re-
lations. Usually, in the bottom up methods to compute
immediate consequences of the deductive database, the
projection operator is used to remove the unnecessary
variables from the body relation. In the definition of
the negative component of the projection operator, we

notice a forall-quantifier being used (implicitly in the
⊆ expression). In essence, the definition states that
if a particular value (for the projected variables) is
associated with “all” values from the domain for the
remaining variables of the body, the particular value
is kept in the negative part of the projection. To im-
plement the forall-quantifier using deductive rules, we
employ a two-rule strategy with limited negations in
each as seen in Step 3b-3. This is the only step in which
negations are introduced in the transformed database,
an important point to note. Otherwise the rest of the
transformed program is negation-free. Furthermore,
the negation introduced is a controlled one, i.e. it is
present next to a universe of values obtained by the
cartesian product of the domains. This type of nega-
tion is easily handled by bottom up evaluators.

Step 4 of the algorithm relies on the “union” op-
eration of the paraconsistent algebra. To obtain the
negative component of the output of the union of two
paraconsistent relations, the intersection of the nega-
tive components is taken. The output rule in Step 4
indicates this intersection.

Here is another complete example of the transfor-
mation algorithm:
Example 2: Consider the following general deductive
database:

r(1,2).
r(2,3).
r(3,4).
p(X,Y) :- r(X,Y), not q(Y). %% rule 1
q(X) :- r(Y,X), not p(X,Y). %% rule 2

The transformed database is:

%% Output of Step 1:
dom(1).
dom(2).
dom(3).
dom(4).

%% Output of Step 2:
r_plus(1,2).
r_plus(2,3).
r_plus(3,4).
r_minus(X1,X2) :-
dom(X1), dom(X2), not r_plus(X1,X2).

%% Output of Step 3:
p_plus(X,Y) :- r_plus(X,Y), q_minus(Y).
q_plus(X) :- r_plus(Y,X), p_minus(X,Y).

temp_p_1(X,Y) :- r_minus(X,Y).
temp_p_1(X,Y) :- dom(X), q_plus(Y).
temp_p_1_2(X,Y) :-
dom(X), dom(Y), not temp_p_1(X,Y).

p_minus_1(X,Y) :-
dom(X), dom(Y), not temp_p_1_2(X,Y).



temp_q_2(X,Y) :- r_minus(Y,X).
temp_q_2(X,Y) :- p_plus(X,Y).
temp_q_2_2(X) :-
dom(X), dom(Y), not temp_q_2(X,Y).

q_minus_2(X) :-
dom(X), not temp_q_2_2(X).

%% Output of Step 4
p_minus(X,Y) :-
dom(X), dom(Y), p_minus_1(X,Y).

q_minus(X) :-
dom(X), q_minus_2(X).

A bottom-up evaluation of the output program results
in the following values for p plus, p minus, q plus,
and q minus:

p_plus = {}
p_minus =
{<1,1><1,2>,<1,3>,<1,4>,
<1,1><1,2>,<1,3>,<1,4>,
<1,1><1,2>,<1,3>,<1,4>,
<1,1><1,2>,<1,3>,<1,4>}
q_plus = {<2>,<3>,<4>}
q_minus = {<1>}

which coincides with the Fitting model for the input
program.

The following theorem establishes the correctness of
the algorithm:

Theorem 1: Let DB be a general deductive database
and let tr(DB) be the output of the transformation
algorithm. Then,

1. tr(DB) has a unique and complete well-founded
model.

2. p(a1, ..., an) belongs to the positive component
of the Fitting model of DB if and only if
p plus(a1, ..., an) belongs to the well-founded
model of tr(DB).

3. p(a1, ..., an) belongs to the negative component
of the Fitting model of DB if and only if
p minus(a1, ..., an) belongs to the well-founded
model of tr(DB).

All the variables in the negated predicates of the trans-
formed database are always constrained to be elements
of dom. This allows bottom-up computation of the
head predicate to proceed by employing the “limited-
complement” operator of the relational algebra. The
net result is that the bottom-up computation reaches a
steady state in a complete model, which coincides with
the well-founded model of the transformed database.
The transformed database can be shown to be modu-
larly stratified ([13]), which allows us to employ more
efficient methods to compute the well-founded model
of the transformed database.

4 Stable Model Computation

Recently, the stable models of general deductive
databases have been shown to be useful in speeding
up solutions to many NP-complete problems in graph
theory ([9, 10]). Therefore, computing the stable mod-
els in an efficient manner is of importance. We propose
a methodology that uses the database transformation
described in the previous section to compute the stable
models of a general deductive database. This approach
will be shown to be substantially faster than the naive
approach to computing the stable models that uses the
basic definition of the Gelfond-Lifschitz transform.

4.1 Naive Approach

Here, we summarize the naive approach for computing
the stable models shown in Figure 2. This method uses
the Gelfond-Lifschitz([8]) transformation DBS of DB
with respect to S, where DB is the original deductive
database and S is a candidate Herbrand model. The
deductive database is first compiled using a Datalog
compiler (coded using Java JCup/JFlex) and a data
structure is produced that contains the essence of the
facts and rules. The main loop is a generate-and-test
loop in which a candidate Herbrand model (S) is gen-
erated using the data structure as input. Next, the
data structure and the candidate Herbrand model are
used as inputs to produce a ground instance of the de-
ductive database. Useless rules are eliminated in the
process to minimize the size of the ground instance.
The candidate model is then tested for stability. To
perform the stability test, the minimal model of the
resulting ground deductive database is computed in
a bottom-up manner and tested to see if it coincides
with the candidate Herbrand model.

4.2 Database Transformation Approach

We propose to use the transformation algorithm and
the subsequent bottom up evaluation of the Fitting
model as the preprocessing steps to computing the
stable models. Figure 3 explains the modified ap-
proach. The “Generate Candidate Model” module is
now preceded by the “Transformation” and the “Fit-
ting Model”. The extra time spent in the preprocess-
ing step that computes the Fitting model is offset by
the big reduction in the number of candidate models
generated.

4.2.1 Transformation Module

This module uses the database transformation algo-
rithm mentioned in Section 3.1. We introduce un-
known values via rules of the form:

p_unknown(X1,...,Xk) :-
dom(X1),..., dom(Xk),
not p_plus(X1,...,Xk),
not p_minus(X1,...,Xk).



Figure 2: Naive approach of computing the stable
models

for each IDB predicate.
For the example 1, the following unknown rules are

generated:

t_unknown(Z) :-
dom(Z),
not t_plus(Z),
not t_minus(Z).

The output program for the example 1 database results
in the following values for t unknown:

t_unknown = {<4>,<5>,<6>}

It coincides with the meaning of the circuit in Figure
1.

4.2.2 Fitting Model Module

After we have generated the deductive database by the
transformation algorithm we use the Fixpoint seman-
tics and apply the Fixpoint operator TDB on the trans-
formed deductive database. The application of TF

DB
gives us the Fitting model for the deductive database.

4.2.3 Generate Candidate Models Module

This module is essentially the same as before, except
that it generates the candidate models by systemati-
cally “completing” the potentially incomplete Fitting
model. The models for stability testing are generated
from the unknown and positive values of the Fitting
model. Because unknowns can be positive or negative,

Figure 3: Our approach with the preprocessing steps



these unknowns can be systematically placed in the
“plus” part of the model and the resulting complete
model can be tested for stability.

5 Experiments

We present the experiments performed to test the ef-
ficiency of our architecture. We perform three experi-
ments to compare the time taken to compute the sta-
ble models using our proposed architecture and a naive
method of stable model computation. We use the IDB
from Example 1 we discussed above with various EDBs
as our logic program.

%%generate EDB facts of t
%%generate EDB facts of g

t(Z) :- t0(Z).
t(Z) :- g(X,Y,Z), t(X).
t(Z) :- g(X,Y,Z), not t(Y).

Note that the facts in the EDB would be generated
randomly from constant values in the experiments. In
the experiments we keep vary the following parame-
ters:

1. number of constants (#constants).

2. size of EDB (#facts = the number of t0 facts
(#t0 facts) + the number of g facts (#g facts))

3. the percentage of minus values (minus%) in the
total number of t values

We use tables as well as graphs to show the results.

5.1 Experiment 1

Given the IDB rules we keep #t0 facts fixed to 2 and
#g facts fixed to 10, and vary the number of constants
present in the program in increments of 1, starting
from 4 and going up to 9.

Table 1: Results from Experiment 1 (time: ms)
#constants Our Approach Naive Approach

4 10735 4234
5 26125 13625
6 26249 41719
7 88688 132562
8 60952 374219
9 203421 1052047

The results of experiment 1, seen in Table 1 and Fig-
ure 4, show that our approach performs better than the
Naive approach in case of larger number of constants.
The number of stable models tested using n input val-
ues is 2n, where each model contains the EDB facts
of the original deductive database, which are always
true. In the Naive approach 2number of constants mod-
els are tested, while computing the Fitting model in

Figure 4: Naive approach vs. our approach with vari-
able number of constants

our approach drastically reduces the possible models
for testing as we only consider the set of positive and
unknown values. We can see a exponential growth for
the Naive approach in Figure 3. Also we can see that
in case of smaller data i.e. with 4 constants Naive ap-
proach performs better than our approach because of
the overhead of using Fitting model as a preprocess-
ing mechanism. But, for larger data i.e. even with
6 constants our approach performs much better. In
the results of experiment 1 we found that the time
taken for #constants = 7 is larger than that for #con-
stants = 8, because the number of minus input values
we delete during preprocessing steps also affects the
running time. We will discuss more about this in ex-
periment 3.

5.2 Experiment 2

Given the IDB rules we keep #constants fixed to 7 and
vary #facts, in increments of 2, starting from 10 and
going up to 20.

Table 2: Results from Experiment 2 (time: ms)
#facts Our Approach Naive Approach

10 53859 130125
12 36672 129282
14 59720 133562
16 54891 130406
18 94266 132390
20 99032 143843

The results of experiment 2, seen in Table 2 and
Figure 5, show that as we increase the number of facts
in our logic program the time taken to compute the
stable models increases a little bit for the Naive ap-
proach. The percentage of minus values that will be
discussed in experiment 3 affects the time taken more
than the number of facts.



Figure 5: Naive approach vs. our approach with vari-
able number of facts

Figure 6: Naive approach vs. our approach with dif-
ferent percentages of minus values

5.3 Experiment 3

Given the IDB rules we keep #constants fixed to 10,
#t0 facts fixed to 1, and #g facts fixed to 15, then
we check how the percent of minus values affects the
running time.

Table 3: Results from Experiment 3 (time: ms)
minus% Our Approach Naive Approach

10 1651750 2905656
20 856078 2906328
30 474890 2932235
40 272187 2898391
50 156671 2878047
60 133188 2905781

As mentioned above, the time taken is related with
the number of stable models tested, which is 2n with n
input values. The results of experiment 3 seen in Table
3 and Figure 6 show that in case of a larger percentage
of minus value, our approach becomes much better
than the naive approach.

From these three experiments discussed above, we
can conclude that the time taken for preprocessing
steps in our approach has a significant impact on the
overall time to compute the stable models. In addition,
when we can delete more minus values in the prepro-
cessing steps using the Fitting model, the performance
of our approach becomes even more significant.

6 Conclusion

In this paper, we have introduced a database trans-
formation algorithm to eliminate arbitrary negations
in general deductive databases and at the same time
retain the meaning of the deductive database with re-
spect to the Fitting model. The transformation en-
ables us to use traditional bottom up evaluators for
computing the meaning of general deductive databases
and allows for query processing in the presence of ar-
bitrary negations in rules. We have also shown that
the database transformation method can be effectively
used in computing the stable models of general deduc-
tive databases.

The stable model computation defined in Section 4
generates Herbrand instantiation ground program us-
ing the Gelfond-Lifschitz transformation in the mid-
dle of the process (shown in Figure 2). However,
this is a very costly operation since many irrelevant
rule instances are produced. Instead we would like
to construct a gound instantiation containing only
relevent rule instances called intelligent grounding
([14]). Ground instances of the example in Section
2.2 can be modified as follows:

p(1,2).
q(1) :- p(1,2), not q(2).

Assume that the number of the set of constants is
n, and the number of constants is 2n. Since the second
rule has two different variables, its Herbrand instan-
tiation contains (2n)2 ground instances of the second
rule. While using intelligent grounding, it has only n
ground instances of the second rule. Thus, intelligent
grounding can be one of efficient strategies in stable
model computation in the future work.

In future work, we propose to extend the algo-
rithm to work with well-founded models instead of
the weaker Fitting models and compare efficiency with
the improved alternating-fixpoint method ([16]). Also,
the approach will be extended to disjunctive deductive
databases ([11, 12]).
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