
Analysis and Modeling of

Evolving Database-centric Web Applications

S. V. Madhava Krishna

+
 Satyadeep Karnati

+
 Abhishek Biswas Jagannathan Srinivasan

 IIT, Guwahati Old Dominion University Oracle Corporation

 Assam, India Norfolk, Virginia, USA Nashua, NH, USA
 {sista, karnati}@iitg.ernet.in abiswas@cs.odu.edu jagannathan.srinivasan@oracle.com

Abstract

Database-centric web applications tend to evolve over

time. However, there are no comprehensive tools to

analyze and present the synopsis of changes for such

applications. In this paper, we address the problem of

analyzing an evolving application and presenting the

synopsis of changes, which can be recursively drilled

down in an interactive manner. Specifically, we analyze

two versions of an application, each constituting of a

hierarchy of pages, page regions, and region items, and

model the synopsis of changes. In addition to analyzing

the content of pages, our synopsis generation algorithm

takes into account, the changes resulting from page

layouts, page branching transitions, and page schema

dependencies. Furthermore, the region pair-wise

similarity is extended to show m : n evolution as well,

which is common due to clone and edit operations

typically employed during development. We have

developed region similarity measures to aid the analysis

and a bottom-up approach is used to label the regions and

the container pages. We have used this approach to

implement an Evolving Application Synopsis Tool

(EAST), which can analyze database-centric web

applications built using Oracle Application Express Tool.

An experimental study done with four deployed

applications and one beta version of application

demonstrate the usefulness of our approach.

1. Introduction

A majority of today‟s web applications are database-

centric. This can partly be attributed to maturity and

robustness and scalability of RDBMS [1] and partly to the

availability of free and/or open source rapid application

development tools [2]. The latter has also allowed

adoption of Agile software development methodology for

development, where requirements and solutions tend to

evolve over a period of time. A key challenge with such

evolving applications is tracking changes from release to

release, which are occurring at much shorter time

intervals.

Although it is desirable to keep track of changes

between software releases, it is not done especially for

web applications, where application code and logic is

dispersed behind various page items, event handlers, and

page processes. These web applications are typically

developed using a rapid application development tool

such as Oracle Application Express [3].

Rapid application development tools aid in agile

software development but makes the task of tracking

changes difficult. This can be primarily attributed to the

following:

 The link between pages and its code components are

internally managed by the tool.

 For installation and maintenance purposes, the entire

code (application dump) is available as a single

monolithic file as opposed to at finer granularity.

 The tools typically do not support versioning

especially at application component level.

One can hypothetically compare two versions of

application dumps by using a traditional source code

‘diff’ utility. However, the obtained diff is not coherent

as the application dump is a mashed up version of the

code supplied by developer, along with code

automatically generated by the rapid application

development tool. This problem is further compounded by

the dependency on database schema objects and stored

procedures.

 Thus, the ability to automatically generate the

synopsis of changes across versions of database-centric

web applications would be very useful, which is the focus

of this paper. Specifically, we address the problem of

analyzing two versions of a database-centric web

application and automatically generating the synopsis of

changes.

The basic approach is as follows: We view each

version of the application as a structured hierarchy of web

pages, page regions, and region items. We establish page
16th International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8--10, 2010

©Computer Society of India, 2010

__
+This work was done as part of a summer internship at Sarada

Research Labs, Bangalore.

equivalence by name (in our case page identifiers) and

hence can initially derive the status of deleted, inserted,

and identical pages by comparing page ids in two versions

(see Section 5 for the ramifications of this choice). Next,

we perform pair-wise comparison of pages marked

identical between the two applications in a bottom up

manner, namely, detecting changes at item level, next

page region level, and finally in container pages and

appropriately labelling the corresponding component (as

changed) if diff is found. For string matching, we make

use of edit distance function [10] and for source code

matching we use java library from [12].

The two labelled page branching trees are presented

side-by-side thus succinctly depicting changes in page

contents as well changes in page transitions.

We have developed region similarity measures to aid

the analysis. Our similarity measure handles both

differences arises due to changes in layout, types of

region items, as well as behavioural changes present in

underlying source code. In addition, our scheme is able to

capture m:n evolution of a region that typically can occur

if developer uses clone and edit operation to create

multiple regions from a single source region.

We also augment the above page content change

analysis with schema dependencies changes.

We are able to present the page content analysis

changes by taking into account layout of the regions

within the page. This information is derived by consulting

the page template used for rendering the page. We allow

synchronized browsing across the side-by-side page view,

so user can easily track the modified pages between the

two versions of the application.

User can recursively drill down from page branching

tree to view diffs at page level, region level, and item

level. Additional labels (identical, changed) are associated

at each level to capture corresponding schema

dependencies changes, which can also be examined, if

desired.

Using this approach, we have built an Evolving

Application Synopsis Tool (EAST), which is yet another

database-centric web application developed with Oracle

Application Express (APEX) Tool [3]. A key aspect of

APEX is that it maintains the application metadata also in

Oracle Database, which is made available as a collection

of views. This allowed us to analyze the applications

easily.

An experimental study conducted with four deployed

applications and one beta version of application of Sarada

Research Labs, Bangalore at various Ramakrishna

Missions demonstrate the usefulness of our approach.

The key contributions of the paper are:

 To the best of our knowledge, this is first attempt to

automatically analyse and model synopsis of

evolving database-centric web applications.

 The region similarity measures, and the overall page

change analysis algorithm, and

 The EAST tool and its use in studying evolving

applications that demonstrates the usefulness of our

approach.

1.2 Related Work

The text based file comparators, popularly known as diff

became first available as part of UNIX system (the first

implementation was based on [4]) and has been around

since 1975. Several options are supported, including

normal (with lines marked with „a‟ added, „d‟ deleted and

„c‟ changed), context (provided by including additional

unchanged lines), and unified formats (compact version of

context format), as well as generating edit script (which

can convert old file to new). The diff utility has also been

extended to work on binary files. We do rely on diff

utility to do basic source SQL and PL/SQL code

comparisons.

Work has also being done to compare two versions of

a program by considering programming language syntax

[6] as well as by capturing semantic changes [5].

However, our work is more similar to finding

structural changes as reported in [8] and detecting

changes in XML document [9,11], both of which address

the issue of dealing with hierarchically structured data.

We employ a simpler algorithm that exploits the domain

knowledge known in our case about evolving web pages

(See Section 2 for more details).

In the database world, the versions of database schema

objects have been compared to understand schema

evolution [7]. However, for us, in addition to schema

object evolution, we also need to track changes resulting

from differences in schema dependencies between

versions of the application at varying level of granularity

(pages, regions, and items).

1.3 Organization of rest of the paper

Section 2 gives the key concepts pertaining to analysis

and modelling of evolving application synopsis. Section

3 gives an overview of building the EAST tool. Section 4

describes the experimental study conducted with deployed

applications and a beta version of application. Section 5

contains discussion and Section 6 concludes the paper and

outlines future work.

2. Key Concepts

This section presents the key concepts of analysis and

modelling of evolving application synopsis.

2.1 Overview

Database-centric web application development tools

typically use the Model-View-Controller (MVC)

architecture [13] as the basic development model. Thus,

we follow a similar architecture to analyse changes in

evolving applications and model the synopsis. We analyse

the application differences along two hierarchies

corresponding to the view and model components of the

MVC architecture:

 View Hierarchy: This hierarchy of pages, page-

regions and region-items, models the user interface.

Under this hierarchy, we generally look at the page

layout, page navigation, reports, and forms, etc.

 Model Hierarchy: This hierarchy of pages, page-

events, event-processes and process schema

dependency, models the backend code triggered by

user interaction. This component analyses changes in

application code encoding business rules and their

schema dependency. The controller is an inherent

part of this hierarchy and is not modelled separately.

These two change hierarchies (see Figure 1) are

analysed in a bottom-up order. However, they are

presented in a top down order with ability to drill down

recursively. The above two hierarchies are, in general,

present in any web application.

In addition, for a database centric application, we can

analyse the application evolution from a database centric

dimension. This can be modelled as an inverse hierarchy

of schema objects and dependent page components. This

schema dependency evolution hierarchy is useful in

tracking changes in schema objects and in turn their

dependents (Figure 2).

Figure 1: View & Model Hierarchy (in MVC-context)

The above three hierarchies is discussed in the

following sections. Although, the discussion is presented

in context of applications developed used APEX, the

concepts are applicable to database-centric web

applications, in general, unless otherwise mentioned.

2.2 View Hierarchy Analysis

The first task in analysis of an evolving application is to

establish page equivalence between two versions of the

application. Page equivalence can be established using

heuristic techniques, however, we found that page

equivalence by name (identifiers in our case), suffices for

applications generated by APEX. During page

equivalence generation, we also derive list on inserted or

deleted pages. Pages common to both versions of the

application are analysed further to deduce if any changes

have been made.

It is a common practice to split a HTML page into

regions or frames using different multi-view constructs.

Region equivalence cannot be derived directly as page

equivalence by name, as two different regions may have

same name, or the regions may not have been named at

all. Moreover, as explained earlier, m:n similarity of the

regions is possible. In order to tackle these challenges, a

region similarity measure Φ is introduced to compare

certain properties of the regions.

Region Similarity Measure & Evolution: In this section

we derive the region similarity measure and discuss the

algorithm to mark modified regions. A region can be

considered as a container containing components from a

predefined set of HTML and APEX controls, ordered by,

their sequence identification numbers. The similarity

measure identifies attributes of the regions not expected to

change significantly and applies the similarity between

these attributes to recognize evolved regions.

The similarity measure is defined as:















matchpartialif

rrif

rrif

rr

),1,0(

,1

,0

),(21

21

21

where, r1 and r2 are regions being compared. The

comparison criterion based on the similarity measure

Φ(r1,r2) is defined by the Boolean function:

     
   









]1,0[,1,0:,,0

1,0,1,0:,,1
),(

21

21

21




TTrrif

TTrrif
rrC

where, T is the threshold value set by experimentation. A

higher threshold results in increased number of

mismatches. On the other hand, a lower threshold fails to

find out good matches. To calculate the similarity

measure, we take into account four different similarity

scores as discussed below:

 Region Type Score: If the region type is different, a

score of 0 is returned. In case of custom region types

if only one such region is allowed then a score of 1 is

returned if exactly matched.










0..

1..

21

21

thentypertyper

thentypertyper
RgType

 Region Name Score: An edit distance similarity

function is applied to match the region names and

converted to a value between 0 and 1. The score is

calculated as











 0,

1

).,.(
1max 21

n

RgName
T

namernamere


where e(text, text) is the edit distance function and Tn

is the maximum edit distance acceptable. If

e(r1.name, t2.name) << Tn, the score is ~1 indicating

a good match and if e(r1.name, t2.name) > Tn the

max function returns 0 indicating no match.

 Pages

Regions

Items

Pages

Events

Event Processes

Schema

Dependencies

 Region Item Counts Score: Similar regions are

expected to have a large number of common items.

So, this score is based on the count of the common,

inserted and deleted items in the two regions under

comparison. First we establish one to one

correspondence among the items on the page. Page

items like textboxes, select lists and calendar controls

have unique names in a page for referencing and

dereferencing purpose as they are used during

submitting and requesting a page. Hence we establish

equivalence of items based on their name to find the

common, inserted and deleted items and group them

by their container regions.

Let a be the total number of items in the first

region and b be the total number of items the second

region. Also, let c be the number of common items in

the two regions. Then, the total number change is

given by:

cbacbcaesTotalChang 2)()(

The total number of changes divided by total number

of items is the fraction of change and the similarity

score bases on item count is given by:

ba

c

ba

cba

















22
1













otherwise

ba

c

cbaif

tRgItemCoun 2

00



Certain regions are report regions which only display

data in a table. The score for such regions is

calculated using the table columns instead of the

items.

 Region Source Score: The region source diff is

calculated by using [12] which gives the characters to

be added or deleted to convert one text to other. The

diff score can be normalized by calculating the ratio

of the common characters to the total characters in

the following manner:
















otherwise

texttext

addeddeleted

texttextif

RgSrcDiff

21

21

##

##
1

0##0



The final similarity measure between two regions is

calculated using a weighted average. Let w1, w2, w3 and

w4 be the weights assigned to the four similarity scores

respectively where,










otherwisew

cbaif
w

0

00

3

3










otherwisew

texttextif
w

0

0##0

4

21

4

Then the similarity measure is computed as:

4321
),(

4321

21
wwww

wwww
rr

RgSrcDifftRgItemCounRgNameRgType









 Using the similarity measure and comparison criterion

C(r1, r2), pair wise equivalence can be established

between the regions of the pages from the two

applications. A table with page number, regions identifier

and the similarity measure is populated. Regions which

fail to match are marked deleted if they belong to the

older application, otherwise, marked inserted. Matched

regions are marked modified if the similarity measure is

less than 1 as changes have been detected in the two

regions during the basic similarity score calculation. In

case of exact matches, the regions attributes like display

order of the items in the region, display position of the

region on the page, the region source and the display

conditions are compared further to obtain the modification

status. The algorithm for populating the region

modification table is outlined below:

Algorithm: Populate Region Comparison

Input: Region Page Numbers Pold and Pnew

 Threshold: T

Output: Region Similarity & Modification Table (Pold.Region,

Pnew.Region, Φ, Status)

Algorithm:

1: for a each Region in Pold do

2: matchRegionFound = FALSE;

3: for a each Region in Pnew do

4: score = Φ (Pold.Region, Pnew.Region)

5: if(score > T) then //Regions similar

6: matchRegionFound = TRUE;

7: if(Φ ==1) then //Regions match exactly

8: if(compare_full(Pold.Region,Pnew.Region)) then

//checking other properties

9: Status = “same”

10: else

11: Status = “modified”

12: Update status of page as “modified”

13: end if

14: else //declared as partial match

15: Status = “modified”

16: Update status of page as “modified”

17: end if

18: Insert (Pold.Region,Pnew.Region, Φ, Status)

19: end if

20: end for

21: if (matchRegionFound == FALSE)

22: Insert (Pold.Region,NULL, 0, „deleted‟)

23: end if

24: end for
25: for a region in Pnew do

26: if(Pnew.Region NOT IN RegSimilarityTable. Regnew)

27: Insert (NULL, Pnew.Region, 0, „inserted‟)

28: end for

It is important to note that a region can be matched

with multiple regions in the other application due to clone

and edit operations by developers. Small form regions

often fall into this category. They can be copied and used

multiple times with small changes. Such regions are

difficult to match with a one to one correspondence. So,

they are matched with multiple regions and correct match

can be entered by a human reviewer.

Once the regions similarity is established, we move

on to item similarity. Modification status of the matched

items is computed by comparing properties like label,

display sequence number, and display conditions. The

modification status of the container region and parent

page is simultaneously updated for modified items in

bottom up order.

2.3 Model Hierarchy Analysis

During a web page rendering process back-end

application code can be executed during a page load i.e.

before the final HTML file is sent to the client for

rendering or during a post i.e. a client generates a request

by some event. APEX provides a set of events, to which

PL/SQL handler routines can be attached, to process user

requests and encode business rules. Providing a set of

predefined events is a standard practice in event based

programming and followed by most rapid web

development tools. As shown in figure 1, the predefined

events and the handler processes form the two levels of

the model hierarchy under each page. The schema

dependency level computes [14] and stores the schema

dependencies of the handler processes.

Since, page equivalence has been established earlier,

here, we compare the handler processes attached to each

event and derive the matched, inserted and deleted

processes based on the process name. Matched processes

are further compared by a source code diff algorithm,

implemented by [12], to generate the modification status.

The results are entered in a table (Pold, Pnew, EventType,

Pold.Event.Process, Pnew.Event.Process, Status). Inserted

and deleted processes are also recorded in this table with

Pnew or Pold set as null respectively.

APEX also allows us to attach some SQL or PL/SQL

code to a HTML item as a special source attribute for

rendering the initial value. These code snippets are not

attached to a specific event and therefore are compared

under the view hierarchy as an item attribute.

2.4 Schema Dependancy Evolution Hierarchy Analysis

The schema dependency evolution hierarchy (Figure 2)

tracks the change in the schema dependency of

application components between different versions.

This hierarchy is built in a bottom up order with page

and page component equivalence established by matching

the page identifiers and page component names

respectively. The schema dependencies of the page

components like processes, region source, item source etc.

are computed by the process in [14] and stored in table

(SchObjectId, AppVersion, PageId, ComponentId).

Figure 2: Schema Dependency Evolution Hierarchy

The list of referenced schema objects for each

component is queried from the table above. For each pair

of matched components, in the two applications, the

schema reference lists are compared to derive the schema

dependency change at the component level. Similarly, the

list of referenced schema objects for each page is derived

by grouping the schema objects dependencies of all the

components on the page. Then, for each pair of matched

pages the schema object dependency list is compared to

derive the schema dependency change at the page level.

Finally, two application wide schema dependency lists are

generated and compared to compute the change in schema

dependency at the application level.

To simplify implementation, we ignore the

dependency type change i.e. read or write. So, in the

above analysis, a schema object is either referenced or not

referenced by a component and the modification status

can only be inserted or deleted. If we consider

dependency type we will need to add a third category

capturing the possible change in the type of dependency.

Then for each schema object we will have three possible

modification status at each level, i.e. inserted, deleted and

modified.

In addition to change in references to schema objects,

the referenced schema objects can themselves evolve. In

[17], authors discuss the generic schema matching

problem and presents algorithms for establishing schema

object equivalence between two independently developed

schemas. These algorithms and measures could be used

for matching renamed schema objects (if any) that occur

between two versions of the application. For most

practical purposes, a database specific tool, like Oracle

Schema Diff (part of Oracle SQL Developer [18]) can be

used to identify schema objects that evolved between the

two versions of the database schema. The output from the

database diff tool can be used to accordingly update the

schema dependency evolution hierarchy.

2.5 Visual Modelling of Evolution Synopsis

The application diff computed above is visually rendered

as described below.

 Schema

Objects

 App. Version

 Pages

Page
Components

Application Level Diff: At the root level each

application is depicted as a summary tree [14] with the

pages as nodes and the navigation between the pages as

tree edges. The two applications page-branching trees are

shown side-by-side for visual inspection. The inserted,

deleted, and modified pages are identified by different

color codes. Clicking on a page highlights the

corresponding pages on the other application and hence

the changes in the page branching can be detected easily.

Page Level Diff: By selecting a modified page from the

summary tree, one can drill down to the page level diff,

which shows the page in the two versions side by side

displaying the regions in their respective display

positions. The theme and template of the page from the

APEX views are used to place each region in its position

thus allowing us to depict the page layout changes.

Inserted, deleted and modified regions are displayed in

different colors and selecting a region highlights the

corresponding matched region in the other version.

Regions with multiple similarities, i.e., regions having

more than one matched regions crossing the threshold are

highlighted in a different color on selection and the

correct match can be manually selected from the list of

matched regions. Regions can be selected from either

versions of the application and a list of matching regions

from the other version is shown for manual selection.

Region Diff: Page diff allows a drill down to region diff

showing the changes in the two regions due to region

source, report columns and region items.

All the components of the region like columns, items

and buttons are shown using the region template. The

items in the region are color coded just as regions in the

page diff. Also, as a score based scheme is used for pair-

wise matching of regions, we could have multiple region

similarity scores crossing the match threshold. Hence,

many to many matching may occur among the similar

regions of the two versions. Such close matches occur due

to copy and paste of regions in a page with small changes.

Item Diff: This is the lowest level of the diff in the view

hierarchy, which compares the important properties of an

item in a tabular form and also displays the item source

diff.

Process Diff: The page level diff visualization also shows

the model hierarchy. The specific events and the attached

handler processes are shown in a tabular format

identifying the inserted, deleted and modified by colour

codes. Clicking on a process shows the diff of the various

process properties along with the process source code diff.

Schema Dependency Diff: The schema dependency

reports are provided at each level in the pages, page-

region and region-item hierarchy following the same drill

down traversal as the view hierarchy. The page schema

dependency changes are also shown in the page branching

summary tree used for application diff. Special colour

code markers are used to signify schema dependency

change of a page. The schema dependency for the

application on the whole can also be viewed. This gives

us the list of schema objects used by both the applications

and those which have been added or deleted.

2.6 Time Complexity Analysis

 At each stage during the analysis of the application diff

along any of the three hierarchies, we have to perform a

two step process.

First step is to establish equivalence between the

application components based upon a unique identifier or

a similarity measure. Matching based upon unique

identifier or a name is O(nlogn) operation, whereas

matching based upon similarity measure like the one used

in region equivalence computation in section 2.2 is O(n
2
)

operation, where n is the number of components.

The second step is to further categorize the similar

items found in the first step as same or modified, which

can each be done in constant time. Thus, the overall

complexity of this step depending on the how equivalence

is established is O(nlogn) or O(n
2
).

3. Evolving Application Synopsis Tool

This section describes the EAST Evolving Application

Synopsis Tool that was built using the proposed scheme.

3.1 Overview

The EAST application and the applications being

analyzed are developed using Oracle APEX [3], Version

3.2, a Rapid Application Development tool with Oracle

Database 10g Express Edition[15] as the database.

APEX maintains the metadata of the whole web-

application in a database schema and provides a set of

application views containing information about almost all

aspects of the application. We have used tables to store

the results of the application comparison at various levels

which are discussed in the Section 3.2.

The procedural code for populating these tables is

written in Oracle‟s PL/SQL Database Programming

Language [16]. The similarity measures (Section 2.2) are

implemented as PL/SQL functions. Once all the tables are

populated during analysis, the visual modelling of the Diff

is rendered by using the value of the modification status

of the components from the corresponding tables.

3.2 Database Schema

In order to show the summary tree mentioned in Section

2.5, we store the following information in the Page

Transitions [14] table organized as the ids of the pages in

an application along with the parent page ids. To present

the Page Diff of Section 2.5, we store the page id‟s of the

two compared application along with their modification

status in the Page Diff table (Figure 4).

The Region Diff table stores the Region identifiers of the

regions contained in the pages of the Page Diff table,

along with their status. Similar is the case for the Process

Diff and Item Diff tables.

Figure 4: Portion of the PAGE DIFF Table

In order to show the Schema Dependency Diff

(Section 2.5) we use the Dependent Component table and

the Referenced Object table. The Dependent Component

table stores all the components viz.: regions, items,

process along with their page ids and a unique id

(dependent id) assigned to each component by EAST

which is the primary key. The Referenced Object table

stores the ids of the schema objects which are referenced

by each component in the Dependent Component table

with dependent id as the foreign key. The relation

between various tables is shown in Figure 5.

Figure 5: Database Schema

3.3 Change Detection and Presentation

In this Section, we present the screenshots of the EAST

application analyzed for an application. It depicts all the

aspects described in Section 2.5.

Figure 3-a presents the Application Summary trees of

the two versions of an analyzed application side- by-side

along with the color codes showing inserted, deleted,

PAGE TRANSITIONS

PAGE DIFF

DEPENDENT COMPONENT REGION DIFF

REFERENCED OBJECTS ITEM DIFF

PROCESS DIFF

PAGE TRANSITIONS

PAGE DIFF DEPENDENT COMPONENT

REGION DIFF REFERENCED OBJECTS

ITEM DIFF

PROCESS DIFF

c)

b)

d)

e)

a)

Figure 3: a) Application Level Diff b) Page level Diff c) Region Level Diff d) Process Level Diff e) Legend

same and modified pages according to the Legend shown

in Figure 3-e. For example, the page ‘Form on Customer’

is labeled in orange to indicate it has been modified.

Similarly, the ‘DVD page’ is labeled in orange (to

indicate change in content) as well as brown (to indicate

that change in its dependency on schema objects). We

also know that the ‘Store owners‟ page is deleted (labeled

in red in left side branching tree corresponding to old

version of the application), whereas ‘Reports Scheme’

page has been added (labeled in green in right side

branching tree corresponding to new version of the

application). Note that showing a side-by-side diff allows

for synchronized browsing, that is, clicking on a page in

one, highlights its occurrence in other. Also, the

differences in branching transitions are easy to examine.

The change in the Schema dependency between two

applications can be examined by clicking on Show

Schema Dependency for Application. One can drill down

to see the Page level diff of any page by selecting the

corresponding page here.

Next, we examine the page level diff for „Report on

Customer’ page (shown in Figure 3-b). The two versions

of the pages are shown consisting of page-regions. The

same color code is used to label the regions to indicate the

status of deleted, inserted, same, and modified. Here one

can notice the template of the page and the regions placed

in their respective positions. Also, the icons capture the

type of region (e.g., a breadcrumb, columnar report, etc.).

An interesting aspect is the labeling of region with the

purple color to indicate it matches with multiple regions.

When such a region is selected, all similar regions

occurring in other page is highlighted. User can then pick

up one of the similar regions to drill down further.

Figure 3-c shows the result of performing region diff

on ‘Customer Report’ region, which is known to be

modified (by the associated orange label). Here we show

the properties diff, content diff, layout diff, and source

diff. The region properties are presented side by side for

easy comparison. We can see that the display point of the

region has changed in the two pages. The content diff is

easily seen, namely, the difference in the columns

appearing in the report. The column shaded in grey color

indicates it is hidden. In previous version, the

CUST_CONTACT column was hidden, whereas in the

newer version the CUST_ID column is hidden. We can

also see the layout changes. Furthermore, user can select

an item and corresponding item in other region is

automatically highlighted. Also, note that we are able to

capture the aspect that an item or report column is

conditionally displayed by labeling it with „*‟. Finally,

the region source is shown as a single source with

marked inserted and deleted portions.

Figure 3-d shows the process diff presented in a single

tabular form. Here the signs „+‟ and „–‟ are used to

indicate addition and deletion of processes. The modified

process is shown with a „modified‟ icon which on clicking

shows the differences of process properties like event

point, execution sequence, process source etc. For

example, 3-d shows the changes for reset_new process.

As can be seen from the Figure the source for the process

is modified highlighted in green.

Figure 6: Schema Dependency Diff

The visualization of schema Diff is similar to process

diff which is shown in Figure 6. Clicking on the schema

object in the left table shows the list of all application

components referencing the object in the right table. Here,

the symbols „+‟ and „–‟ indicates that the reference is

added and deleted respectively.

4. EAST Experimental Study

This section presents the experimental study used to

evaluate the EAST tool. It was conducted on a Intel®

Pentium® Processor E5400 (2.70GHz), 2GB RAM,

Ubuntu OS 9.04, using Oracle Database 10g Express

Edition, and APEX generated database applications. In

addition, a usability study was conducted with EAST,

where developers found it useful for analyzing changes

across versions of a web application [21]. However, due

to space constraints, the results of that study are omitted.

4.1 Applications Used for Analysis

Five deployed applications of Sarada Research Labs,

Bangalore were used for analysis as listed in Table 1.

Table 1: Application Evolution Characteristics

 Version

Diff (in

months)

*App.

Maturity

(O,N)

Pages

(O,N)

Regions

(O,N)

Items

(O,N)

TBReg. 0.75 (60,85) 9,9 32,36 51,51
OPD 12.50 (90,95) 27,37 106,136 228,296
IPD 12.50 (82,89) 35,57 93,229 225,594
VPrabha 7.50 (85,100) 41,41 117,117 250,250
TBTMS 1.50 (65,75) 44,44 158,163 317,324

*Application Maturity in % (as rated by the developer of application)

The IPD had evolved the most, with number of pages

increasing from 35 to 57, regions increasing from 93 to

229, and items increasing from 225 to 594. On the other

hand the Vivek Prabha had evolved the least in which the

total number of components remained the same.

It is interesting to note that the maturity level of

application varies significantly and is not correlated with

the time interval between releases of the two versions. For

example, the OPD and IPD though released together vary

in evolution characteristics due to difference in their

maturity level, which can be partly be attributed to the

application complexity.

4.2 Experiment I: Application Analysis Overheads

We measured the average time taken to perform the

analysis and the overheads in various subtasks. Figure 7

shows the time spent vs. # application components (#

pages + # regions + # items) in the evolved version of the

application. The effect of each component individually on

this behavior is elucidated in the following paragraphs.

As expected the use of page ids for establishing page

equivalence results in minimizing the overhead. The task

primarily involves issuing queries against APEX views to

mark pages as inserted, deleted, or same. The overhead

observed was (1.37s, 5.50s, 4.52s, 6.66s, 5.32s)

respectively for the five applications in page analysis.

Thus, it is evident that page comparison is much smaller

in comparison to the overall analysis time (Figure 7).

The region analysis involves computing pair-wise

similarity measure that dominates the processing cost.

The analysis time depends on the number of same+

modified regions and very less on the number of deleted +

inserted regions as the inserted and deleted regions do not

require comparison of the properties. Also, the presence

of exactly similar regions raises the time as it involves

comparing all the properties (Algorithm of Section 2.2).

Regions like HTML and PL/SQL having significantly

large source demand more time as they involve an

asynchronous system call to java application [12] to

perform source diff. The use of asynchronous system

calls is a limitation due to the choice of Oracle XE, which

does not support execution of java stored procedures.

The above two factors, pair-wise region similarity

computation, and pair-wise region source diffs, are clearly

visible in the experiments giving the results of (10.80s,

106.80s, 33.70s, 54.0s, 36.29s) respectively for the region

analysis time for five applications. TB Registry having

less number of same + modified regions attributed to the

very less analysis time. Vivek Prabha and TBTMS having

higher number of same +modified regions than the other

applications contribute to its higher analysis time. Vivek

Prabha though having lesser regions compared to TBTMS

has higher analysis time as it has many regions with

source code thereby requiring us to do source code diffs.

Establishing the item equivalence by their name

reduces the analysis time to a large extent. Thus, the item

analysis overhead (6.31s, 32.46s, 26.90s, 41.11s, 27.88s)

is lower than the region analysis overhead despite number

of items are much larger than number of regions. Here

also only the same + modified regions contribute to the

analysis time, for which we need to compare various

properties.

Figure 7: # of App Components vs. Analysis Time

Process overhead cost (9.69s, 35.23s, 41.27s, 65.53s,

40.15s) is in general higher than other subtasks as it

involves invoking the java application to perform source

component diff. The effect of process on overall analysis

time is similar to that for items.

Overall, the total time for analysis, was 28.18s,

179.49s, 106.39s, 167.32s, 109.65s respectively for TB

Registry, Vivek Prabha, IPD, TBTMS, and OPD

applications, which is acceptable.

Thus, the overall time taken for analysis increases not

only with the total component count, but also with the

number of same plus modified components. This is

evident from the two peaks in the graph at Vivek Prabha

and TBTMS, which have fairly large number of same and

modified components as reported in section 4.3.

4.3. Experiment II: Application Evolution

Characteristics

The objective of this experiment is to observe how the

various applications have evolved. The Table 2 gives the

evolution characteristics for the five applications.

Table 2: Application Evolution Characteristics

 Type Inserts Deletes Same Changed

TBRegistry Page 0 0 1 8

Region 7 3 21 8

Item 1 0 50 0

OPD Page 10 0 10 17

Region 31 1 62 53

Item 89 21 183 29

IPD Page 22 0 11 24

Region 143 7 42 46

Item 376 7 206 12

Vivek

Prabha

Page 0 0 29 12

Region 0 0 103 28

Item 0 0 242 8

TBTMS Page 0 0 34 10

Region 7 3 136 51

Item 7 0 311 6

The five applications analyzed can be placed into two

categories: 1) evolved significantly (TBRegistry, OPD,

IPD) have evolved significantly, and 2) evolved

moderatley (Vivek Prabha and TBTMS). Also, the

deletion of pages is absent for all applications.

An interesting evolution trend in (page, page-region,

region-item) hierarchy is visible in Figure 8 to 10. For

significantly evolving applications, page evolution is

dominated by modifications followed by insertions. For

moderately evolving applications, page evolution is

dominated by identical pages, followed by modifications.

Figure 8: Page Evolution Characteristics

In region evolution, for significantly evolving

applications there is no trend. However, for moderately

evolving applications, the region evolution trend is similar

to the page evolution, i.e., identical regions count is

higher followed by modified region counts.

Figure 9: Region Evolution Characteristics

The item evolution, the counts of identical items are in

general higher than counts of modified items. Also,

insertion counts are high for two of the significantly

evolving applications.

Figure 10: Item Evolution Characteristics

The evolution trends across the three levels (pages,

regions, items), intuitively makes sense as at lowest level,

we expect more insertions and hardly any changes,

whereas at highest level, we expect mostly same,

followed by some changes, and hardly any insertions or

deletions.

4.4 Experiment III: Application Evolution

Characteristics: Layout vs. Content Changes

This was a variation of the Experiment II, with the

objective of finding out how many changes can be

attributed to layout as opposed to content (PLC is page

layout change, PCC is page content change; similarly,

RLC and RCC are region layout and content changes).

Figure 11 shows the layout vs. content changes for the

five applications.

Figure 11: Layout vs. Content Changes

As expected, the content change (shown by darker

shades) dominates both page and region components.

Also, the layout changes when present are proportionately

higher at page level as opposed to region levels.

5. Discussion

In this section, we discuss the pros and cons of the APEX

specific assumptions made during analysis and

implementation and outline solutions in context of more

generic web development environments where such

assumptions are not necessarily valid. We also discuss

performance, goodness of similarity measure, threshold

selection, alternate presentation techniques, and

advantages over traditional source code control systems.

5.1 Performance Analysis

While comparing two applications along the three

hierarchies, as we drill down from page to page-regions to

region-items, the growth ratio is roughly 1:3:6 for the

analyzed applications in Section 4. If we derive

equivalence by unique identifier or name such as for

pages and region-items, we have an overall complexity of

O(nlogn) but it grows to O(n
2
) if a similarity measure

has to be used such as for regions.

Performance is also dependent on the extent of

evolution. If the application has evolved significantly, the

insertions dominate and the number of same plus

modified regions is less, thus reducing the region

similarity computations. However, for moderately

evolved application, the count of same plus modified is

dominant increasing the region similarity overhead.

In general, for region similarity, it would be useful to

cluster regions into groups using a heuristic so we only

need to perform pair-wise matching within the groups.

Another bottleneck is the process diff calculation,

which although has to be performed O(n) times, where n

is the number of pages (or regions), could be significant

due to large unit cost. This can be avoided by comparing

message digests to determine identical components.

5.2 Goodness of Similarity Measure and Threshold

Selection

Selection of a threshold value for a similarity measure is

critical to the success of matching components based

upon the measure. A similarity measure of 0 represents

dissimilar components, whereas measure of 1 representing

identical components. Thus, we need to pick a threshold

so that (threshold, 1) represents similar components. If the

threshold is too high, it tends to categorize the elements as

different, but if too low, it can categorize dissimilar

components as similar.

For the region similarity function of section 2.2, we

intuitively say that two regions are similar if at least half

of the content of their properties is same. Thus, the two

region sources and the two region names are considered a

match if their respective similarity score crosses a value

of 0.5. The threshold for the region item and the column

counts is also calculated on similar lines as follows:

Let a, b, c be number of items in first, second, and

common as described in Section 2.2. In order to calculate

the threshold, we consider the number of common items

must be greater than half the total number of items, which

implies that the no. of items changed (no. of items deleted

from old app. + no. of items added in new app.) <

common no. of items.

i.e.   ccba  2 , which gives
3

22


ba

c

Thus the threshold for each property is as follows:

 Region Source Threshold is 0.5 (RST)

 Region Name Threshold is 0.5 (RNT)

 Region Items Threshold is 0.66 (RIT)

(Also for Report Regions, with columns treated as items)

It's obvious that all regions do not have all the

properties. E.g., the HTML regions may not have any

columns in them. Similarly a report region may not have

any items in it. So, depending on the number of properties

compared we vary the threshold and the threshold is

calculated as the weighted average of thresholds of the

properties compared.

5.3 Establishing Page Equivalence by Name

In our analysis, we assume that pages in the two versions

can be matched based on their unique and fixed page

identification numbers. For other environments

(ASP.NET or PHP), we could consider the filename to be

analogous to the page ids. However, this may not always

hold since page ids and filenames can be changed, though,

such changes are relatively rare.

Under such circumstances the first step is to establish

page equivalence between the two versions of the

application. We suggest using a combination of heuristic

measures as applied in section 2.2 for deriving region

equivalence. Comparing the page items and computing an

overall region match score will be a good classifier.

Layout information can also be considered, but, pages in a

web application can have very similar layouts.

5.4 Pre-computing Changes all at Once vs. Lazy

Computation on Demand

A page can be marked modified if a change is found in

the highest level of the model and view hierarchy

computations. This information is sufficient to render the

page level diff trees. The lower level calculations can be

done on a demand basis reducing the initial processing

time. However, for pages which remain unmodified the

hierarchies have to be built up to the leaves to make sure

no changes have occurred.

In conventional source code control software each file

is assigned a version number and/or a timestamp. If such

information is available for the application files, it can be

used to compute the page level diff trees and inter page

diff processing for all pages can be deferred.

 5.5 Current Presentation Paradigm and Alternatives

EAST application presents a symmetric visualization of

the changes between the two applications. The differences

are presented with respect to each other in a two column

format. In some cases it may be useful to present a diff

with respect to the older application only. It may be

sufficient to highlight only the changes made in the new

application as annotations in the application summary

[14] of the old application. Such alternatives can be

implemented as per requirement while keeping the core

diff computation unchanged. However, depicting

branching transition diffs and layout changes in such a

scheme (singe column) would be challenging.

5.6 Advantages over Source Code Control Systems

Conventional RCS and CVS systems [19, 20] used today

exploit file comparison operations to detect changes and

maintain versions of the software. The framework

outlined in this paper maps the detected changes into the

model, view, controller and database schema components

of a web application. The changes in different

components are managed separately in hierarchies where

each node represents the container component of its child

nodes. This abstraction allows better modelling and

visualization of the evolution in a web application. In

[21], we explore the feasibility of developing a system

like EAST for other web development environments.

6. Conclusions and Future Work

The paper presented a scheme for analyzing and modeling

synopsis of an evolving database-centric web application.

Assuming a Model-View-Controller architecture for web

application, the analysis accounted for content changes as

well as layout changes. The presentation of these changes

in a two-column format allowed us to visually see the

changes with drill-down capabilities along the page, page-

region, region-items hierarchy. The scheme also took into

account the changes with respect to schema dependencies.

This scheme was used to implement EAST evolving

application synopsis tool, which was used to analyze

evolution of already deployed applications (in successive

releases). The tool was able to capture and represent both

content as well as layout related changes fairly accurately.

The drill-down capability allowed us to examine the next

level of changes in an easy manner.

We plan to use the tool for studying changes between

released versions of the application. In future, we plan to

enhance the tool to handle the case where the dependency

on referenced schema object remains the same for the two

versions of the application but the referenced schema

objects evolve. Also, we plan to extend this scheme to

work for environments (e.g PHP web application) where

the application directly generates the HTML code (as

opposed to via a tool). The lack of readily available

application metadata makes this task challenging.

7. Acknowledgments

We thank developers at Sarada Research Labs, Bangalore,

for providing us versions of various applications for our

experimental study and for providing valuable feedback.

References

[1] T.Koppelaars, Building Robust Applications in a

Database-Centric Way.

http://web.inter.nl.net/users/T.Koppelaars/J2EE_DB_

CENTRIC.doc

[2] J. Ploski, W. Hasselbring, J. Rehwinkel, S. Schwierz:

Introducing Version Control to Database-Centric

Applications in a Small Enterprise. IEEE Software

24(1): 38-44 (2007).

[3] Oracle Application Express,

http://www.oracle.com/technology/products/database/

application_express

[4] J. W. Hunt and M. D. McIlroy. An Algorithm for

Differential File Comparison. Computing Science

Technical Report, Bell Laboratories 41, 1976.

[5] S. Horwitz. Identifying the semantic and textual

differences between two versions of a program. ACM

SIGPLAN Notices 25(6):234-245. June 1989.

[6] W. Yang. Identifying Syntactic Differences Between

Two Programs. Software--Practice and Experience,

Vol. 21(7):739-755, July 1991.

[7] J. F. Roddick. A Survey of Schema Versioning Issues

for Database Systems. Information and Software

Technology, 37(7):383–393, 1996.

[8] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, J.

Widom: Change Detection in Hierarchically

Structured Information. SIGMOD Conference 1996:

493-504.

[9] Y. Wang, D. J. DeWitt, J. Cai: X-Diff: An Effective

Change Detection Algorithm for XML Documents.

ICDE 2003: 519-530.

[10] V. Levenshtein. Binary codes capable of correcting

deletions, insertions, and reversals. Sov. Phys. Dokl.,

6:707–710, 1966.

[11] G. Cobena, S. Abiteboul, and A. Marian. Detecting

changes in XML documents. In Proc. of ICDE, 2002.

[12] Google Diff Match Patch,

http://code.google.com/p/google-diff-match-patch/

[13] G.E. Krasner and S.T. Pope, A Description of the

Model-View-Controller User Interface Paradigm in

the Smalltalk-80 System, tech. report, ParcPlace

Systems, Mountain View, Calif., 1988.

[14] S. Sadhwi, A. Biswas, J. Srinivasan. An Application

Synopsis Tool for Database Applications developed

using Oracle Application Express, India Software

Engg. Conf., Pages: 113-118, Mysore, India, 2010.

[15] Oracle Database 10g Express Edition,

http://www.oracle.com/technetwork/database/expres

s-edition/overview/index.html

[16] Oracle PL/SQL Programming Language

http://www.oracle.com/technetwork/database/featur

es/plsql/overview/index-101230.html

 [17] J. Madhavan, P.A. Bernstein, E. Rahm. Generic

 Schema Matching using Cupid. VLDB 2001: 49-58.

[18] Oracle SQL Developer,

http://www.oracle.com/technetwork/developer-

tools/sql-developer/

 [19] W. F. Tichy, RCS-A System for Version Control,

Software-Practice & Experience, 15 (7): 637-654,

July 1985.

[20] D. Grune. Concurrent Versions System, a method for

independent cooperation, IR 113, Vrije

Universiteit, Amsterdam, 1986.

[21] S. Karnati, S. V. Madhava Krishna, A. Biswas,

 J. Srinivasan. Tracking changes in Evolving Web

 Applications, Submitted to ISEC 2011.

