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Abstract

In this paper, we address the problem of identifying peri-
odically occurring patterns in a time series. The domain
of data-center management is the primary focus. Data
here comprises of request latencies, resource utilization of
servers, data center workload etc. to name a few. Although
periodicity detection has been researched, the past work
does not address the challenges presented by such data-sets.
The major challenges include time scaling, time shifting,
amplitude scaling, amplitude shifting and noise. We pro-
pose an innovative solution to cater to the new challenges.
In this paper, we address the problem of identifying the
shape of the periodically occurring pattern and the time-
series regions which exhibit periodic behavior. We also
present a crisp definition of a periodic pattern in the face
of such challenges. In addition, we present experimental
evaluation of the proposed technique on various data-sets
to evaluate its robustness.

1 Introduction

There is a need for large-scale data-analysis in various do-
mains such as data-center management, weather forecast-
ing, bio-informatics, among many others. An important
component of this analysis is the analysis of periodic be-
havior in such data-sets. In this paper, we focus on the
domain of performance and capacity management in data-
centers. Data here consists of monitored request latencies,
workloads, resource utilization etc. to name a few. Ana-
lyzing periodic behavior in such data-sets can lead to very
useful insights. Some examples are as follows:

Signature identification: Many events in data centers
such as garbage collection, disk backups, etc. show pe-
riodic behavior. Such events easily get highlighted in the
behavior of workloads, disk writes, available memory etc.
to name a few. Periodicity analysis can provide signatures
of these events.

Forecasting and Prediction: Periodicity analysis of var-
ious performance measures such as workload and latencies
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can be used in forecasting the likely system workload and
latencies in future.

Objective: In this paper, we address the problem of
analyzing the periodic behavior in a time-series to under-
stand its properties. Informally the problem can be defined
as follows; Given a time-series, (a) identify the shapes of
periodically occurring patterns (b) identify the regions of
occurrence of these shapes.

Challenges: Various challenges make the above de-
fined problem difficult to solve. These challenges are
mainly related to non-identical occurrences of the periodic
patterns. Below we list some of the major challenges:

Time scaling: The periodically repeating patterns at
times exhibit expansion or shrink in the shape. We refer
to this behavior astime scaling. Figure 1 (a) shows an ex-
ample of a periodic time-series showing time-scaling.

Time shifting: Time shifting refers to scenarios where
the repeating occurrences of a pattern exhibit a lag or lead
in time. Figure 1 (b) shows an example of time shifting.

Amplitude scaling:Amplitude scaling refers to the sce-
nario where the periodic pattern demonstrate a jump or a
fall in the amplitude. This can be considered as the y-axis
equivalent of time-scaling. The shape of the pattern ex-
hibits an overall expansion or shrink at the amplitude scale.
Figure 1 (c) shows an example of amplitude scaling.

Amplitude shifting:Amplitude shifting refers to a sce-
nario where the periodic pattern shows a trend in the am-
plitude of the subsequently repeating patterns. Figure 1 (d)
shows an example of amplitude shift.

Presence of noise:Like many other problems in the do-
main of time-series analysis, noise presents a challenge in
periodicity analysis.

Contributions: The main contributions of this paper
are as follows: The periodically occurring patterns tend
to demonstrate various properties even in the presence of
scaling and shifting in time and amplitude axes. For in-
stance, a periodically occurring pattern can be identified
through some pivot points that are present even in the pres-
ence of time and amplitude variations. Furthermore, each
manifestation of the periodic pattern has high similarity
with other occurrences of the same pattern. We present
these observations in Section 3. We exploit these observa-
tions together with various time-series analysis and pattern-
matching techniques such as dynamic time warping, clus-



Figure 1: Example of patterns with (a) Time scaling, (b)
Amplitude scaling, (c) Time shifting, (d) Amplitude shift-
ing.

tering, etc. in Section 4 to identify the shape and regions of
occurrence of the periodically occurring pattern.
1.Shape estimation:We present a solution to detect the
shapes of periodically occurring patterns. The proposed
solution caters to new challenges like scaling and shifting
at both amplitude and time axes.
2.Region determination:We present a solution to detect re-
gions of occurrences of periodic patterns. The proposed so-
lution caters to new challenges like scaling and shifting at
both amplitude and time axes. 3.Application: We demon-
strate the application of the proposed solution in the domain
of performance and capacity management in data-centers.
We show how shapes and regions of periodic patterns can
be used to derive time-series signature which can be used
in a variety of ways.

2 Related work

In the past, a lot of work has been in analyzing the peri-
odic behavior in a time-series. However, most of the work
primarily estimates the length of the periodic cycle. Such
attempts could be found in [10], [4]. Work done by [1] in-
vestigates the utility of the Lomb-Scargle periodogram for
the analysis of biological rhythms which also show peri-
odic behavior. In addition, [8] attempts to determine the
period value in non-stationary time series by tracking the
candidate periods using a Kalman filter.

Another related area of research in this context has been
the area of similarity search between two sequences. Eu-
clidian distance can be considered as the simplest similar-
ity measure. More complex techniques include [11] which
employ dynamic time-warping methodology. [12] employs
a technique for sub-sequence matching to search for a pat-
tern in a large sequence.

It is important to note that these techniques establish
their utility owing to the fact that periodicity analysis re-
quires a similarity measure that can compare time series
regions.

Some work has been done in detecting shapes and oc-
currences of periodically occurring patterns [5], [3]. How-
ever, they do not address most of the challenges mentioned
in the previous section. Current literature, in general, lacks
a comprehensive solution to analyze periodic behavior in

Figure 2: Definition of periodic pattern,Tp.

presence of these new challenges.
In this paper, we contribute such a comprehensive so-

lution that analyzes periodic behavior while addressing the
new challenges.

3 Design rationale
3.1 Definitions

We first define the various terms that we use in this paper.

• Time-series: A uni-variate time-seriesT of lengthN
is defined as a finite sequence ofN data-points:

T = (v1, . . . , vN ).

For the sake of clarity, the data-points are assumed
to be sampled at uniform time intervals and have no
missing values. We refer to the time and value of
a data-pointvi as Time(vi) and V alue(vi) respec-
tively.

• Time-series region: A time-series regionTp of length
p is a subsequence ofp contiguous points in the time-
series.

3.2 Properties of periodically occurring patterns

We next present various observations that we use to capture
the periodic behavior of a time-series. We observe that in
a time-series showing periodic behavior, the periodically
repeating pattern demonstrates various properties. These
properties can be classified aslocal andglobal properties.
The local properties are limited to the specific region of
occurrence, while the scope of global properties is over the
entire time-series.

3.2.1 Property 1 - The periodic pattern can be defined
to be bound by a pair of data-points that have
minimum value

Consider an ideal scenario of absence of noise, time varia-
tions, and amplitude variations. For example, consider the
pattern shown in Figure 2(a). Since the pattern is periodic,
the start and end points that bound the pattern could be any-
where within a distance of period,p. For example, the pat-
tern can be defined to be bound by a pair of points(1-10),
(10-19), (19-28)and so on. These points are identified by
squares and the resulting pattern is shown in Figure 2(b).
The pattern could also be defined to be bound by other pair
of points, say,(2-11), (11-20), (20-29)and so on. To re-
move this variability, we define the bounds of the pattern
by a pair of data-points, sayvi andvj that have minimum
value.



A regionTp = (vi, . . . , vj) is periodic, if:

1. Length(Tp) = Time(vj)− Time(vi) = p

2. V alue(vi) = V alue(vj) =
min(V alue(vi), . . . , V alue(vj)), and

3. V alue(vk) > V alue(vi), ∀k ∈ (i + 1, . . . , j − 1)

The points meeting the above property are shown by cir-
cles at points(4-13), (13-22), (22-31)and so on in Fig-
ure 2(a). The resulting pattern is shown in Figure 2(c).
With this observation, a periodic pattern is always bound
by a pair of minimum data-points. All other data-points in
Tp are hence, assumed to have a greater value than both
V alue(vi) andV alue(vj).

It is important to note that this property is limited to an
ideal case scenario. However, it provides an intuitive idea
on the end-point constraints that we apply on any periodic
region. In order to accommodate variations such as ampli-
tude scaling, etc., we now relax these constraints to apply
to non-ideal scenarios.

3.2.2 Property 2 - In the presence of time scaling, the
constraint on the length of the periodic pattern
needs to be relaxed

Time-scaling results in stretching or compression of the
pattern. For example, see Figure 1(a). The figure shows
two patterns. Both the patterns have same shape but have
different lengths owing to the time-scale factor. In such
cases, the length property needs to be relaxed as follows.

Given a time series regionTp = (vi, . . . , vj), Length(Tp) =
Time(vj)− Time(vi) = p± δ

wherep is the period of the pattern. The variableδ provides
the scope of the supported compression and stretch inTp.
This aspect, as we will see later, will control the algorithm’s
sensitivity to time scaling.

3.2.3 Property 3 - In the presence of amplitude shift,
both the end-points of the pattern may not be
minimum of all the data points in the pattern

An example of patterns with amplitude shift has been
shown in Figure 1(d). In the presence of amplitude shift,
the bounding end-points may not be smaller than all other
data-points in the region as expected inProperty 1. Hence,
the conditions 2 and 3 ofProperty 1need to be modified as
follows:

A regionTp = (vi, . . . , vj) is periodic, if:

1. Length(Tp) = Time(vj)− Time(vi) = p± δ, and

2. ∀vk ∈ Tp, wherei < k < j, following conditions must
not hold true together:

• vk is a local minima, and
• V alue(vk) < max(V alue(vi), V alue(vj))

The observation states that there does not exist a local min-
ima, in between the two end-pointsvi andvj , that has a
value lesser than either of the two end-points. Thus, even
in the presence of amplitude shifts, the end-points of the
periodic region are the two smallest local minima and the
condition 2 and 3 inProperty 1holds true.

Figure 3: Time series used as running example.

Figure 4: Periodogram for time-series shown in Figure

Although we attempt to cater to different types of ampli-
tude and time variations in a pseudo-periodic time series,
this property crisply defines the limits of these variations in
the context of a periodic region.

Along with above properties that define a specific region
of occurrence, we next present following global properties
that hold across multiple occurrences of the periodically
occurring pattern.

3.2.4 Property 4 - The pattern should repeat multiple
times and the repeating patterns should have a
similarity in shape

A time seriesT should consist of a set of multiple patterns
Stp = {Tp1, . . . , Tpm} such that

• ∀Tpi ∈ Stp, the above mentioned local properties
hold.

• All Tpi ∈ Stp should be similar in shape. We later sys-
tematically define a measure in Section 4 to compute
similarity of shape.

• The setStp must contain at leastk number of regions.

4 Proposed solution
In this section, we present a step by step description of the
proposed algorithm. The example time-series used for this
purpose is shown in Figure 3 which represents the daily
workload pattern observed over a period of few months.

1. Estimate the length of the periodic cycle, p:
A lot of work has been done in the past [10] in this regard.
However, due to the pseudo-periodic nature of time-series,
the period value derived by these techniques is only approx-
imate. We propose to use one of the standard techniques,
viz. Periodogram Analysis[10] to estimate this value.

The left plot in Figure 4 shows the Periodogram for
time-series shown in Figure 3. The peak in this case gives
the period value of 7 data-points. The right plot in the same



Figure 5: (a) Points of local-minima (solid triangles) for
time-series shown in Figure. (b) A region(t30, t45) from
the example time-series shown in Figure 3. (c) A region
(t16, t31) from the example time-series shown in Figure 3.

figure, refers to the p-value, which in this case happens to
be almost zero, thereby exhibiting high confidence.

2. Smoothen the time-series,Ts:
Noise is an integral part of any real-world time-series. In
this regard, we estimate the LOESS1 curve of the original
series to decipher the hidden behavior in the series. For
a largep/length(Tp) ratio, the smoothing is more aggres-
sively done and vice-versa.

In the example time-series, however, no smoothing is
carried out owing to a very lowp/length(Tp) ratio.

3. Identify the locations of local minima inTs:
This step identifies the locations of local minima inTs. Lo-
cal minima are identified in a moving window ofr data-
points. This step partially fulfills the objective of identify-
ing the end-points of the periodic patterns. The upcoming
steps filter the local minima identified in this step on the ba-
sis of various properties discussed in the previous section.

In this regard, we construct a setLM to store these
points.

LM = {m1, . . . ,mn}

The points of local minima for the example time-series
are shown in Figure 5(a).

4. Pair local minima based on Property 2:
In this step we identify the pairs(mi,mj) in LM , such that
mi andmj arep± δ time-units apart, whereTime(mi) <
Time(mj). The valuep is the length of the periodic cycle
computed in Step 1. The variableδ is derived from Prop-
erty 2 that addresses time-scaling in a time-series. Thus,

∀(mi, mj) ∈ LM such thatTime(mi) < Time(mj): pair
(mi, mj) ∈ LMP if, (p−δ) ≤ (Time(mj)−Time(mi) ≤
(p + δ)

This ensures that∀(mi,mj) ∈ LMP , the patternTp

will be bound by minima pointsmi andmj , partially in
line with the inferences presented in Property 1.

5. Retain pairs inLMP obeying Property 3:
In accordance to the constraints mentioned in Property 3,
in this step, we remove any pair(mi,mj) ∈ LMP , for
which there is a local minimamk ∈ LM such that,

1. mk lies betweenmi and mj , i.e., Time(mi) < Time(mk) <
Time(mj), and

2. the value ofmk is smaller than the value of eithermi or mj , i.e.,
V alue(mk) < (V alue(mi) Or V alue(mj)

1LOESS (locally weighted regression) is a fitting technique or a func-
tion for which the value at a particular locationti is determined only by
the points in its vicinity.

This step, hence, will remove any such pattern that vio-
lates the limits applied on the pseudo-periodic definition.

Figure 5(b) shows a region(t30, t45) from the time-
series of the running example shown in Figure 3. In accor-
dance to the discussed property, the region(ti, tj) will not
be a potential pattern bearing region. The reason being the
presence of the local minima’stk1 and tk2, both of them
satisfying the constraints mentioned inProperty 3. How-
ever, the region(ti, tk2) will be considered as a potential
pattern bearing region. Due to time-scale factors discussed
in Property 1, the region(ti, k1) is also discarded since its
length does not fall inp± δ range.

6. Apply Property 4 to setLMP to retain pairs with
similar shape:
As explained inProperty 4of Section 3, the periodic pat-
tern must demonstrate a similarity in shape with other pat-
terns of the same series. In this regard, we compute a mea-
sure to estimate the similarity among potential patterns in
LMP . For this purpose,1-D Euclidean distanceis com-
puted as follows;

1. for any pair(mi, mj) in LMP ;

• Compute 1-D Euclidean distance between
max(V alue(mi), V alue(mj)) and all points
V alue(pk)∀i < k < j

• Add this distance to a setE.

• Normalize all distances in the setE.

2. Discard any pair(mi, mj) in LMP if Eij ≤ θ where0 ≤ θ ≤ 1
is theEuclidean thresholdfor similarity. This threshold controls how much
distortion in the shape of the periodic pattern is accepted by the algorithm.

7. Address overlapping pairs inLMP : The filters ap-
plied until now drastically reduce the number of pairs that
represent potential pattern bearing regions. However, at
this stage there is a possibility of overlapping pairs defined
on the same region. More formally, a given minimami,
might pair with many minima, say(mi,mj) and(mi,mk),
that satisfy all the filters mentioned until now. We address
such cases by retaining the minima pair that covers the
largest region in time and has smallest difference in value.
Thus, identify the setS of minima pairs inLMP that have
common begin or end minima. Of all the minima pairs
(mi,mj) ∈ S, retain the minima pair(mi,mj) in LMP
that has the following property:

• (V alue(mi) − V alue(mj)) ≤
min(∀(mx,my)∈S(V alue(mx)− V alue(my)))

• (Time(mi) − Time(mj)) ≤
max(∀(mx,my)∈S(Time(mx)− Time(my)))

A scenario of overlapping regions is illustrated in Fig-
ure 5(c). The minimami forms two pairs viz.(mi,mk)
and(mi,mj). This property chose(mi,mj) as a potential
pattern bearing regions owing to constraints defined in this
property.

8. Filter out pairs based on Amplitude Shifts discussed
in Property 2:
We now attempt to find a subset of pairs of the form
(mi,mj) from LMP , which can be clustered based on the
displacements betweenV alue(mi) andV alue(mj). This



Figure 6: The base pattern that best represents the shape of
the periodically occurring patterns in the time series.

filters out any pair fromLMP having a relatively unusual
displacement between the minima. The retained pairs, in
the next step, undergo a similarity check based on the tech-
nique calledDynamic Time Warping (DTW)[11].

It is important to note here that, this step rather performs
an aggressive filtering on the minima pairs. Owing to the
computationally expensive nature ofDTW , this step en-
sures that only a minimal set of pairs are processed, all of
which are also potentially very similar owing to the collec-
tion of filters applied until now.

9. Determine the base pattern:
This step attempts to determine the base pattern among the
pairs retained inLMP . The base pattern, as already dis-
cussed, is derived by estimating similarity among the po-
tential regions bounded by pairs inLMP . The technique
DTW [11, 2, 6, 9] is employed for this purpose.

Any pair(mi,mj) ∈ LMP which represents the region
sayTp[i,j], contains the base pattern, if;

• ΣDistance(DTW (Tp[i, j], Tp[x, y]))∀(mx, my) ∈ LMP is min-
imum

We will denote the base pattern identified in this step as
Tp[base]. Figure 6 shows the base pattern derived for the
running example time-series shown in Figure 3.

10. Identify regions exhibiting periodic behavior:
Once the base pattern is determined, the algorithm now at-
tempts to determine if a similar pattern exists in other po-
tential locations. The set of locations to search for in this
step, is more than the set of locations currently retained
in LMP . As mentioned earlier, in order to determine the
base pattern, the setLMP undergoes an aggressive filter at
Step 8. However, since the base pattern is already identi-
fied, the search must be carried out on more potential loca-
tions. This is necessary to avoid missing out on any pattern
bearing location which might have been filtered at Step 8.

At this stage, the search for periodic behavior is carried
on all the pairs that went into Step 8. Let this set of pairs
be represented byLMPs8. As a similarity measure at this
step, we re-employDTW as follows:

Any pair(mi,mj) ∈ LMPs8 which represents a region
sayTp[i,j], is similar to Tp[base], if;

• distance(DTW (Tp[i, j], Tp[base]))∀(mx, my) ∈ LMP ≤ ∆,
where∆ is the similarity threshold.

Figure 7 shows the regions of occurrences of the periodic
regions found by the algorithm.

Figure 7: Regions of occurrences of the periodic time series
.

Figure 8: (a) Regions of occurrences of the periodic time
series using algorithm in [5], (b) Base pattern identified by
[5]

.

5 Experimental evaluation

We next present the experimental evaluation of the pro-
posed algorithm. We present the sensitivity analysis of the
proposed algorithm on synthetic data where we evaluate the
correctness of the algorithm while varying different data
properties such as noise, level of time variations in the pe-
riodic patterns, level of amplitude variations in the periodic
patterns, etc.

5.0.5 Experiment setup

We use a discrete-event simulator CSIM [7] to generate pe-
riodic data. We then systematically insert different time
and amplitude variations in this pattern. The objective of
these experiments is to test the sensitivity of the proposed
algorithm to the time and amplitude variations and to iden-
tify its effective region of operation. We hence take each
parameter and generate data with increasing order of varia-
tion. We quantify each of these variations, amplitude scale,
amplitude shift, time scale, time shift on a scale of 1 to 10
such that 1 refers to least variation and 10 refers to very
high variation.

5.0.6 Evaluation criteria

In the above simulation setup the actual shape of the pattern
is known a-priori. We refer to the actual pattern asPAct.



Figure 9: Effect of Amplitude Scale on Position Error or
Shape Error (No. of patterns = 10, Period = 10).

Let the estimated pattern bePEst. We compare the actual
pattern with the pattern estimated by the algorithm over two
metrics viz. the shape error and the position error.

Shape error: We calculate this error by calculating dif-
ference in the actual shapePAct and the shape estimated
by the algorithmPEst. We compute the difference in shape
using dynamic time warping (DTW) and using the warp
distance as an error metric. We use normalized shapes of
PAct andPEst to take care of amplitude variations. Thus,

ShapeError = DTW (PAct, PEst).nonumber (1)

Position error: We define position error between two
patterns as the absolute difference between the start time
of the actual and estimated pattern. For each pattern in the
actualPAct in the actual time-series, we find an estimated
patternPEst derived by our algorithm such that difference
in the begin time ofPAct andPEst is minimal. We com-
pute the difference in start time ofPAct andPEst and refer
to this distance as the position error in detectingPAct. We
average this over all instances of actual patterns in the orig-
inal time series.

PositionError = Mean∀PAct
(|BeginTime(PAct)−BeginTime(PEst)|)

(2)

In the following sections, we present effect of change in
various factors viz. amplitude, time scale and amplitude,
time shift on the performance of proposed algorithm.

5.0.7 Addressing amplitude scaling

Figure 9(a), (b) show the effect of change in amplitude on
position error and shape error respectively. There are 10
patterns of period 10 in the time series. The amplitude fac-
tor changes from 1 to 10. It can be observed from Figure
9(a) that the position error is almost nil even if the ampli-
tude scale factor increases to 10. For any amplitude scale
factor, the position error is less than 1 time unit. The posi-
tion error increases slightly when the amplitude scale fac-
tor increases. From Figure 9(b) it can be observed that the
ShapeErroris between 0-10% for amplitude scale factor of
1 to 10. Amplitude scale does not affect detecting shape of
the pattern. The amplitude variations are taken care of by a
proper definition of the pattern as in Section 3.2.1.

Figure 10: Effect of Time Scale on Position Error or Shape
Error (No. of patterns = 10, Period = 50).

Figure 11: Effect of Time Shift on Position Error or Shape
Error (No. of patterns = 10, Period = 50).

5.0.8 Addressing time scaling

Figure 10(a), (b) show the effect of change in time scale
factor on position error and shape error respectively. The
position error increases significantly as the time scale factor
increases from 1 to 10. For instance, if a time scale factor
is 10, the period of the pattern may be anywhere between 1
to 10 times of the period of the original pattern. The posi-
tion error increases with the increase in time scale since the
patterns scale in time and this results in patterns occurring
non-periodically at unexpected time intervals. From Figure
10(b), it can be observed that the change in time scale factor
does not affect theShapeError. The error in shape is based
on dynamic time warping. As a result, even if the pattern
in time-scaled, DTW is able to identify the base pattern in
it. This results in a smallShapeError.

5.0.9 Addressing time shifting

Figure 11(a), (b) show the effect of change in time shift
factor on the position error and shape error respectively.
The time shift factor increases from 1 to 10. The effect of
time shift is small onPositionError. The algorithm is fairly
robust against different factors of time shifts and can detect
patterns occurring at different locations. ThePositionError
does not go beyond 10%. The maximumShapeErroris
around 30% for time shift factors 1-10. BothPositionError
andShapeErrorincrease with increasing time shift factor.

5.0.10 Addressing amplitude shifting

Figure 12(a), (b) show the effect of change in amplitude
shift factor on the position error and shape error, respec-



Figure 12: Effect of Amplitude Shift on Position Error or
Shape Error.

tively. The amplitude shift factor increases from 1 to 10.
The effect of amplitude shift onPositionError is small.Po-
sitionError reduces slightly as the amplitude shift factor in-
creases. This is because as the amplitude increases, the ef-
fect of noise reduces and the algorithm is able to detect the
patterns more accurately. The effect of change in amplitude
shift factor on shape error is also not large. WhileShapeEr-
ror slightly increases with increasing amplitude factor,Po-
sitionError does not go beyond 20% for amplitude shift
factors between 1 to 10.ShapeErroris less than 10% for
amplitude shift factor between 1 to 10.

6 Comparison with existing work
In this section, we compare the results of the proposed al-
gorithm with the results of algorithm proposed in [5] to
identify periodically occurring pattern and its region of oc-
currences. The algorithm in [5] proposes to derive the pe-
riod value,p, using periodogram. It then computes the
base pattern as the average of all the patterns occurring
in the time series at a distance of period,p. Figure 8(a)
shows the pattern identified by this algorithm and Figure
8(b) shows its regions of occurrences. Note that the region
of occurrences identified by the algorithm proposed in [5]
are skewed from actual location of the pattern. Further, the
average base pattern identified by this algorithm (shown in
Figure 8 (b)) is not representative of the actual pattern that
is repeating.

7 Application of periodicity analysis in data
centers

In this section, we present various scenarios where the pro-
posed approach of analysis of periodic patterns provides
many interesting insights into the functioning of the data
centers.

Today’s data centers are monitored to keep track of the
overall system health. We demonstrate various scenarios
observed in real-life case-studies where capturing the peri-
odic behavior of these metrics provided very useful insights
for the data center operators.

7.1 Detection of signature of an event

Various events in a data center demonstrate a periodically
occurring signature. These events could be specific opera-

Figure 13: Time series of available memory showing sig-
nature of periodic garbage collection.

Figure 14: Time series of various system metrics observed
during events of system restart.

tions such as periodic data backup jobs or periodic operat-
ing system process such as disk cleanup.

We demonstrate the concept using an example of the
event ofgarbage collection. The time-series of available
memory of the system showed a particular behavior be-
tween subsequent garbage collection operations. Figure
13 presents the time-series of the available system mem-
ory. We observed that the JVM settings affect the length
of this pattern. Increasing the active memory size of the
JVM from 256MB to 512MB results in expansion of the
pattern. An automatic detection of such patterns can pro-
vide direct insights into appropriate JVM settings for the
observed workload.

7.2 Root-cause analysis

Due to the use of data centers for more and more
performance-critical applications, it has become very im-
portant to have automated techniques to detect failures in
the data center and to quickly identify the root-cause of the
observed failure.

We observed a scenario in a data-center where a partic-
ular process was observing periodic restarts and the objec-
tive was to find the root-cause behind these restarts. Fig-
ure 14 shows time-series of CPU utilization, swap space
utilization, network input and output packet rate, etc. of
the server on which the process was running. A periodic
pattern was identified in swap space, CPU utilization, and



Figure 15: (a, b) Time series of workload (number of cred-
its and debits) and their forecast, (c) Time series of the
batch completion time and its prediction.

network input and output rate. These patterns were co-
occurring with the events of process restart. It was deduced
that as the swap space reached a certain limit, the process
restarted making the CPU utilization and network input and
output rate to drop.

7.3 Forecasting

We present a scenario of a batch processing system that is
monitored to collect workload information, batch comple-
tion time, etc.

Figure 15 shows a scenario where we predict the work-
load and batch-completion time of a batch-processing sys-
tem for the next 6 months. We forecast the number of cred-
its and number of debits for the next 6 months as shown
in Figure 15a and Figure 15b. We then build a correlation
model to predict the batch completion time based on the
forecasted number of credits and debits. We show the pre-
dicted batch completion time in Figure 15c. It can be seen
that over a period of 6 months the batch completion time is
predicted to increase from 180 mins to 200 mins.

8 Conclusion

In this paper, we addressed the problem identifying period-
ically occurring patterns in a time series. In this regard, we
presented a technique that is robust against various chal-
lenges like time scaling, time shifting, amplitude scaling,
amplitude shifting and noise.

Although periodicity detection has been an area of re-
search, the past work did not address the challenges men-
tioned in this paper. We presented a crisp definition of a pe-
riodic pattern in the presence of time scales and shifts and
amplitude scales and shifts. We then presented an innova-
tive solution to analyze such data for periodic behavior.

We evaluated the accuracy of the proposed algorithm
on data collected from a production data-center. We also
performed sensitivity analysis of the proposed algorithm
on simulation data generated in an controlled environment.
Further, we demonstrated the application of the proposed
solution in the domain of performance and capacity man-
agement in data-centers.
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