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Abstract can be used in forecasting the likely system workload and
latencies in future.
In this paper, we address the problem of identifying peri- Objective: In this paper, we address the problem of
odically occurring patterns in a time series. The domainanalyzing the periodic behavior in a time-series to under-
of data-center management is the primary focus. Dat&tand its properties. Informally the problem can be defined
here comprises of request latencies, resource utilization ¢#s follows; Given a time-series, (a) identify the shapes of
servers, data center workload etc. to name a few. AlthougReriodically occurring patterns (b) identify the regions of
periodicity detection has been researched, the past workccurrence of these shapes.
does not address the challenges presented by such data-setsChallenges: Various challenges make the above de-
The major challenges include time scaling, time shifting,fined problem difficult to solve. These challenges are
amplitude scaling, amplitude shifting and noise. We pro-mainly related to non-identical occurrences of the periodic
pose an innovative solution to cater to the new challengegatterns. Below we list some of the major challenges:
In this paper, we address the problem of identifying the Time scaling: The periodically repeating patterns at
shape of the periodically occurring pattern and the timetimes exhibit expansion or shrink in the shape. We refer
series regions which exhibit periodic behavior. We alsoto this behavior aime scaling Figure 1 (a) shows an ex-
present a crisp definition of a periodic pattern in the faceample of a periodic time-series showing time-scaling.
of such challenges. In addition, we present experimental Time shifting: Time shifting refers to scenarios where
evaluation of the proposed technique on various data-setfie repeating occurrences of a pattern exhibit a lag or lead
to evaluate its robustness. in time. Figure 1 (b) shows an example of time shifting.
Amplitude scaling Amplitude scaling refers to the sce-
. nario where the periodic pattern demonstrate a jump or a
1 Introduction fall in the amplitude. This can be considered as the y-axis

There is a need for large-scale data-analysis in various ddquivalent of time-scaling. The shape of the pattern ex-
mains such as data-center management, weather forecaBibits an overall expansion or shrink at the amplitude scale.
ing, bio-informatics, among many others. An important Figure 1 (c) shows an example of amplitude scaling.
component of this analysis is the analysis of periodic be- Amplitude shifting:Amplitude shifting refers to a sce-
havior in such data-sets. In this paper, we focus on th&@ario where the periodic pattern shows a trend in the am-
domain of performance and capacity management in datd?litude of the subsequently repeating patterns. Figure 1 (d)
centers. Data here consists of monitored request latencieshows an example of amplitude shift.

workloads, resource utilization etc. to name a few. Ana- Presence of noisd.ike many other problems in the do-
lyzing periodic behavior in such data-sets can lead to verynain of time-series analysis, noise presents a challenge in
useful insights. Some examples are as follows: periodicity analysis.

Signature identification Many events in data centers  Contributions: The main contributions of this paper
such as garbage collection, disk backups, etc. show peare as follows: The periodically occurring patterns tend
riodic behavior. Such events easily get highlighted in theto demonstrate various properties even in the presence of
behavior of workloads, disk writes, available memory etc.scaling and shifting in time and amplitude axes. For in-
to name a few. Periodicity analysis can provide signaturestance, a periodically occurring pattern can be identified
of these events. through some pivot points that are present even in the pres-

Forecasting and PredictiarPeriodicity analysis of var- €nce of time and amplitude variations. Furthermore, each

ious performance measures such as workload and latencignifestation of the periodic pattern has high similarity
with other occurrences of the same pattern. We present

. these observations in Section 3. We exploit these observa-
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Figure 2: Definition of periodic patter,,.

presence of these new challenges.

In this paper, we contribute such a comprehensive so-
lution that analyzes periodic behavior while addressing the
new challenges.

Figure 1: Example of patterns with (a) Time scaling, (b)

Amplitude scaling, (c) Time shifting, (d) Amplitude shift- . .
AP 9. (c) 9. (d) Amp 3 Design rationale

ing.
. _ _ . _ _ 3.1 Definitions

tering, etc. in Section 4 to identify the shape and regions of ) _ o

occurrence of the periodically occurring pattern. We first define the various terms that we use in this paper.

1.Shape estimation\We present a solution to detect the o Time-series: A uni-variate time-seri@sof length N
shapes of periodically occurring patterns. The proposed s defined as a finite sequenceéfdata-points:
solution caters to new challenges like scaling and shifting

at both amplitude and time axes. T = (v1,...,0N).

2.Region determinationWe present a solution to detect re-
gions of occurrences of periodic patterns. The proposed so-
lution caters to new challenges like scaling and shifting at
both amplitude and time axes.ARplication: We demon-
strate the application of the proposed solution in the domain
of performance and capacity management in data-centers.
We show how shapes and regions of periodic patterns can e Time-series region: A time-series regi®p of length
be used to derive time-series signature which can be used pis a subsequence pfcontiguous points in the time-
in a variety of ways. series.

For the sake of clarity, the data-points are assumed
to be sampled at uniform time intervals and have no
missing values. We refer to the time and value of
a data-point; asTime(v;) and Value(v;) respec-
tively.

2 Related work 3.2 Properties of periodically occurring patterns

In the past, a lot of work has been in analyzing the peri-We next present various observations that we use to capture
odic behavior in a time-series. However, most of the Workthe periodic behavior of a time-series. We observe that in
primarily estimates the length of the periodic cycle. Such® time-series showing periodic behavior, the periodically
attempts could be found in [10], [4]. Work done by [1] in- repeating pattern demqnstrates various properties. These
vestigates the utility of the Lomb-Scargle periodogram forProperties can be classified lasal andglobal properties.

the analysis of biological rhythms which also show peri- 1€ local properties are limited to the specific region of
odic behavior. In addition, [8] attempts to determine the@Ccurrence, while the scope of global properties is over the

period value in non-stationary time series by tracking theEntire time-series.
candidate periods using a Kalman filter. - i
Another related area of research in this context has bee?‘rz'l Property 1 - The pe”.Od'C pattern can be defined
the area of similarity search between two sequences. Eu- to_b_e bound by a pair of data-points that have
clidian distance can be considered as the simplest similar- minimum value
ity measure. More complex techniques include [11] whichConsider an ideal scenario of absence of noise, time varia-
employ dynamic time-warping methodology. [12] employs tions, and amplitude variations. For example, consider the
a technique for sub-sequence matching to search for a papattern shown in Figure 2(a). Since the pattern is periodic,
tern in a large sequence. the start and end points that bound the pattern could be any-
It is important to note that these techniques establistwhere within a distance of period, For example, the pat-
their utility owing to the fact that periodicity analysis re- tern can be defined to be bound by a pair of po{it4.0),
quires a similarity measure that can compare time seriefl0-19), (19-28)nd so on. These points are identified by
regions. squares and the resulting pattern is shown in Figure 2(b).
Some work has been done in detecting shapes and odhe pattern could also be defined to be bound by other pair
currences of periodically occurring patterns [5], [3]. How- of points, say(2-11), (11-20), (20-29and so on. To re-
ever, they do not address most of the challenges mentionedove this variability, we define the bounds of the pattern
in the previous section. Current literature, in general, lackdy a pair of data-points, say andv; that have minimum
a comprehensive solution to analyze periodic behavior irvalue.



AregionT}, = (v4, . . ., vj;) is periodic, if:
1. Length(Ty) = Time(v;) — Time(v;) = p ‘

I \A f\\

2. Value(v,) _ Value(w;) _ f\ N /\/\ 3 ’\, i) , w [ | \ N
min(Value(v;), ..., Value(v;)), and ) M / U “ W s
3. Value(vy) > Value(v;),Vk € (i+1,...,5 —1) | [/‘\) s/ \ | L \ \ H ‘f

The points meeting the above property are shown by cir-
cles at pointg4-13), (13-22), (22-31pnd so on in Fig-
ure 2(a). The resulting pattern is shown in Figure 2(c).
With this observation, a periodic pattern is always bound
by a pair of minimum data-points. All other data-points in N
T, are hence, assumed to have a greater value than bothz* f& | {
Value(v;) andValue(v;). J \ o

It is important to note that this property is limited to an 4 : \
ideal case scenario. However, it provides an intuitive idea [ £ ’ r
on the end-point constraints that we apply on any periodic N \ | L
region. In order to accommodate variations such as ampli- T e e et |
tude scaling, etc., we now relax these constraints to apply
to non-ideal scenarios.

Figure 3: Time series used as running example.
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Figure 4: Periodogram for time-series shown in Figure

3.2.2 Property 2 - In the presence of time scaling, the  Although we attempt to cater to different types of ampli-
constraint on the length of the periodic pattern  tude and time variations in a pseudo-periodic time series,
needs to be relaxed this property crisply defines the limits of these variations in

Time-scaling results in stretching or compression of the1€ context of a periodic region. . e
pattern. For example, see Figure 1(a). The figure shows Along with above properties that define a specific region

two patterns. Both the patterns have same shape but ha@k 0ccurrence, we next present following global properties

different lengths owing to the time-scale factor. In suchthat hc_)Id across multiple occurrences of the periodically
cases, the length property needs to be relaxed as follows, ©CCUrfing pattern.

Given a time series regioff, = (vi, ..., v;), Length(Ty) = 3.2.4 Property 4 - The pattern should repeat multiple
Time(vj) — Time(v;) =p £ 6 . R
times and the repeating patterns should have a
wherep is the period of the pattern. The variablprovides similarity in shape

the scope of the supported compression and streth.in
This aspect, as we will see later, will control the algorithm’s
sensitivity to time scaling.

A time seriesI” should consist of a set of multiple patterns
Stp = {Tp1,- -, Tpm} such that

o VI,; € Sy, the above mentioned local properties

3.2.3 Property 3 - In the presence of amplitude shift, hold.
both the end-points of the pattern may not be
minimum of all the data points in the pattern e All T,; € S, should be similar in shape. We later sys-

tematically define a measure in Section 4 to compute

An example of patterns with amplitude shift has been R
similarity of shape.

shown in Figure 1(d). In the presence of amplitude shift,
the bounding end-points may not be smaller than all other o The sets,, must contain at leagt number of regions.
data-points in the region as expectedPioperty 1 Hence, b

the conditions 2 and 3 dfroperty 1need to be modified as 4 Proposed solution

follows:
A retionT = (o, s beriodic. i In this section, we present a step by step description of the
regionTy = (vi, ..., v;) is periodic, it proposed algorithm. The example time-series used for this
1. Length(Tp) = Time(v;) — Time(v;) = p £ 6, and purpose is shown in Figure 3 which represents the daily
2. Vuy, € Ty, wherei < k < j, following conditions must workload pattern observed over a period of few months.
not hold true together: . e, .
. - 1. Estimate the length of the periodic cycle, p:
o vy is alocal minima, and . . .
o Value(vy) < maz(Value(v;), Value(v;)) A lot of work has been done in the past [10] in this regard.

However, due to the pseudo-periodic nature of time-series,
The observation states that there does not exist a local mirthe period value derived by these techniques is only approx-
ima, in between the two end-points andv;, that has a imate. We propose to use one of the standard techniques,
value lesser than either of the two end-points. Thus, everiz. Periodogram Analysifl0] to estimate this value.
in the presence of amplitude shifts, the end-points of the The left plot in Figure 4 shows the Periodogram for
periodic region are the two smallest local minima and thetime-series shown in Figure 3. The peak in this case gives
condition 2 and 3 ifProperty 1holds true. the period value of 7 data-points. The right plot in the same



This step, hence, will remove any such pattern that vio-
ERTRT Y ] ; lates the limits applied on the pseudo-periodic definition.
AR ! . Figure 5(b) shows a regiof¥sg, t45) from the time-
A i vl . series of the running example shown in Figure 3. In accor-
. T dance to the discussed property, the regdion;) will not
be a potential pattern bearing region. The reason being the
Figure 5: (a) Points of local-minima (solid triangles) for presence of the local minimalg; andt,, both of them
time-series shown in Figure. (b) A regidryo, t45) from  satisfying the constraints mentionedRmoperty 3 How-
the example time-series shown in Figure 3. (c) A regionever, the regior(t;, tx2) will be considered as a potential
(t16,t31) from the example time-series shown in Figure 3. pattern bearing region. Due to time-scale factors discussed
in Property 1 the region(t;, k1) is also discarded since its
figure, refers to the p-value, which in this case happens t@ength does not fall ip + § range.
be almost zero, thereby exhibiting high confidence. 6. Apply Property 4 to seL. M P to retain pairs with
2. Smoothen the time-serieg,: similar shape:
Noise is an integral part of any real-world time-series. InAs explained inProperty 4of Section 3, the periodic pat-
this regard, we estimate the LOES&irve of the original  tern must demonstrate a similarity in shape with other pat-
series to decipher the hidden behavior in the series. Foerns of the same series. In this regard, we compute a mea-
a largep/length(T,) ratio, the smoothing is more aggres- sure to estimate the similarity among potential patterns in
sively done and vice-versa. LMP. For this purposel-D Euclidean distancés com-
In the example time-series, however, no smoothing iputed as follows;
carried out owing to a very low/length(T},) ratio.

3. Identify the locations of local minima ify: 1. forany pair(m;, m;) in LM P;
This step identifies the locations of local minimalin Lo- e Compute 1-D  Euclidean distance  between
cal minima are identified in a moving window efdata- maz(Value(m;), Value(m;)) ~ and  all  points

Value(pp)Vi < k < j

points. This step partially fulfills the objective of identify- o Add this distance to a st

ing the end-points of the periodic patterns. The upcoming

steps filter the local minima identified in this step on the ba-
sis of various properties discussed in the previous section. 2. _Ditshcalrzd any paig:”i»h"’ia) in'Lith ifTﬁijthS (i]vrgeretz lS hO <1 A
. IS the Eucliaean thresholdor similarity. IS threshold controls how muc

In this regard, we construct a sétM to store these distortion in the shape of the periodic pattern is accepted by the algorithm.

points.

e Normalize all distances in the s&t

LM — 7. Address overlapping pairs ih M P: The filters ap-

= {ma,..ma} plied until now drastically reduce the number of pairs that
The points of local minima for the example time-series'€present potential pattern bearing regions. However, at

are shown in Figure 5(a). this stage there is a possibility of overlapping pairs defined
4. Pair local minima based on Property 2: on the same region. More formally, a given minima,

In this step we identify the paifsn;, m;) in LM, suchthat ~ Might pair with many minima, sajm;, m;) and(m;, my),

m; andm; arep + § time-units apart, wher&ime(m;) < that satisfy all the fll'Fe.rs mentlon_eq until now. We address

Time(m;). The valuep is the length of the periodic cycle such cases by retaining the minima pair that covers the

computed in Step 1. The variabids derived from Prop- largest region in time and has smallest difference in value.

erty 2 that addresses time-scaling in a time-series. Thus, 11US; identify the se of minima pairs inLM P that have
common begin or end minima. Of all the minima pairs

\Z?(,Z',"%"%)J)GGL o if”&“j'}j‘?%z;% nj_ﬁ;;‘;’f:&g%,)pﬂr (mi,m;) € S, retain the minima paitm;, m;) in LMP
(p+3) ' - ’ v that has the following property:
This ensures that(m;,m;) € LMP, the pattern, . %jf(@‘i(mi) s (Value(m Nt <
will be bound by minima pointsn; andm;, partially in ey ’ !
line with the inferences presented in Property 1. o (Time(m;) - Time(m;)) <

maz (¥ (m,,my)es(Time(ma) — Time(my)))

5. Retain pairs inL M P obeying Property 3:
In accordance to the constraints mentioned in Property 3, A scenario of overlapping regions is illustrated in Fig-
in this step, we remove any paim,, m;) € LMP, for  yre 5(c). The miniman; forms two pairs viz.(m;, my,)

which there is a local minimaw, € LM such that, and(m;, m;). This property chosén;, m;) as a potential
1. my lies betweenm; and m;, ie., Time(m;) < Time(mi) < pattern bearing regions owing to constraints defined in this
Time(my), and property.
2. the value ofm;, is smaller than the value of eithen; or m;, i.e., 8. Filter out pairs based on Amp“tUde Shifts discussed
Value(my) < (Value(m;) Or Value(mj) in Propel’ty 2:

1 , R . We now attempt to find a subset of pairs of the form
LOESS (locally weighted regression) is a fitting technique or a func- .
tion for which the value at a particular locatispis determined only by (m“ m;) from LM P, which can be clustered based on the
the points in its vicinity. displacements betweédnalue(m;) andValue(m;). This
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Figure 6: The base pattern that best represents the shape of N
the periodically occurring patterns in the time series. o

filters out any pair fromL M P having a relatively unusual
displacement between the minima. The retained pairs, ifrigure 7: Regions of occurrences of the periodic time series
the next step, undergo a similarity check based on the tech-
nigue calledDynamic Time Warping (DTW}L1].

Itis important to note here that, this step rather performs
an aggressive filtering on the minima pairs. Owing to the
computationally expensive nature BfT'W, this step en- ‘
sures that only a minimal set of pairs are processed, all of \ \ ",‘J] !

which are also potentially very similar owing to the collec- ° J

tion of filters applied until now. /I i J
9. Determine the base pattern: Lt “/ [ \f i

This step attempts to determine the base pattern among the il ! ‘ ‘

pairs retained inLM P. The base pattern, as already dis-

cussed, is derived by estimating similarity among the po-

tential regions bounded by pairs I\/ P. The technique Figure 8: (a) Regions of occurrences of the periodic time

DTWI11, 2, 6, 9] is employed for this purpose. . series using algorithm in [5], (b) Base pattern identified by
Any pair (m;, m;) € LM P which represents the region [5]

sayT,[i,j], contains the base pattern, if;

(e wr

. %})’ﬁr';stance(DTW(Tp (2, 9], Tplz, y]))V(my, my) € LM P is min- 5 EXpeI’Imenta| evaluation

We will denote the base pattern identified in this step agVe next present the experimental evaluation of the pro-

T, [base]. Figure 6 shows the base pattern derived for thenosed algorithm. We present the sensitivity analysis of the
rlfnning example time-series shown in Figure 3 proposed algorithm on synthetic data where we evaluate the

10. Identify regions exhibiting periodic behavior: correctpess of the algorithm Whilef varying (_jiffer_ent data
Once the base pattern is determined, the algorithm now aproperties such as noise, Ie\_/el of time variations in th_e pe-
tempts to determine if a similar pattern exists in other po_r|0d|c patterns, level of amplitude variations in the periodic
tential locations. The set of locations to search for in thispatterns, etc.
step, is more than the set of locations currently retained )
in LM P. As mentioned earlier, in order to determine the 9:0-5 Experiment setup

base pattern, the séf\/ P undergoes an aggressive filter at e yse a discrete-event simulator CSIM [7] to generate pe-
Step 8. However, since the base pattern is already identjjogic data. We then systematically insert different time
fied, the search must be carried out on more potential locasng amplitude variations in this pattern. The objective of
tions. This is necessary to avoid missing out on any patterghese experiments is to test the sensitivity of the proposed
bearing location which might have been filtered at Step 8. 5 gorithm to the time and amplitude variations and to iden-
At this stage, the search for periodic behavior is carried;fy its effective region of operation. We hence take each
on all the pairs that went into Step 8. Let this set of pairsparameter and generate data with increasing order of varia-
be represented by M Pys. As a similarity measure at this tjon_ \We quantify each of these variations, amplitude scale,

step, we re-emplop)T'W as follows: ~ amplitude shift, time scale, time shift on a scale of 1 to 10
Any pair (m;, m;) € LM Pyg which represents aregion gich that 1 refers to least variation and 10 refers to very
sayT,[ijl, is similar to T}, [base], if; high variation.

o distance(DTW (Tpli, j], Tplbase]))V(mgz, my) € LMP < A,
whereA is the similarity threshold. 5.0.6 Evaluation criteria

Figure 7 shows the regions of occurrences of the perioditn the above simulation setup the actual shape of the pattern
regions found by the algorithm. is known a-priori. We refer to the actual pattern@g.;.
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Let the estimated pattern bi&:;,;. We compare the actual
pattern with the pattern estimated by the algorithm over twc
metrics viz. the shape error and the position error.

Shape error: We calculate this error by calculating dif-
ference in the actual shage,.; and the shape estimated
by the algorithmPg,;. We compute the difference in shape
using dynamic time warping (DTW) and using the warp T 2 B & B B 6 2 4 5 8 mw
distance as an error metric. We use normalized shapes
Pa. and Pg; to take care of amplitude variations. Thus, (a) (b)

]

a
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o
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shape Error
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ShapeError = DTW (Pact, Pest).nonumber (1) Figure 11: Effect of Time Shift on Position Error or Shape

Error (No. of patterns = 10, Period = 50).
Position error: We define position error between two o )
patterns as the absolute difference between the start timz0-8 Addressing time scaling
of the actual and estimated pattern. For each pattern in thgigure 10(a), (b) show the effect of change in time scale
actual P4 in the actual time-series, we find an estimatedfactor on position error and shape error respectively. The
patternPg,; derived by our algorithm such that difference position error increases significantly as the time scale factor
in the begin time ofP4., and Pg; is minimal. We com-  increases from 1 to 10. For instance, if a time scale factor
pute the difference in start time &f4.: and P, and refer s 10, the period of the pattern may be anywhere between 1
to this distance as the position error in detecting;. We  to 10 times of the period of the original pattern. The posi-
average this over all instances of actual patterns in the origion error increases with the increase in time scale since the
inal time series. patterns scale in time and this results in patterns occurring
non-periodically at unexpected time intervals. From Figure
PositionError = Meanvp,., (|BeginTime(P. Act)—B@W"Time(gf“)|)1O(b), it can be observed that the change in time scale factor
does not affect th&hapeError The error in shape is based
on dynamic time warping. As a result, even if the pattern
in time-scaled, DTW is able to identify the base pattern in
it. This results in a smahapeError

In the following sections, we present effect of change in
various factors viz. amplitude, time scale and amplitude
time shift on the performance of proposed algorithm.

5.0.7 Addressing amplitude scaling 5.0.9 Addressing time shifting

Figure 9(a), (b) show the effect of change in amplitude OnFigure 11(a), (b) .S.hOW the effect of change in time $hiﬁ
ctor on the position error and shape error respectively.

position error and shape error respectively. There are 1 : ) :
patterns of period 10 in the time series. The amplitude fac-, he time .S‘h'ft factor Increases from 1 to 19' Th_e eff_ect of
ime shift is small orPositionError. The algorithm is fairly

tor changes from 1 to 10. It can be observed from Figuré ! i . .
9a) thatgthe position error is almost nil even if the amgpli- robust against different factors of time shifts and can detect

tude scale factor increases to 10. For any amplitude sca atterns occurring at different locations. TPasitionError
I . ‘ . , i 9 imBh i
factor, the position error is less than 1 time unit. The posi- oes not go beyond 10%. The maximBhapeErroris

tion error increases slightly when the amplitude scale fac_around 309% for time shift factors 1-10. BdBositionError

tor increases. From Figure 9(b) it can be observed that thgndShapeErrorincrease with increasing time shift factor.
ShapeErroiis between 0-10% for amplitude scale factor of . . .

1to 10. Amplitude scale does not affect detecting shape o?'o'lo Addressing amplitude shifting

the pattern. The amplitude variations are taken care of by &igure 12(a), (b) show the effect of change in amplitude
proper definition of the pattern as in Section 3.2.1. shift factor on the position error and shape error, respec-
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Figure 13: Time series of available memory showing sig-
tively. The amplitude shift factor increases from 1 to 10. nature of periodic garbage collection.
The effect of amplitude shift oRositionErroris small. Po-

sitionError reduces slightly as the amplitude shift factor in- w0 2200
creases. This is because as the amplitude increases, the ef | = I 2 ? ' =
fect of noise reduces and the algorithm is able to detect the | | - &~ L -
patterns more accurately. The effect of change in amplitude E ol [l ‘f : ik Jw 1 §
shift factor on shape error is also not large. WislleapeEr- t s 1 : 1
ror slightly increases with increasing amplitude factw; E # it o
sitionError does not go beyond 20% for amplitude shift > I [oo0
factors between 1 to 105hapeErroris less than 10% for 2: 3] e I} ‘ -
amplitude shift factor between 1 to 10. A e S Do

@ CPU Utilization /' Peak Disk Utilization @ Swap Space Utilization
6 Comparison with existing work M o et Abcumposs

In this section, we compare the results of the proposed al
gorithm with the results of algorithm proposed in [5] to
identify periodically occurring pattern and its region of oc-

currences. The algorithm in [S] proposes to derive the peyiqng g,ch as periodic data backup jobs or periodic operat-
riod value, p, using periodogram. It then computes the ing system process such as disk cleanup.

base pattern as the average of all the patterns occurring We demonstrate the concept using an example of the

in the time series ‘.it a Qi_stance Of periqx:l', Figure 8(&.1) event ofgarbage collection The time-series of available
shows the pattern identified by this algorithm and F'gurememory of the system showed a particular behavior be-

8(b) shows its r(_agion_s_of OCCUrrences. Note that the regio'ﬂlveen subsequent garbage collection operations. Figure
of occurrences identified by the algorithm proposed in [5]13 presents the time-series of the available system mem-

are skewed from actual location of the pattern. Further, th%ry. We observed that the JVM settings affect the length
average base_ pattern |dent|f|ed_ by this algorithm (shown Nt this pattern. Increasing the active memory size of the
Figure 8 (b)) is not representative of the actual pattern thaﬁVM from 256MB to 512MB results in expansion of the

is repeating. pattern. An automatic detection of such patterns can pro-
vide direct insights into appropriate JVM settings for the
observed workload.

Il':igure 14: Time series of various system metrics observed
during events of system restart.

7 Application of periodicity analysis in data
centers

In this section, we present various scenarios where the pro.2 Root-cause analysis

posed approach of analysis of periodic patterns provideg, e {5 the use of data centers for more and more
many interesting insights into the functioning of the dataperformance-critical applications, it has become very im-

centers. ortant to have automated techniques to detect failures in

Today's data centers are monitored to ke(_ap track of th e data center and to quickly identify the root-cause of the
overall system health. We demonstrate various scenario§,served failure.

observed in real-life case-studies where capturing the peri- \va gbserved a scenario in a data-center where a partic-

odic behavior of these metrics provided very useful insightsmar process was observing periodic restarts and the objec-
for the data center operators. tive was to find the root-cause behind these restarts. Fig-
ure 14 shows time-series of CPU utilization, swap space
utilization, network input and output packet rate, etc. of
Various events in a data center demonstrate a periodicallthe server on which the process was running. A periodic
occurring signature. These events could be specific opergattern was identified in swap space, CPU utilization, and

7.1 Detection of signature of an event
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We evaluated the accuracy of the proposed algorithm
on data collected from a production data-center. We also
performed sensitivity analysis of the proposed algorithm
on simulation data generated in an controlled environment.
Further, we demonstrated the application of the proposed
solution in the domain of performance and capacity man-
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