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Abstract 

At HP Labs, we are building “Live Operational 

Intelligence (Live OI) System” – a system that 

ingests streams of operational data generated by 

multiple sources such as sensors and operational 

logs, and provides the operational staff real time 

insights in terms of suggested actions, event 

correlations, predictions, root cause analysis and 

visualization.  In a Live OI framework some 

models are learnt offline and then deployed 

online, and some models are learnt online. Live 

OI system also supports querying of historical 

data to find past occurrences of patterns and 

suggested actions, and a dashboard for humans to 

monitor and interact with the operational system.  

This paper describes the highlights of the Live 

OI system as applied to monitoring oil 

production operation, through the discussion of 

use cases. 

1. Introduction 

Live Operational Intelligence (Live OI) is a framework 

for developing, deploying, and executing applications that 

mine and analyze large amounts of data collected from 

multiple data sources such as sensors and operational 

logs, in order to help operations staff take informed 

decisions during management of operations. It has 

applications in many industries such as hydrocarbon 

production and exploration, transportation, smart grid, etc. 

In this paper, we focus on use cases from oil and gas 

production. 

The oil and gas industry heavily relies on sensor data 

to capture and record system parameters for trending 

analysis and alert processing (typically using threshold 

based approaches).   During production, temperature, 

pressure and flow rate are monitored at various points in 

the well with the well head having the greatest collection 

of sensors (See Figure 1). However, this large amount of 

data is currently not being used to provide real time 

insights to the operations staff manning the operations 

center.  

An example problem that requires a Live OI like 

framework is that of detection of onset of unpredictable 
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Figure 1: Well and Sensor Schematic  
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flow rates. In hydrocarbon production, there is a direct 

correlation between flow rate and revenue generated by a 

well. Though high flow rates are generally preferable, 

steady consistent flow is of equal importance. Highly 

variable flow results in unpredictable conditions, both 

physically and economically and investigation shows that 

a high variable flow rate can lead to a reduction in overall 

productivity of up to 5%. Onset of such unpredictable 

flow rates cannot be done with simple threshold based 

methods, but rather it requires more sophisticated models. 

Furthermore, once the onset has been detected, it is useful 

to help the operator respond in the correct fashion based 

on the type of disturbance in the flow. To address 

problems such as these, a Live OI system allows for 

building and deploying sophisticated models, as well 

suggesting actions to the operator. 

Developing Live OI application that addresses 

problems such as these, presents many challenges. First, 

data of many disparate types – structured and 

unstructured, streaming and historical – has to be 

integrated, managed, and analyzed. Today, these different 

types of data are typically managed and processed by 

separate systems, each with its own idiosyncratic 

application interfaces and development environment and 

there is a lack of algorithms and techniques that span 

different types of data. Second, data from different 

sources has to be combined and aligned. For instance, to 

build a rational analytics solution sometime requires 

combining textual and time series data to obtain a data set 

in the appropriate time sequence. Third, since data is 

collected from multiple processes, cross-process analysis 

is only possible if the variability induced due to 

differences in calibration, data collection procedures, 

sampling rates, and terminology are properly 

comprehended and adjusted. In addition, events such as 

sensor malfunctions, equipment failures, missing data, 

bogus values, and a myriad others, impose challenges. 

Fourth, in addition to automated data analysis, the 

application must incorporate knowledge from human 

experts.  

Live Operational Intelligence (Live OI) system 

consists of many components. Figure 2 describes an 

outline of the multiple components of the Live OI system 

layered in a multi-level configuration.  The bottom layer 

is the ETL layer, where the system assimilates data from 

multiple sources (sensors, operational logs, historical 

repositories, and others), and subjects the data to standard 

ETL (Extraction, Transformation, and Loading) 

operations. Besides storing the transformed data, the Live 

OI system provides functionality for stream processing of 

this transformed data. In other words, Live OI allows for 

analytics over both stored and streaming data.  

The Live OI supports analytical operators  that 

broadly fall into the following functional categories: 

Multivariate time series analysis, pattern matching and 

discovery, anomaly detection, correlation of events, 

prediction over time series data and event streams,  

Bayesian causal models for diagnostics and root cause 

analysis over event streams and Visual analytics. The 

Live OI application provides a plug-and-play approach to 

analytical operators where different operators can be 

composed into an operator flow. In order to facilitate the 

multiplicity of operations, an optimizer module is 

incorporated for scheduling and managing workloads 

efficiently.   

In the top layer, a dashboard is provided to display 

streaming data and results from analytics through a set of 

sophisticated visualization tools. The dashboard also 

Figure 2: Reference Architecture for LOI 



provides an interactive drop and drill-down menu to assist 

the on-line operator in querying the historical database for 

pattern analysis, matching, retrieving precedent 

anomalous events sequences, and evaluating complex 

event correlations in order to take corrective actions 

proactively.   

In this paper, instead of focusing on the details of the 

architectural components of Live OI [1], we focus on the 

oil production use case and the analytic components 

needed for live operations management for oil production. 

In the following sections, we will present use cases that 

will demonstrate the functionality of the Live OI system 

in order to assist in the detection, prediction, and analysis 

of complex events over streaming data in oil production.  

 

2. Use Cases 

 

We present use cases that arise when monitoring an oil 

well during production. As discussed earlier, several 

sensors are placed at different points in the well (Figure 

1). For example, some of the sensors are located at the 

well-head and others at the bottom of the well. These 

sensors measure different physical parameters such as the 

pressure, temperature and flow rate. In a Live OI system, 

the measurements of these sensors are monitored through 

a dashboard which shows the result of algorithms aimed 

at detecting interesting events/correlations and advising 

the user on future actions based on the detected 

events/correlations. The dashboard also contains visual 

analytic tools for visual inspection of time-series data. 

The dashboard and some of the functionality is shown in 

Figure 3, where at the top left there is a representation of 

three important variables in Visual time series [7], which 

allows for succinct representation of large amount of 

historical time series data. In the top left, we show the 

current values of time series, with indicators for events 

detected on them. These events are of many types, for 

example, in the context of oil production, there are event 

detectors for oscillation, outliers, etc. Bottom left is the 

list of events (in some detail) in the current window and 

bottom right is a panel showing the online correlation 

discovered on these events.   

The system monitors the measurements recorded by 

various sensors placed at different locations in the well. 

The measurements are inputs to algorithms that aim to 

detect specific events related to oil production in the data. 

As mentioned before, the system‟s dashboard has an event 

panel that displays the events being detected. The system 

first detects events that are local to each individual time 

series, such as an anomaly in the pressure measurement. 

These are primitive events. As soon as a primitive event is 

detected by the system, it is recorded in an event log table 

that maintains the time of occurrence of the event, the 

event type and the location of the time series in the well. 

The system also has the ability to detect complex events 

which may be a sequence or series of primitive events that 

occur within a short time window. These events are 

detected based on the entries into the event log table. The 

system also automatically detects whether the events 

detected in the recent past co-occur frequently with other 

events. This co-occurrence is defined in terms of time as 

well as location within the well. Any discovered co-

occurrences or correlations are displayed in another panel 

as mentioned earlier. 

Figure 3: Screenshot for LOI Dashboard 



The user is permitted to select one or more of the 

events observed in the event panel and issue queries 

regarding the events (Refer to Figure 4). The queries may 

include one or more of the following: past occurrences of 

the event (s), potential causes of the events (s), suggested 

action for the event (s) and the set of event (s) that might 

occur given that this event (s) has occurred. 

Past occurrences are a table look up. The suggested 

actions are generated from an action table that maintains a 

recommended action for certain events. If no such 

recommended action is available, the system searches the 

action log, which records the actions taken and the time of 

the action, for actions taken when the event occurred in 

the past and suggests the most common ones. The user 

can request the system to predict events that might happen 

within a fixed time window beginning at the time the 

query was issued. This prediction is made by the system 

based on the entries in the event log table by computing 

the conditional probability of observing each event given 

the events observed when the query is issued.  

The user can also dig deeper to unearth any serious 

potential causes for the events that are being observed. 

Potential causes are either learned or suggested by domain 

experts and stored in a table for quick look-up.  The 

learning is performed using probabilistic inference based 

on a causal model. This model takes into account all the 

events that have occurred during a time window that ends 

at the instant the query is issued, as well as the human 

actions that were taken and computes the conditional 

probability of several candidate causes based on the 

observed events. This is output to the user who can use 

this information to guide future courses of action. 

A specific use case that illustrates these functionalities 

is discussed below.  For example, the operator observes a 

complex event sequence consisting of: <”Extreme Value” 

followed by “Unstable Process” and “High Frequency 

Oscillation”>. He issues a query on this complex event 

sequence that notifies him that in the past the complex 

event in question is often followed by an event “Flow rate 

out of control”. The system computes the probabilities of 

two candidate causes, first being that an operator tripped a 

valve during a maintenance event in a time window 

preceding the complex event and the second being onset 

of slugging (Slugging is a phenomena in the oil and gas 

production where high amplitude, high frequency 

oscillations are observed in flow of a fluid). Based on the 

probable cause, the system also recommends actions that 

may be taken to address the situation.  An example of 

how the output would appear on the Live OI dashboard is 

shown in Figure 4. 

Another example is where the Live OI system detects 

three events: instability in temperature time series, 

pressure characterized by a negative gradient, and 

oscillation in flow.  We may conclude that temperature 

instability and pressure gradient may be temporally 

correlated indicating a possible serious deterioration in the 

oil flow and a warning is issued. The absence of a 

response from the on-line crew, indeed leads to flow rate 

churn in the well-head.  (Churn in the flow rate is a 

phenomenon characterized by a high frequency oscillation 

which often results in turbulence that detrimentally affects 

production).  

Besides event detection and correlation, Live OI 

allows for analysis of multivariate time series. This 

includes prediction of time series values. 

  The Live OI system is also designed for the user to 

describe interesting events and construct detectors for 

these events. In an online setting, the streaming data is 

Figure 4: Screenshot Capturing Query Results in LOI Dashboard 



taken as input by the detection algorithms to identify pre-

determined patterns of interest. However, as the system is 

used regularly, we anticipate that the user may observe 

other interesting patterns visually, analyze their 

occurrence and might eventually want to add it to the list 

of events that need to be detected. This functionality is 

provided in an offline setting. It is meant to be used as a 

diagnostic tool for identifying new events based on 

patterns in the data.  

As shown in Figure 5, the user might select a segment 

of one or more time series as a pattern of interest. The 

system then searches the historical data for all 

occurrences of segments that are similar to the one 

selected. The similarity can be measured using any 

number of distances. The results can be used to diagnose 

the importance of the pattern. Queries such as event co-

occurrence and prediction which were discussed earlier 

can be run on the results to gauge whether this is a 

significant pattern. Once that is determined, the pattern 

can be classified as an event to be monitored. Specialized 

detectors can be developed and added to the existing ones. 

Alternately, one can use the raw time segment, a distance 

measure and a threshold on the distance between the 

pattern and a candidate segment to determine if a given 

time segment corresponds to this pattern. The precise 

threshold can be inferred via offline diagnosis. 

3.   Algorithmic Approaches 

In this section we discuss in some detail the algorithms 

behind some of the use cases discussed in the previous 

section. We will begin by discussing multivariate time 

series methods that are used for detection of primitive 

events. We then discuss the algorithm for online 

discovery of correlations between events (we do not 

discuss the offline discovery of correlations). We then 

discuss root cause discovery through Bayesian models 

and finally visual analytic techniques.   

 

3.1.   Multivariate time series methods 

 

The analytics engine inside the Live OI system utilizes a 

variety of algorithms for anomaly detection, pattern 

detection, and time-series prediction. We discuss these 

below: 

3.1.1.   Anomalies 

  

The anomaly detection (outlier detection) relies on 

traditional threshold methods based on the Gaussian 

distribution.  In order to detect trends and anomalies, we 

implemented the Western Electric Company (WECO) 

rules [2].  These rules are based on the Gaussian 

distribution and determine trend in the time-series by 

observing sequences of data points within , between 

  2, and   3,2  , and 3 and 3 .  

Tracking sequences of observations within ranges of the 

Gaussian distribution provides the ability to monitor 

system dynamics and take proactive actions.  Point 

anomalies outside the 3 limits point to excursions and 

merit investigation from the on-line crew. 

3.1.2.   Oscillation Detection and Prediction 

 

Typical flow-rates are composed of multiple regimes 

characterized by normal oscillation (NO), high amplitude 

oscillation (HAO), and low amplitude oscillation (LAO) 

(Figure 6).  The data is both non-stationary and non-

linear.  These inherent conditions render fast detection of 

regime change of non-linear time series difficult in an on-

line fashion. The LAO is a structured time series 

superimposed by stochastic noise.  In this case, frequency 

domain approaches are appropriate for the LAO regime as 

its unique characteristics can be extracted by spectral 

features. The HAO regime is characterized by highly 

periodic structure with very little noise. Deterministic 

Figure 6: Figure Depicting Different Regimes in Flow Figure 5: Sample Query for Offline Discovery of Patterns 



methods from non-linear dynamical systems theory are 

suitable since these provide a model independent 

representation of the dynamics that generate the time 

series. The HAO signal which is deterministic with 

predictable periodicity (Figure 5) can be abstracted by the 

well organized attractor in a multi dimensional phase 

space [3,4]. Lastly, oil flow rate corresponding to normal 

oscillation (NO) is a purely stochastic signal and is 

modelled by an autoregressive (AR) processes from the 

linear time series theory. AR methods appear to model the 

series suitably when the flows are in a steady state of 

normal oscillation. 

3.2.    Online Event Correlation 

The purpose of online event correlation is to find 

correlation between events flowing into the system in 

real-time.  Event correlation is a widely used term, but for 

our purpose we say that two events are correlated if they 

are in the same “time-space neighbourhood”.  For finding 

neighbours in time sliding windows are maintained and 

for the purpose of finding neighbours in space we 

maintain a data structure called Hierarchical 

Neighbourhood Tree (HNT) [5], which allows us to find 

neighbourhoods at different abstraction level efficiently. 

For the purpose of online event correlation we store all 

the events in a time window in the HNT. Whenever, two 

or more events occur in the same hierarchical 

neighbourhood we a correlation event is issued. Each 

correlation is weighted based on the size of 

neighbourhood and the frequency of events involved, with 

the weight being higher for smaller neighbourhoods and 

lower for events with higher frequencies. 

3.3.   Bayesian Causal Models 

Determining root causes of observed events is a crucial 

subtask for improving the operations in oil production. 

We use Bayesian causal networks to perform this root 

cause analysis. A Bayesian network is a graphical model 

for representing the joint distribution of a collection of 

random variables. The graph is a directed acyclic graph, 

its vertices represent the random variables and its edges 

the conditional independence information. A Bayesian 

causal network is a Bayesian network where the direction 

of the edges further encodes cause-effect relationships 

amongst the variables (see [6]). Given the value of some 

of the random variables, it is possible to infer the posterior 

probability of the causes conditioned on the observed 

variables. The structure can be obtained with the help of 

domain experts and the probabilities can be learned from 

the data. 

The model presented in Figure 7 is an example of 

causal model for the oil and gas production use case. The 

uncoloured (white) vertices represent events associated 

with the various quantities being measured. These events 

are detected by the detectors and the variable 

corresponding to the event takes the value „1‟ if the event 

occurred in the time window under consideration and the 

value „0‟ otherwise. The green coloured nodes (light grey) 

represent actions undertaken, and their values are 

obtained from event logs.  The red coloured (dark grey) 

nodes represent potential causes. These are unobservable 

and the goal is to infer their posterior probabilities. This is 

done by setting the values of the other variables to the 

observed or recorded values and running an inference 

algorithm on the causal network. 

3.4.   Visual Analytics 

Visual Analytics combines visualization and analytics 

techniques. For instance, the pixel time series map shown 

in Figure 8 allows users to visualize streaming data over 

several days at once. The figure shows an oil well 

production pixel cell time series map [7, 8], depicting two 

phenomena of interest in oil and gas production and 

mentioned earlier: slugging characterized by high 

frequency high amplitude oscillation in the flow through 

well head and churning characterized by low amplitude-

high amplitude oscillation in the flow through the well 

head. 

   Using our visualization techniques, we can also 

compute correlations among time series variables and 

visualize them: for instance, Figure 8 shows that the flow 

rate F2 and pressure P7 are correlated after a large drop in 

the flow (grey box to the right).  

Figure 7: Bayesian Model for Root Cause 

Detection 



4.   Related Work 

In terms of applying event detection techniques for oil 

production, there has been some work [9], but unlike our 

work it is a point solution. There are some data models 

used in the oil and gas industry: PPDM Data Model1 – 

designed to provide an E&P standard model, xML – 

standards evolving from proprietary data transmission and 

exchange covering, WITSML – real-time data related to 

drilling and completions, PRODML – related to 

production operations, RESML – real-time data related to 

Reservoir Management, PIDX – includes standards for 

secure data exchange, transaction documents and business 

processes. There has been some work in the area of 

“slugging” [10] but these are not complex event based 

approaches such as ours. To the best of our knowledge, 

and from speaking with many practitioners in the oil and 

gas domain, we believe that there is no other Live OI like 

comprehensive solution available to the oil and gas 

industry. 

In terms of underlying computational technology, 

Complex Event Processing (CEP) and Data Stream 

Management Systems (DSMS) are designed to work with 

streaming data. CEP [11] engines arose from expert 

systems and systems research. They are well designed for 

responding in real time. However, rule-based CEP 

engines are primarily meant for matching of events and do 

not contain analytic operators such as outlier detection.  

DSMS engines [12], [13] can handle complex operations 

                                                           
1 http://www.ppdm.org/about-ppdm 

and are designed for fast streams. However, traditional 

DSMS are designed for continuous SQL query processing 

and they do not provide the rich analysis functionality 

needed for oil and gas production applications and there is 

no direct mechanism for real time action.  

Our Live OI engine aims to capture the combined 

functionality of a DSMS and a CEP engine.  

5.   Conclusions 

We have built a prototype of the Live OI system and 

implemented use cases from oil production. We have 

validated the results with domain experts – meaning that 

the event patterns we discovered are in fact useful 

indicators of problems in oil production operations. We 

have also extended the Live OI prototype to monitor 

drilling operations [1] and are building an instance of Live 

OI engine for monitoring traffic and predicting 

congestions. 

Besides building solutions for the various industry 

verticals, we are working on adding new analytic 

functionality to our engine with new algorithms for time 

series matching, and event correlation.  
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