
INSTRUCT: Space-Efficient Structure for Indexing and Complete
Query Management of String Databases

Sourav Dutta Arnab Bhattacharya

IBM Research India,
New Delhi, India.

sodutta3@in.ibm.com

Dept. of Computer Science and Engineering,
Indian Institute of Technology, Kanpur, India.

arnabb@iitk.ac.in

Abstract

The tremendous expanse of search engines, dictionary and
thesaurus storage, and other text mining applications, com-
bined with the popularity of readily available scanning
devices and optical character recognition tools, has ne-
cessitated efficient storage, retrieval and management of
massive text databases for various modern applications.
For such applications, we propose a novel data structure,
INSTRUCT, for efficient storage and management of se-
quence databases. Our structure uses bit vectors for reusing
the storage space for common triplets, and hence, has a
very low memory requirement. INSTRUCT efficiently
handles prefix and suffix search queries in addition to the
exact string search operation by iteratively checking the
presence of triplets. The paper also proposes an extension
of the structure to handle substring search efficiently, albeit
with an increase in the space requirements. This exten-
sion is important in the context of trie-based solutions since
they are unable to handle such queries efficiently. We per-
form several experiments portraying that INSTRUCT out-
performs the existing structures by nearly a factor of two
in terms of space requirements, while the query times are
better than the competing structures. The ability to han-
dle insertion and deletion of strings in addition to support-
ing all kinds of queries including exact search, prefix/suffix
search and substring search makes INSTRUCT a complete
data structure.

1 Introduction
Efficient manipulation of large sets of strings has emerged
as a basic requirement for a growing number of applica-
tions including search engines [34], port cataloging on the
web [26], dictionary and thesaurus support [2, 27], news
archive, document repository, mining XML databases [9,
24], searching reserved words in a compiler [1], automa-
ton searching [5], text compression [7], and indexing huge
databases. To enhance the performance of retrieval and up-

International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8–10, 2010
c©Computer Society of India, 2010

date queries, mechanisms reducing the storage space re-
quirement, making them in-memory if possible, are crit-
ical. With the tremendous improvement in scanning and
optical character recognition technologies along with the
efforts in internationalization and localization, the amount
of textual data is beginning to explode. Storing such a vast
amount of data itself poses a big problem. The further
requirement of in-memory index structures for fast look-
ups [35] calls for a compressed representation of even the
index structure.

Tries [17] and similar constructs try to achieve this by
storing each character as a node in a tree and reusing some
of the prefix nodes. Since each string is represented as a
path from the root to a leaf, the memory requirement is
large [13, 32], thereby limiting their application for large
text databases. Compact tries [32] and suffix trees [23, 29]
aim to alleviate this problem by reusing the storage space
of the common prefix or suffix of the strings. However,
once two strings differ in a single character, their paths dif-
fer, and they are stored separately even though the rest may
be the same. In other words, these structures do not aim
to reuse the characters forming the strings. As all strings
are composed of a defined set of characters, reusing the
storage space for common characters promises to provide
the most compressed form of representation. This redun-
dancy linked with the need for extreme space-efficient in-
dex structures motivated us to develop INSTRUCT (INdex-
ing STrings by Re-Using Common Triplets).

With the size of databases breaking the barrier of ter-
abytes, efficient data mining operations call for fast and ef-
ficient techniques for tackling prefix, suffix and substring
searches. Prefix and suffix search queries allow context-
based data retrieval. Data compression techniques, as in
the sorting stage of Burrows-Wheeler transform [10] also
utilize such searches. Even data clustering algorithms, like
suffix tree clustering used in search engines make use of
efficient suffix searching. Pattern or substring search is an
important query operation in large genome and text data
storage, and is used in software maintenance [6] and text
editing among other related fields.

We show that INSTRUCT efficiently handles such
search queries, thereby making it a complete indexing

structure. While the experiments show that INSTRUCT
does not achieve industrial-scale (orders of magnitude)
speed-ups over the competing structures, we feel that the
ability of INSTRUCT to handle all string operations at a
better or equal cost makes it a comprehensive structure for
string databases.

In a nutshell, our contributions are as follows:

1. We have designed an intelligent structure INSTRUCT
for sequence indexing that reuses the storage space for
common characters.

2. We have depicted how different operations such as in-
sertion and searching, including prefix, suffix and sub-
string searching, can be efficiently supported by our
structure.

3. We have shown that INSTRUCT outperforms the ex-
isting structures by up to a factor of two in memory
requirements while maintaining better or comparable
running times for searching and insertion.

The paper is organized as follows. Section 2 provides a
glimpse of the existing data structures for string manage-
ment. Section 3 defines the structure of INSTRUCT. Al-
gorithms for insertion, searching, etc. on INSTRUCT are
presented and analyzed in Section 4. Section 5 reports the
experimental results before Section 6 concludes the paper.

2 Related Work
Although hashing [15, 28] provides the fastest way of in-
dexing keys, the fact that the size of the hash table depend
heavily on the data collision rate, coupled with no reuse
of common character storage, often compels disk accesses,
thereby limiting its efficiency. Moreover, it does not sup-
port efficient prefix, suffix or substring search operations.
Tries [2, 17] are tree-like structures that reuse the stor-
age space for common prefixes, by storing each subsequent
character separately as a node. Compact tries [22, 32] fold
the tree path leading up to a single leaf node, i.e., a sin-
gle suffix, into a single node. The suffix tree [23, 29, 33]
and prefix tree [17, 21] respectively collapse the common
suffix or prefix into single nodes, but with the increase in
the number of unique keys stored, the length of such com-
mon suffixes and prefixes decreases, whereby the struc-
tures degenerate. Patricia tries [25] extend the concept of
folding used by compact tries to single-branch nodes even
within the tree structure to increase space efficiency, but
uses optimizations to restrict false positive query results.
Ternary search trees (TST) [8, 12] are 3-way tree structure
with each branching node replaced by a binary search tree.
This optimization makes the TSTs require less space than
the standard tries [11], but also make them much slower.
VLC-tries [18] and LZ-tries [30] do reduce the storage
space required, but have significantly complex structures
and procedures for querying, which are difficult to imple-
ment. VLC-trie uses the divide-and-conquer method to ob-
tain a partition of the edges of the trie into levels that are

compressed. Dictionary compression methods like RLE,
front-compression, and the LZ family [31] represent data
in compressed form, and use Patricia tries, prefix trees, and
LZ tries respectively. However, these methods have highly
involved insertion procedure, and dynamic operations are
not well supported. For example, the basic trie structure
does not support efficient substring searching, while prefix
and suffix trees are biased towards only a subset of the fam-
ily of search procedures. Several other similar structures
such as the suffix array cater to this end. However, IN-
STRUCT inherently allows efficient search procedures for
all the above methods with lower memory requirements.
Burst trie [19] stores keys in buckets indexed by trie-like
paths and dynamically splits (or bursts) the buckets during
insertion. Although it is currently the most space-efficient
structure [3], its performance varies widely with the heuris-
tic for the choice of parameters governing the bursting of
the overflowing nodes. B-tries [4] provide a disk version of
burst tries.

The common space inefficiency of all these structures
arise from the lack of reuse of storage for the individual
characters forming the keys. INSTRUCT utilizes just a sin-
gle node for each triplet of characters, and maps each triplet
of a key into the corresponding node. It, thus, forms an ef-
ficient in-memory data structure. The keys are stored based
on the 3-grams [16] present, with a unit window shift to ob-
tain the next trigram. Indexing with INSTRUCT is there-
fore closely related to that using n-gram indexing [20]. In
INSTRUCT, a set bit represents all strings containing the
triplet, and there is no need to merge the results as in the
case of n-gram indexing. This makes INSTRUCT simpler
and faster. Further, the optimizations achieved by reusing
the space, and bit vectors that allow efficient pruning along
with the robust range of operations supported makes IN-
STRUCT more attractive than the simple n-gram indexing.

3 Structure of INSTRUCT
We assume that keys (or equivalently, strings or words) that
need to be indexed are sequences of characters from a al-
phabet of size k. We also assume that the maximum length
of any key is at most l. For example, in an English dictio-
nary, k = 26 and l = 291 If there any m keys, the total
number of characters in the database is d ≤ ml.

The INSTRUCT structure comprises a collection of k
nodes, each corresponding to a particular character of the
alphabet. Each node in turn comprises a k × k matrix. A
cell in the matrix corresponds to a particular sequence of 3
characters. We refer to this 3-character set as a triplet or a
3-gram. The cell in the node c1 at row c2 and at column c3

represents the triplet c1c2c3 where ci denotes a character
from the alphabet. When a particular triplet is present in a
key in the database, the corresponding cell is marked.

However, a triplet may occur at different offsets in a key.
It is thus beneficial to include this position information in

1The longest non-technical word in English is floccinaucinihilipilifica-
tion (http://en.wikipedia.org/wiki/Longest_word_in_
English).

A

A

A

B

B

C

C D

D

A

1 2 53 4
position
mark

A

B

Figure 1: Internal structure of a matrix and a cell.

the index. To enable indexing of positions, a cell is further
broken up into an array of l elements, corresponding to l
positions where a triplet can occur in a key2. When a triplet
occurs, only the corresponding element is marked. This,
we call the position array.

Although INSTRUCT can naturally adapt to dynami-
cally increasing string lengths, fixing the length initially
makes the representation simple as then all the structures—
nodes, matrices, arrays—become regular arrays of fixed
size, and the INSTRUCT structure can be very efficiently
implemented as a 4-dimensional bit array where the bits
can be directly accessed and the bit operations easily per-
formed.

When a particular bit, at say, node c1, row c2, column c3,
and position w is set, it indicates that there exists a key in
the database with the triplet c1c2c3 at position w. Figure 1
shows the details of a matrix and a cell where k = 4 and
l = 5. The INSTRUCT structure can be viewed as a hash
table of triplets with position information.

However, unfortunately, the INSTRUCT structure itself
is not enough to disambiguate between all the keys in a
database. To explain this, consider the following situation.
Suppose only the keys ‘ABCA’ and ‘DBCD’ are present
in a database. A search on the key ‘ABCD’ will now be
successful as all triplets of ‘ABCD’, i.e., both ‘ABC’ and
‘BCD’ are marked in INSTRUCT, and at correct positions,
too! The problem is that since only triplets are indexed, the
history regarding the original string to which the triplet was
a part of, gets lost.

To alleviate the problem, INSTRUCT utilizes another l-
element bit array called mark in each cell, similar to the
position array. A bit in the mark array gets set for a triplet
only when it is the last triplet in a key. Figure 1 shows how
the mark array is maintained inside a cell. When a mark bit
is set, a container is allocated that stores all keys that end
with the triplet at the position corresponding to the mark
element. The container may be a lexicographically ordered
list or a tree-based structure. We discuss the choice of con-
tainer later. For the above example, the container for ‘BCD’
will only include the key ‘DBCD’, and therefore, a search
for ‘ABCD’ will fail. The containers may also be stored in
the disk, if necessary, and pointers to them are maintained
within INSTRUCT. For searching and insertion, only the
required container needs to be brought into memory.

For non-string databases, INSTRUCT can be used to in-
dex the primary keys, while the pointers will be to the buck-

2Only l− 2 positions are needed, as there can be a maximum of l− 2
triplets from a key of length l. However, we ignore this to simplify the
discussion.

ets containing the complete data stored on disk.
The total space requirement of INSTRUCT is, thus, only

2k3l bits in addition to the actual keys (and associated ob-
jects). For the English dictionary, this translates to only
125 kB. It is interesting to observe that for a given value of
k and l, all possible permutations of characters up to length
l (i.e., k + k2 + · · · + kl = O(kl+1)) can be represented
in INSTRUCT with the same memory requirement. This
feature is quite novel, and makes INSTRUCT extremely
robust and space-efficient as compared to other structures.
Further, bit implementation allows simple bit operations
such as AND, RIGHT SHIFT, etc. in the algorithms for
searching and insertion (presented in Section 4), thereby
making them extremely efficient.

For extreme pathological cases, where the database is
so huge that even this index cannot be accommodated in
the main memory, the individual nodes of INSTRUCT can
be easily stored in the disk, as they are independently pro-
cessed for the different triplets. The nodes (and corre-
sponding containers) can be dynamically loaded. Using
various caching and paging policies, the performance in
such situations can be quite efficient. We do not assume
such cases in this paper.

4 Algorithms
4.1 Insertion

The insertion procedure into INSTRUCT is based on re-
peatedly setting the correct position bits based on all the
triplets present in the key. For the triplet c1c2c3 at posi-
tion w in the key, the bit in the position array indexed by
node c1, row c2, column c3 and position w is set. If this
is the last triplet of the key, i.e., c3 is the last character,
then the corresponding mark bit is also set. If there is a
container already pointed to by the bit (as there may be
other keys in the database ending with c1c2c3 at w), the
new key is inserted into the container. If there is no such
container, a new one is allocated and the key is inserted.
The setting of the bits can be efficiently implemented us-
ing bit-wise operators with appropriate bit masks. Without
loss of generality, we consider that unique keys are inserted
into INSTRUCT as primary keys are never duplicated. In
the situation where keys may be duplicated, the containers
will be implemented as a tree-based structure, and the in-
sertion procedure will be replaced by a search-and-insert
procedure where a key is searched initially, and is inserted
only if it is absent.

For keys of size 1 and 2, we maintain a special container,
the size of which is bounded by k + k2. This handles the
boundary conditions where no proper triplet can be formed.

Consider inserting the key ‘ACAD’. The first triplet
is ‘ACA’. Following the algorithm, position[A][C][A][1]
is set (Figure 2(a)). In the next step, both
position[C][A][D][2] and mark[C][A][D][2] are set
(Figure 2(b)). Since the key has ended, a container is
allocated. All keys of the form ‘?CAD’ are indexed in this
container, where ‘?’ stands for any character. As a further

A

B

C

D

A

1 2 3

m

p

m

p

m

p

m

p

1 2 3

A

1 2 3

CB

1 2 3

D

1

m

p

m

p

m

p

m

p

C

1 2 3 1 2 3 1 2 3 1 2 3

A

B

C

D

A B C D

1

1

’?CAD’

A

(a) (b)

Figure 2: Insertion of key ‘ACAD’: (a) first triplet
(‘ACAD’) and (b) last triplet (‘ACAD’).

space optimization, since the last triplet, i.e., ‘CAD’ is
common for all keys in the container, only the rest, i.e., ‘A’,
is stored.

Inserting a key of length n requires setting n − 2 bits
corresponding to the triplets in the key. Since array ad-
dressing takes constant time, the time taken in this phase
is O(n). After the mark bit is set, the key is inserted into
the container. Thus, the total time to insert a key is O(n) +
(time to insert in container). The latter time depends on the
nature of the container as well as its size. If the container
is a list, e.g., a linked list or a dynamic array, insertion can
be achieved in O(1) time. If, on the other hand, the con-
tainer is organized as a tree-structure, e.g., a balanced bi-
nary search tree (BST), insertion takes O(log s) time where
s is the size of the container.

4.2 Searching

Searching a key in INSTRUCT follows the same procedure
as in insertion. For every triplet in the key, the correspond-
ing bit at the particular position is checked (again we use
masks and bit-wise operators for this purpose). For the final
triplet, the mark bit is also checked. If any such bit is not
set, then the key cannot be in the database, and the search
is terminated. So, there will be no false negative.

However, even if all such bits are set, the container
pointed to by the mark bit needs to be searched, as the
bits may be set due to the presence of the key (success-
ful search) or may be due to the presence of other keys in
the database that together happen to contain all the triplets
at the right positions (unsuccessful search). Thus, a subse-
quent search in the container is required to resolve between
the two cases. In Section 4.3, we estimate the probability
of such a false positive.

Consequently, in the worst case, the time for searching
a key of length n is O(n) + (time to search in container).
If the container is a linked list of size s, the latter time is
O(s); if it is a BST, the time is O(log s).

Figure 3 shows the snapshot of a INSTRUCT structure
storing the keys ‘ABCDA’, ‘ADCDB’, ‘CCDA’, and ‘BC-
DAAD’. Assume that the key ‘ADCDB’ is queried. For the
first triplet ‘ADC’, we obtain the position bit vector from
the corresponding node. It must contain a set bit at the first
position. Since that is the case here, the position vector for
the next triplet ‘DCD’ is checked, which has the second bit
set. Moving forward, for the last and final triplet ‘CDB’,
both the position and the mark vectors contain a set bit at

A

B

C

D

A
1 2 3

m
p

m
p

m
p

m
p

1

3

31 1

1 2

22

A
p

mm

m

m

m
p

p

p
B

C

C

D
m
p

m
p

m
p

m
p

D

A

B

C

D

1 323 4 1 2 34 4 1 2 3 4 4 1 2 3 4 1 2 3 4 1 2 3 4

p
m
p

m
p

m
p

m
D

B

C

A

B
44 3213213214 443213213214 44

A

AA

B

BB

C

CC

D

DD

1

A B C D

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ADAB

BCD

??CDB??CDA

C

?CDA

???AAD

Figure 3: Example of INSTRUCT storing the keys
‘ABCDA’, ‘ADCDB’, ‘CCDA’, and ‘BCDAAD’.

the third position. Thus, the container corresponding to the
mark bit is searched. It should be noted that the last triplet
is not stored in the containers as it can be obtained from
the position of the mark bit. Consequently, the string ‘AD-
CDB’ is reported as present.

If the key ‘DCDB’ is queried, the searching stops at the
first step since the position vector for ‘DCD’ does not con-
tain a set bit at position 1. A more interesting case is for
the key ‘ADCDA’. All the triplets have the position bits
correctly set and the container corresponding to the final
triplet ‘CDA’ is searched. This is an example of a false
positive search using the INSTRUCT index only, as finally
the container search returns a negative answer.

The searching algorithm can also follow another strat-
egy. Only the mark bit corresponding to the last triplet is
examined. If it is not set, the search fails. Otherwise, the
container is directly searched without checking the bits for
the other triplets. This avoids traversing the length of the
search key (i.e., the O(n) time in the total cost). However,
the chance that an unsuccessful search is terminated early is
eliminated. On the other hand, for a successful search, this
is always a better strategy. We call this the direct search
strategy as opposed to the index search strategy otherwise.

4.3 Analysis of searching

We now analyze the chance of an unsuccessful search being
terminated early, and use that to devise the optimum search
strategy. An unsuccessful search key of length n will be
searched in a container if and only if for every triplet and
position the key generates, the corresponding position bits
are set, i.e., for every triplet c1c2c3 at position w, there is
another key in the database with the same triplet c1c2c3 at
the same position w.

Since not all keys may be of length w, we denote the
number of keys in the database having a length of at least
w by f(w) and the probability that at least 1 out of m keys
in the database contains character c1 at position w by Pw.

Assuming all the characters to be equi-probable, i.e., the
probability of occurrence of a character at any particular
position is 1/k, we get,

Pw = 1− P (no key contains c1)

= 1− (P (key contains character other than c1))f(w)

= 1− (1− 1/k)f(w) (1)

The probability that a triplet appears at the position w is
then the product of the three individual probabilities (since
the corresponding events are independent):

Pw,3 = Pw.Pw+1.Pw+2

=
(
1− (1− 1/k)f(w)

)
.
(
1− (1− 1/k)f(w+1)

)
.(

1− (1− 1/k)f(w+2)
)

' 1−
w+2∑
i=w

(1− 1/k)f(i) [ignoring higher order terms]

(2)

Eq. (2) provides a way to compute the probability of all
n− 2 triplets appearing at positions 1, . . . , n− 2. The last
triplet, however, must also be the last triplet in some other
key of the same length. Denoting the number of database
keys that has a length of exactly w by g(w), Eq. (1) can be
modified as:

Pwe
= 1− (1− 1/k)g(w) (3)

Consequently, Eq. (2) can be modified to:

Pwe,3 ' 1−
w+1∑
i=w

(1− 1/k)f(i) − (1− 1/k)g(w+2) (4)

The occurrence of two consecutive triplets is not inde-
pendent as they share two characters. However, for simpli-
fying the calculations, we assume that the events are inde-
pendent. With this assumption, the probability Pn that all
the triplets of the search key of length n are present in the
database can be estimated as

Pn =

n−3∏
j=1

Pj,3

 .Pn−2e,3

=
n−3∏
j=1

1−
j+2∑
i=j

(1− 1/k)f(i)

 .

(
1−

n−1∑
i=n−2

(1− 1/k)f(i) − (1− 1/k)g(n)

)

' 1−
n−2∑
j=1

j+2∑
i=j

(1− 1/k)f(i) + (1− 1/k)f(n)

− (1− 1/k)g(n) [ignoring higher order terms] (5)

Since each of the f(i) and g(i) terms are bounded by m,
Pn can be upper bounded as follows:

Pn ≤ 1−
n−2∑
j=1

j+2∑
i=j

(1− 1/k)m = 1− 3(n− 2) (1− 1/k)m

(6)

Eq. (6) can be used to determine the optimal search strat-
egy. Assume that searching for a key through INSTRUCT
takes Ts time and that through a container takes Tc time.
For an unsuccessful key of length n, the search is termi-
nated using the INSTRUCT index structure with probabil-
ity (1−Pn). Otherwise, with probability Pn, the container
is searched as well. Thus, the expected searching time for
this index search strategy is

Ti = (1− Pn)Ts + Pn(Ts + Tc) (7)

The alternate direct search strategy first checks whether
the mark bit is set for the last (i.e., (n − 2)th) triplet, and
only if so, searches the associated container. The expected
time, thus, is

Td = Pn−2e,3Tc (8)

Thus, it is beneficial to search through INSTRUCT
when

Ti ≤ Td

or, Ts ≤ (Pn−2e,3 − Pn)Tc (9)

Using Eq. (6) and replacing f(i), g(i), etc. in Eq. (4) by
m,

Ts/Tc ≤ 3(n− 3) (1− 1/k)m (10)

When the length of an unsuccessful search key, n, in-
creases, the probability of the search being pruned by IN-
STRUCT increases, as it is less likely that all the triplets
will be present at precisely the right positions. On the other
hand, when the number of keys, m, is very large, due to the
large number of triplets, it becomes more likely that there
exists a triplet in the database at a particular position. As a
result, searching through INSTRUCT wastes time as there
will be little pruning. The size of the alphabet, k, has an
opposing effect. When the number of possible characters
increase, it is less likely that a triplet will be repeated in the
database, thereby making the chance of pruning an unsuc-
cessful search higher. Eq. (10) confirms these behaviors.
Section 5 experimentally establishes them.

4.4 Suffix Searching

The suffix search procedure is almost the same as the exact
key search, except for one crucial difference. For an exact
string search, since the length of the search key is known,
only the particular position bit is checked in the mark array
corresponding to the last triplet of the key. A suffix, on the
other hand, can end at any length and one particular mark

bit cannot be checked. If, however, the lengths are known,
then the suffix can be easily searched by iterating over all
such possible lengths. The trick, therefore, is figuring out
these lengths efficiently.

Suppose the query suffix is c1c2 . . . cf . For the last
triplet, i.e., cf−2cf−1cf , we check at what positions it ends
in the mark array. If there is a mark bit set at position p, it
means that there exists a key in the database that ends at po-
sition p with the triplet cf−2cf−1cf . We next check the pre-
vious triplet cf−3cf−2cf−1 in the position array. If a key
contains both the triplets, then the position of the last triplet
must be exactly one more than the position of the last but
one triplet. Thus, for every set bit at position p in the mark
array, if there is no set bit at position p − 1 in the previous
array, there cannot be a key ending at position p containing
both the triplets cf−2cf−1cf and cf−3cf−2cf−1. Hence,
the query cannot be a suffix ending at position p, and the
position p can be removed from the list of possible posi-
tions. We continue in this fashion for all the triplets in the
suffix. For all the mark bits that survive this pruning, we do
a search in the corresponding containers.

For efficiency purposes, the above operations are per-
formed using bit vectors. The mark and position arrays are
all bit vectors. To obtain all the p − 1 positions from the
mark vector, it is RIGHT SHIFT-ed by one bit. The re-
sulting vector is then AND-ed with the position vector of
the previous triplet to obtain the new list of positions. The
RIGHT SHIFT and AND operations are done at most f−2
times for a suffix of length f .

Consider searching the suffix ‘BCDA’ in the IN-
STRUCT structure shown in Figure 3. The mark vector V
in the node corresponding to the last triplet ‘CDA’ encodes
the probable ending positions for strings with the queried
suffix. The previous triplet, ‘BCD’, is next considered. Its
position vector is RIGHT SHIFT-ed by one position and is
AND-ed with V , setting the 2nd and 3rd bits of V . The con-
tainers attached to the last triplet ‘CDA’ at these positions
are finally searched to return the string ‘ABCDA’.

Searching an unsuccessful suffix such as ‘ACDA’ pro-
duces an empty V vector since there is no ‘ACD’ triplet in
the database. Consequently, we directly report that there
are no strings with the queried suffix. If the suffix ‘DCDA’
is queried, only the 3rd bit of V is set and the corresponding
container is searched. Once more, this is an example of a
false positive, as no keys with the queried suffix are found.

We now analyze the time complexity of this procedure.
In the worst case, every mark bit is set and none of them
gets pruned by the subsequent operations. For a suffix of
length f , the complexity of performing the list operations
is O(f.l), where l is the maximum length of a key. Finally,
all O(l) containers are searched. Hence, the total time for
suffix search is O(fl) + O(l)× T , where T is the average
time for searching a container.

4.5 Prefix Searching

The prefix searching method exploits the fact that a prefix
of a key is a suffix of the reverse of the key. Hence, we

31 2

p

m

p

m

p

m

p

m
D

B

C

A

A A

1 2 3 1 2 3

CB

1 2 3

D

31 2

p

m

p

m

p

m

p

m
D

B

C

A

B A

1 2 3 1 2 3

CB

1 2 3

D

31 2

p

m

p

m

p

m

p

m
D

B

C

A

D A

1 2 3 1 2 3

CB

1 2 3

D

31 2

p

m

p

m

p

m

p

m
D

B

C

A

C A

1 2 3 1 2 3

CB

1 2 3

D

1

1

1 1

1

1

1

1

1

11

ABCDA
ADCDB

BCDAAD

CCDA

Figure 4: Example of extra reverse INSTRUCT structure
for substring search.

maintain a separate INSTRUCT structure where the reverse
of every key in the database is inserted. A prefix search in
the original space translates to a suffix search on the reverse
INSTRUCT structure. This strategy, however, doubles the
space requirements of INSTRUCT.

4.6 Substring Searching

A substring can be efficiently searched in INSTRUCT, al-
beit with an increase in the space requirements. The key
idea is to note that any substring, when sufficiently shifted,
becomes a prefix. Thus, if the amount of shifting is known,
each key in the database can be shifted by that amount, and
a prefix search can be issued on the shifted keys. This is
precisely the idea that INSTRUCT uses.

In addition to the original reverse INSTRUCT structure,
we maintain l − 1 extra reverse structures, namely Si, i =
1, . . . , l − 1, where l is the maximum length of a key.

Figure 4 shows the first reverse structure S1 correspond-
ing to the keys in Figure 3. When a key of length n is
inserted into INSTRUCT and its reverse is inserted into re-
verse INSTRUCT, n− 1 strings are extracted from the key
in addition, by shifting one character at a time. The re-
sulting strings are inserted into the corresponding reverse
INSTRUCT structures. Suppose a key K = c1c2 . . . cn is
inserted. We create n−1 strings from the key. The ith string
Ki = ci+1ci+2 . . . cn is inserted into Si. Although only a
part of the key, i.e., Ki is used to index in Si, the containers
of Si stores the entire key K. This is done to ensure that
the original keys can be returned from Si after a successful
search.

The algorithm for substring search uses a similar strat-
egy as the suffix search. When a substring c1c2 . . . cr of
length r is queried, first, the positions where the last triplet
cr−2cr−1cr are present are found by using the position ar-
ray corresponding to the triplet. Note that this deviates
from the suffix search as the position vector, and not the
mark vector needs to be searched, since a key may not
necessarily end with the substring. The triplets are then

traversed backwards and all possible positions where the
substring can start are found. Suppose the list of these po-
sitions is L. For every position p ∈ L, a prefix search with
the substring is performed at the structure Sp. The com-
plete results on searching the various structures provides
the entire set of keys in the database containing the sub-
string.

Consider a substring query for ‘BCDA’ in the IN-
STRUCT structure shown in Figure 3. The position bit
vector V of the last triplet ‘CDA’ includes all possible posi-
tions where the substring can end in a key. Next, V is then
LEFT SHIFT-ed by one bit and bit-wise AND-ed with the
position vector of the previous substring triplet, i.e., ‘BCD’.
The bits at position 1 and 2 of V are set in this process. This
implies that the substring can start only at positions 1 and
2 in a key. Hence, a prefix search with ‘BCDA’ is issued
in the two reverse INSTRUCT structures corresponding to
these positions, i.e., the (original) reverse INSTRUCT and
the one-shifted reverse INSTRUCT S1, respectively. The
prefix searches in the two structures generate ‘ABCDA’ and
‘BCDAAD’ as the result.

Next, consider an unsuccessful substring search on
‘CCDD’. Since there is no such triplet ‘CDD’ in the
database, the search can be immediately terminated with-
out accessing any of the reverse structures. This provides
a substantial advantage over other brute-force or trie-based
methods.

The chances of false positives, however, remain. For
example, consider the substring ‘DCDA’. The position vec-
tors of ‘CDA’ when LEFT SHIFT-ed and AND-ed with the
position vector of ‘DCD’ yields position 2 as a possibility
where the substring can occur in a key. Consequently, a
prefix search in the one-shifted reverse structure S1 is is-
sued. However, only an empty result set is returned.

Storing the extra INSTRUCT structures increases the to-
tal space complexity to 2k3l2 bits. For the English dictio-
nary mentioned in Section 3, this evaluates to 3.5 MB. If
there is not enough space in the memory to store all the
reverse structures, the extra ones are stored on disk. These
extra structures are invoked only for a substring search, and
only if the corresponding offset is in the possible list of po-
sitions. As the extra INSTRUCT structures are indepen-
dent, the prefix searches in the different structures can be
performed in parallel. The experiments reported in Sec-
tion 5, however, do not use parallelization.

In a sequential machine, the time for substring search is
determined by the number of prefix searches and the time
for each of them. So, the total time complexity for search-
ing a substring of length r is (O(lr) + O(l) × T)× (the
number of prefix search positions found), where T is the
average time to search a container. In the next section, we
calculate the expected number of such prefix searches.

4.7 Analysis of Prefix, Suffix, and Substring Searching

The search procedures guarantee correct results by finally
searching the containers that have a possibility of contain-
ing an answer. An unsuccessful search may be generated

if all the triplets present in the query are also present at the
same position in other keys of the database. We now ana-
lyze the searching of suffixes, prefixes and substrings.

Eq. (6) gives the probability that a particular string of
length n is searched in a container. The probability Pprefix

that the entire prefix of length s is matched, and an unsuc-
cessful search is generated, can be deduced similarly:

Pprefix ≤ 1− 3(s− 2) (1− 1/k)m (11)

Note that here we are ignoring the positions where a prefix
can start as we have bounded the number of keys at a posi-
tion by its worst case, which is the total number of keys m.
In reality, Pprefix is much less. The probability Psuffix

that the entire length of a suffix of length f is matched, and
an unsuccessful search is generated is the same when f(i)
and g(i) terms are bounded by m.

The above equation also provides an upper bound of the
probability that a search for a substring of length s is issued
when it is not present in the database. We use this bound to
analyze the substring searching.

The substring search is actually a series of prefix
searches. Each such search has an analysis as given by
Eq. (11). The expected number of prefix searches that will
be issued in the different INSTRUCT structures for a sub-
string search is equal to the expected number of positions
in the final list after all the triplets of the substring have
been traversed.

We assume the event that the substring of length s oc-
curs at position i to be independent of the event that the
substring occurs at some other position j. Again, this is
a simplification, as for long substrings or for short differ-
ences in i and j, the events are not independent. Modeling
the occurrence of the substring by binomial trials, the ex-
pected number of positions where the substring occurs is
given by the product of the total number of trials and the
probability of success in each trial. The total number of
trials is l as there can be l positions. The probability of
success in each trial (i.e., position), is given by Eq. (11).
The expected number of prefix searches is then

l × Pprefix ≤ l × (1− 3(s− 2) (1− 1/k)m) (12)

When the largest length of a key, l, increases, the chance
that a prefix search needs to be issued also increases. When
the number of keys, m, increases, it becomes more likely
that a key in the database will have the queried substring,
thereby increasing the number of searches. The length of
the substring queried, s, has an opposing effect as more
triplets need to be present before a search is issued in the
container. Finally, when the size of the alphabet, k, in-
creases, the chance that a particular triplet occurs decreases
since the probability of a character matching with another
decreases.

4.8 Deletion, Updating, and Re-insertion

When a key is to be deleted from INSTRUCT, it is first
searched. If it is found, the deletion operation in the con-
tainer is performed. The corresponding mark bit is reset to

0 only when the container becomes empty; also, the con-
tainer is de-allocated. Updating a key involves deleting the
key and then inserting the modified key, while re-insertion
follows the same procedure as insertion. The time com-
plexities of these procedures are bounded by those of in-
sertion and searching.

The mark vector and the position vectors remain filled
up after repeated deletions and insertions. This poses
a problem for searching as the pruning capacity of IN-
STRUCT decreases. However, unlike the position bits, a
mark bit can be reset to 0 if the corresponding container
becomes empty due to deletions. In any case, the time for
searching in the container decreases even though the mark
bit remains set (if the container does not become empty).
Further, most string-based applications perform many more
insertion and search operations than deletion, thereby ren-
dering this a not-so-critical issue.

5 Experiments
In order to assess the performance of INSTRUCT, we con-
ducted tests on multiple datasets and compared it with two
other structures, burst trie [19] and compact trie [22, 32].
While there exists a number of other structures that support
string operations (see Section 2), the burst trie is reported
to require the least amount of memory [3], while the com-
pact trie is reported to be the fastest for exact key searching
operations [22, 32]. Hence, we compared INSTRUCT with
these two structures only.

We used two real datasets: (i) English dictionary (ob-
tained from http://www.outpost9.com/files/
WordLists.html), and (ii) protein sequences from
RCSB Protein Data Bank (PDB, http://www.rcsb.
org/pdb/). We also used synthetic datasets to assess
the scalability and practicality of our algorithms. The
datasets were uniformly distributed random data (hence-
forth referred to as Uniform dataset) and Zipfian distributed
data (Zipfian dataset), both with varying parameters. Sec-
tion 4.3 assumes a random distribution while many natural
datasets such as the English dictionary follow the Zipfian
distribution.

The containers in INSTRUCT can be organized as a list
or as a BST. These two variants were compared against the
two trie variants, burst trie and compact trie, with respect
to the following parameters: (i) memory size, (ii) insertion
time, and (iii) searching time for both successful and unsuc-
cessful searches. We also measure empirically the proba-
bility of pruning the false positives during a search as well
as show the results for prefix, suffix, and substring searches.
These experiments were run on a 2.1 GHz desktop PC with
2 GB of memory using C++ compiler on a Linux platform.
Due to space constraints, we show only the representative
results while complete results can be found in [14].

5.1 Real datasets

Table 1 summarizes the two real datasets. Table 2(a) shows
that the INSTRUCT structures require lesser storage space
than the other two structures. The main component of the

storage comes from the actual keys themselves, and thus
the differences are very small. The insertion and search
times are also better. Table 2(b), on the other hand, shows
that the memory requirement of the INSTRUCT structure
becomes very large when the length of the keys are large.
The overhead of maintaining bit vectors of length 2512 for
every cell of the matrix requires about 10 MB of memory
space. However, the insertion and search times are lesser
than those for the burst trie. The pruning offered by the
indexing makes the search faster.

Since the search performance of INSTRUCT depends
on the number and size of containers, we measured the fol-
lowing additional parameters as well: (i) total number of
containers, (ii) largest size of a container, and (iii) average
size of a container.

The average size of a container shows how well the keys
are spread. If this number is low, then the keys are well-
distributed in the containers. Then, even when a container
is accessed for a key that is absent in the database, the over-
head of searching the container is less. In such cases, the
choice of the list versus BST variants does not matter much.

The other important factor for searching time is the false
positive rate. It is measured as the number of times a con-
tainer is accessed and searched for a search key that is not
in the database, i.e., for an unsuccessful search. Table 1
shows that this ratio is almost negligible for the dictionary
dataset. Thus, the index in the INSTRUCT structure can
prune efficiently most of the unsuccessful searches with-
out accessing the containers. Even for the protein dataset,
about 84% of the unsuccessful searches are pruned.

5.2 Uniform and Zipfian datasets

For the synthetic datasets, the important parameters that af-
fect the performance of the algorithms are: (i) total number
of keys, m, (ii) size of the alphabet, k, (iii) length of the
longest key, l, and (iv) length of the query substring, n.

The datasets were generated by controlling these param-
eters. The length of each key was chosen randomly from
1 to l, and each character was chosen from an uniform or
a Zipfian distribution of k characters. Two-thirds of the
keys thus generated were inserted in the structure. The rest
one-third was used to trigger searches that were unsuccess-
ful. Half of the inserted data (i.e., one-third of the total
generated keys) was used to trigger successful searches.
The prefix, suffix and substring were generated from the
strings stored, starting from random positions and of vary-
ing lengths.

5.3 Effect of number of keys

With the increase in the number of keys, the size of the
dataset increases. Therefore, the memory requirement in-
creases as well. However, the size of the multi-dimensional
array index structure of INSTRUCT is independent of the
number of keys. It depends only on the alphabet set size
and the length of the keys. Hence, the growth in memory
space is at most linear, due to the actual key storage in the
containers. Figure 5(a) shows that INSTRUCT requires the

Dataset Number of Number of Longest key Number of Max. size of Avg. size of False positive
keys, m symbols, k length, l characters a container a container rate

English dictionary 179,935 26 45 1,198,635 601 7.5 0.019
Protein sequences 38,627 21 2512 5,846,331 205 1.3 0.161

Table 1: Parameters and search performance for the real datasets.

Index Total Time to Searching time
structure memory insert Succ Unsucc Total
INS. BST 1.50 MB 1.42 s 0.51 s 0.54 s 1.05 s
INS. List 1.50 MB 1.29 s 0.59 s 0.58 s 1.17 s
Burst tr. 1.53 MB 1.61 s 0.64 s 0.66 s 1.30 s

Compact tr. 2.38 MB 1.82 s 0.65 s 0.65 s 1.31 s

Index Total Time to Searching time
structure memory insert Succ Unsucc Total
INS. BST 15.73 MB 4.89 s 2.28 s 2.21 s 4.49 s
INS. List 15.73 MB 4.66 s 2.44 s 2.16 s 4.60 s
Burst tr. 15.89 MB 5.64 s 2.64 s 2.67 s 5.31 s

Compact tr. 25.71 MB 9.29 s 2.70 s 2.37 s 5.07 s
(a) (b)

Table 2: (a) English dictionary results. (b) Protein sequence results.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 m

em
or

y
sp

ac
e

(M
B

)

Number of keys (m) (x106)

Zipfian dataset: k = 10, l = 15

INSTRUCT
Burst trie

Compact trie

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 in

se
rt

io
n

tim
e

(s
)

Number of keys (m) (x106)

Zipfian dataset: k = 10, l = 15

INSTRUCT BST
INSTRUCT List

Burst trie
Compact trie

(a) (b)

Figure 5: Effect of number of keys on (a) memory size and
(b) insertion time.

least amount of memory and shows a better scalability as
compared to the burst and compact tries.

Figure 5(b) shows the effect of number of keys on the
insertion time for Zipfian data. As expected, the scalability
is roughly linear for all the structures. As the number of
keys increases, the average size of each container increases
as well. This explains the widening gap in insertion time
between the two variants of INSTRUCT. The burst trie is
the worst due to the nature of the burst heuristic.

The next experiment measures the running time for
searching both successful and unsuccessful keys. The per-
formance of INSTRUCT suffers when a large number of
keys are present in the database (Figure 6(a)). The large
number of false positives with the increase in the size of
the database necessitates more searches in the containers.
The large size of the containers degrades the search perfor-
mance. The BST variant performs better than the list vari-
ant due to its superior arrangement of keys in the container.
Modeling the list in a lexicographic order would help in
boosting the performance of the list implementation of the
containers.

To analyze the search time for unsuccessful keys of the
direct search strategy versus the index search strategy, we
measured the ratio of the number of searches pruned. Fig-
ure 6(b) shows the comparison of the ratio of pruning be-
tween the two strategies. The pruning for the direct strat-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 s

ea
rc

h
tim

e
fo

r
al

l k
ey

s
(s

)

Number of keys (m) (x106)

Zipfian dataset: k = 10, l = 15

INSTRUCT BST
INSTRUCT List

Burst trie
Compact trie

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Number of keys(m) (x105)

Uniform dataset: k=36, l=20

Index search
Direct search

(a) (b)

Figure 6: Effect of number of keys on (a) search time and
(b) pruning.

egy is almost constant while that for the index strategy de-
creases exponentially with the number of keys as indicated
by Eq. (6). The figure also illustrates the fact that it is pru-
dent to follow the direct search when there is a large num-
ber of keys as it is more likely that all the triplets checked
will be in the database and the search cannot be pruned (as
the pruning factor for both the strategies roughly becomes
the same), thereby reducing the actual search time.

5.4 Effect of largest key length

The next set of experiments measure the effect of the key
length on the various algorithms. The number of pointers
in trie-based structures increases with the maximum length
of the keys. Figure 7(a) shows that the increase in memory
size with the largest key length is faster for the trie-based
structures. In the case of INSTRUCT, only the lengths of
the bit vectors increase and, thus, the size of the whole in-
dex increases linearly. However, the memory requirement
is mainly dominated by the actual storage of the keys, and
therefore, the scalability is much better. Consequently, IN-
STRUCT requires lesser memory space (refer [14]).

Inserting a key requires setting the bits corresponding
to all the triplets in the index; so, the insertion time in-
creases with the key length (Figure 7(b)). However, since
trie-based structures invoke pointer chasing whereas IN-
STRUCT uses direct array access, the insertion procedure

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25

T
ot

al
 m

em
or

y
sp

ac
e

(M
B

)

Largest key length (l)

Zipfian dataset: m = 2.0x106, k = 10

INSTRUCT
Burst trie

Compact trie

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25

T
ot

al
 in

se
rt

io
n

tim
e

(s
)

Largest key length (l)

Uniform dataset: m = 2.0x106, k = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

(a) (b)

Figure 7: Effect of largest key length on (a) memory size
and (b) insertion time.

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25

T
ot

al
 s

ea
rc

h
tim

e
fo

r
al

l k
ey

s
(s

)

Largest key length (l)

Uniform dataset: m = 2.0x106, k = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4 6 8 10 12 14 16 18 20

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Largest key length(l)

Uniform dataset: k=36, m=1x105

Index search
Direct search

(a) (b)

Figure 8: Effect of largest key length on (a) search time and
(b) pruning.

in INSTRUCT is faster.
Searching a key with a larger length has two opposing

effects on the running time. On one hand, more number of
triplets need to be checked in the structure. On the other
hand, Eq. (5) shows that more the number of triplets in a
key, the better is the chance of pruning it, thereby saving the
searching time inside a container. However, for successful
searches, the time to search in the index is simply an over-
head, as the container will have to be searched. Thus, the
total time for searching increases. Nevertheless, the search-
ing times using INSTRUCT are smaller than the trie struc-
tures (Figure 8(a)).

Figure 8(b) shows that the pruning produced by larger
number of triplets in a longer key makes searching through
the index perform better than the direct search. The in-
crease in pruning is linear with the length of the key, as
expected from Eq. (6), making the indexed strategy better
for longer keys.

5.5 Effect of alphabet size

With the increase in the number of characters, the fanout of
the trie-based structures increases. Due to this increase in
the number of pointers, the memory requirement increases
(Figure 9(a)). In INSTRUCT, even though the size of the
index increases cubically, it is only in the order of bits.
Thus, the size of the memory increases only slightly.

For a larger alphabet size, the spread of the keys be-
comes better due to lesser number of collisions. Conse-
quently, the burst trie undergoes lesser number of burst op-
erations, and the total insertion time decreases with increas-

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 5 10 15 20 25 30

T
ot

al
 m

em
or

y
sp

ac
e

(M
B

)

Size of alphabet (k)

Zipfian dataset: m = 2.0x106, l = 10

INSTRUCT
Burst trie

Compact trie

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25

T
ot

al
 in

se
rt

io
n

tim
e

(s
)

Size of alphabet (k)

Uniform dataset: m = 2.0x106, l = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

(a) (b)

Figure 9: Effect of alphabet size on (a) memory size and
(b) insertion time.

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 5 10 15 20 25

T
ot

al
 s

ea
rc

h
tim

e
fo

r
al

l k
ey

s
(s

)

Size of alphabet (k)

Uniform dataset: m = 2.0x106, l = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Alphabet size(k)

Uniform dataset: l=20, m=1x105

Index search
Direct search

(a) (b)

Figure 10: Effect of alphabet size on (a) search time and
(b) pruning.

ing alphabet size. Figure 9(b) shows that the insertion time
for the compact trie, however, increases. The insertion time
for INSTRUCT depends on the length of the key and the
size of the container and is, therefore, mostly independent
of the alphabet size.

Figure 10(a) shows the searching time for different al-
phabet sizes. For a small alphabet (k = 2), the false pos-
itive rate is practically 1 and the container sizes are ex-
tremely large. As a result, the searching time is large.
When the alphabet size increases, this probability de-
creases, thereby reducing the searching time. However,
for large alphabet sizes, the size of the containers increase.
Consequently, after k = 10, the structures show an increase
in the searching time.

The probability that a key which is absent in the
database will still be searched in a container is given by
Eq. (5). From the equation, we can see that more the size
of the alphabet is, the lesser is the false positive rate. In-
tuitively, with more characters to choose from, there is a
lesser chance that the same triplet will be randomly chosen
by a key in the database. Eq. (6) indicates that the amount
of pruning should increase exponentially, and this is val-
idated by Figure 10(b). Thus, the time for unsuccessful
searches decreases when the alphabet size is increased. The
effect is less prominent for the direct search strategy as it
prunes only on the basis of the last triplet in a key.

5.6 Effect of query length on prefix and suffix search

The first set of experiments measure the running times for
successful, unsuccessful and total search time for query

 5

 10

 15

 20

 2 4 6 8 10 12 14

S
uc

ce
ss

fu
l s

ea
rc

h
tim

e
(s

)

Suffix length (n)

Searching 106 suffixes (m=2x106, k=10, l=15)

Dictionary
Protein

Uniform (Index)
Zipfian (Index)

Uniform (Direct)
Zipfian (Direct)

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

U
ns

uc
ce

ss
fu

l s
ea

rc
h

tim
e

(s
)

Suffix length (n)

Searching 106 false suffixes (m=2x106, k=10, l=15)

Dictionary
Protein

Uniform (Index)
Zipfian (Index)

Uniform (Direct)
Zipfian (Direct)

(a) (b)

Figure 11: Effect of query length on (a) successful and (b)
unsuccessful suffix search time.

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14

T
ot

al
 s

ea
rc

h
tim

e
(s

)

Suffix length (n)

Searching 2x106 suffixes (m=2x106, k=10, l=15)

Uniform (Index)
Uniform (Direct)

Zipfian (Index)
Zipfian (Direct)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Suffix length (n)

Uniform dataset: k=10, l=15, m=2x106

Index search
Direct search

(a) (b)

Figure 12: Effect of query suffix length on (a) total search
time and (b) pruning.

suffixes of different lengths. When the presence of the
suffix in INSTRUCT is guaranteed, the direct search per-
forms better than index search, as it bypasses the overhead
of traversing through the entire length of the query suffix,
as indicated by Figure 11(a). However, for unsuccessful
searches, as the length of the query suffix increases, the
number of triplets increases, producing a better pruning
ratio for the indexed strategy. Thus, it performs better as
shown in Figure 11(b). Figure 12(a) shows the total search
time when both types of searches are issued. Overall, the
index strategy performs better for larger query lengths.

The prefix search experiments showed similar behavior
and are, therefore, not reported. The effect of the other
parameters are roughly equal as that of an exact key search
(refer [14]).

5.7 Effect of query length on substring search

The substring search in case of INSTRUCT involves a
collection of prefix search queries in the additional IN-
STRUCT structures. Hence, the search strategies show a
similar behavior as that of prefix search. However, as the
prefix searches are done in a number of structures, for a
successful substring search, the direct search will perform
much better (Figure 13(a)) while for a unsuccessful sub-
string search, the index search will show significant im-
provement (Figure 13(b)) due to the effect of better prun-
ing of the containers that are searched for larger query sub-
string lengths (as shown in Figure 14(b)). The total search
time for both successful and unsuccessful queries is cap-
tured in Figure 14(a).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14

S
uc

ce
ss

fu
l s

ea
rc

h
tim

e
(s

)

Substring length (n)

Searching 106 substrings (m=2x106, k=10, l=15)

Dictionary
Protein

Uniform (Index)
Zipfian (Index)

Uniform (Direct)
Zipfian (Direct)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14

U
ns

uc
ce

ss
fu

l s
ea

rc
h

tim
e

(s
)

Substring length (n)

Searching 106 false substrings (m=2x106, k=10, l=15)

Dictionary
Protein

Uniform (Index)
Zipfian (Index)

Uniform (Direct)
Zipfian (Direct)

(a) (b)

Figure 13: Effect of query length on (a) successful and (b)
unsuccessful substring search time.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14

T
ot

al
 s

ea
rc

h
tim

e
(s

)

Substring length (n)

Searching 2x106 substrings (m=2x106, k=10, l=15)

Uniform (Index)
Uniform (Direct)

Zipfian (Index)
Zipfian (Direct)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Length of substring (n)

Uniform dataset:k=10, l=15, m=2x106

Index Search
Direct search

(a) (b)

Figure 14: Effect of substring length on (a) total search
time and (b) pruning.

5.8 Summary of experiments

We can summarize the experimental observations as fol-
lows:

• Operating on an expanding database, the containers of
INSTRUCT should be implemented as a list allowing
constant insertion time. For a relatively stable dataset,
however, the BST implementation of the containers is
preferred for efficient retrieval purposes.

• For large databases (106 keys or more), the direct
search performs better as it does not traverse through
the index structure and the pruning ratio for both the
strategies are almost equal.

• When the search query length increases to more than
9, it is better to use the index search strategy as the
pruning offered is better.

• When the alphabet size is more than 15, INSTRUCT
is a better choice than other structures due to lower
memory needs.

6 Conclusions
In this paper, we have designed a data structure, IN-
STRUCT, that efficiently manages large sets of strings (or
keys) and handles all the different string queries with low
memory requirements. We described the indexing tech-
nique used by INSTRUCT, and developed two variants—
list and binary search tree—for the final container of the

keys. We also developed algorithms for different key op-
erations including exact key searching, insertion, deletion,
updating, re-insertion, prefix/suffix searching and substring
searching. We analyzed how the performance of the dif-
ferent searching operations and the probability of a search
being pruned change with the number of keys, the length
of the key and the alphabet size. Our experiments showed
that INSTRUCT is better than the competing structures in
terms of memory size by up to a factor of two, while the
insertion and searching times are either better than or com-
parable with.

In future, we plan to investigate the effect of modeling
the containers as different data structures such as a hash ta-
ble, and also how parallelization of the different procedures
improve the running time.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-

ples,Techniques and Tools. Addison-Wesley, 1986.

[2] J. I. Aoe, K. Morimoto, and T. Sato. An efficient implementation
of trie structures. Software-Practice and Experience, 22:695–721,
1992.

[3] N. Askitis and S. Sinha. Hat-trie: a cache-conscious data structure
for strings. ACSC, 13, 2007.

[4] N. Askitis and J. Zobel. B-tries for disk-based string management.
VLDBJ, 18(1):157–179, 2009.

[5] R. A. Baeza-Yates and G. Gonnet. Fast text searching on regu-
lar expressions or automaton searching on tries. Journal of ACM,
43(6):915–936, 1996.

[6] B. Baker. A theory of parameterized pattern matching: Algorithms
and applications. In ACM Symposium on Theory of Computing,
pages 71–80, 1993.

[7] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression.
Prentice-Hall, 1990.

[8] J. Bentley and R. Sedgewick. Fast algorithms for sorting and search-
ing strings. In Proc. Annual ACM-SIAM Symp. on Discrete Algo-
rithms, page 360, 1997.

[9] S. Brenes, Y. Wu, D. V. Gucht, and P. S. Cruz. Trie indexes for
efficient XML query evaluation. In 11th International Workshop on
Web and Databases(WebDB), 2008.

[10] M. Burrows and D. Wheeler. A block sorting lossless data compres-
sion algorithm. Technical report, Digital Equipment Corporation,
1994.

[11] J. Clement, P. Flajolet, and B. Vallee. The analysis of hybrid trie
structures. In Proc. ACM-SIAM Symp. on Discrete Algorithms,
pages 531–539, 1998.

[12] J. Clement, P. Flajolet, and B. Vallee. Dynamic sources in informa-
tion theory: A general analysis of trie structures. In Algorithmica,
pages 307–369, 2001.

[13] D. Comer. Heuristics for trie minimization. TODS, 4:383–395,
1979.

[14] S. Dutta. Space-efficient management of string databases by reusing
common characters. Master’s thesis, Indian Institute of Technology,
Kanpur, India., 2010.

[15] R. Fagin, J. Nievergelt, N. Pippeger, and H. R. Strong. Ex-
tendible hashing-a fast access method for dynamic files. ACM Trans.
Databases Systems, 4(3):315–344, 1979.

[16] J. D. Frederick. Markov Models and Linguistic Theory. Mouton
(The Hague), 1971.

[17] E. Fredkin. Trie memory. CACM, 3(9):490–499, 1960.
[18] K. W. Galander and K. P. Durre. VLC tries. Technical report, Col-

orado State University, 1994.

[19] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, efficient
data structure for string keys. ACM Transactions on Information
Systems (TOIS), 20(2):192–223, 2002.

[20] L. Kim, Whang and Lee. n-gram/2l: A space and time efficient
two-level n-gram inverted index structure. In Proc. of 31st VLDB
Conference, 2005.

[21] D. E. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley, 1973.

[22] K. Maly. Compressed tries. Comm. ACM, 19(7):409–415, 1976.

[23] E. M. McCreight. A space-economic suffix tree construction algo-
rithm. J. of ACM, 23(2):262–271, 1976.

[24] S. Miniaoui and M. W. Forte. XML mining: From trees to strings?
In ICICIS, 2005.

[25] D. R. Morrison. Patricia: a practical algorithm to retrieve informa-
tion coded in alphanumeric. Journal of ACM, 15(4):514–534, 1968.

[26] S. Nilsson and G. Karlsson. IP-address lookup using LC-tries. IEEE
Journal on Selected Areas in Communication, 17:1083–1092, 1999.

[27] T. D. M. Purdin. Compressing tries for storing dictionaries. In Proc.
IEEE Symposium on Applied Computing, pages 336–340, 1990.

[28] M. V. Ramakrisna and J. Zobel. Performance in practice of string
hashing functions. In Proc. Int. Conf. on Database Systems for Ad-
vanced Applications, pages 215–223, 1997.

[29] R. Ramesh, A. J. G. Babu, and J. P. Kincaid. Variable-depth trie
index optimizations: Theory and experimental results. ACM Trans.
Database Systems, 14(1):41–74, 1989.

[30] S. Ristov. Space saving with compressed trie format. In ITI95, pages
269–274, 1995.

[31] D. Salomon. Data Compression: The Complete Reference. Springer,
2006.

[32] E. Sussenguth. Use of tree structures for processing files. Comm.
ACM, 6:272–279, 1963.

[33] P. Weiner. Linear pattern matching algorithm. Annual IEEE sympo-
sium on Switching and Automata Theory, 14, 1973.

[34] H. E. Williams and J. Zobel. Searchable words on the web. Int. J.
on Digital Libraries, 5(2):99–105, 2005.

[35] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann,
1999.

