
An Application of Sensor and Streaming Analytics to Oil

Production

Krishnamurthy Viswanathan
1
, Chetan Gupta

1
, Choudur Lakshminarayan

1

Ming Hao
1
, Umeshwar Dayal

1
,

 Ravigopal Vennelakanti
2
, Paul Helm

2
, Sumitha Rangaiah

2
,

Harikrishnam-Raju Sagiraju
2
, Sunil Doddmani

2

1
Hewlett Packard Labs,

2
 Hewlett Packard Enterprise Business

{firstname.lastname@hp.com}

Abstract

At HP Labs, we are building “Live Operational

Intelligence (Live OI) System” – a system that

ingests streams of operational data generated by

multiple sources such as sensors and operational

logs, and provides the operational staff real time

insights in terms of suggested actions, event

correlations, predictions, root cause analysis and

visualization. In a Live OI framework some

models are learnt offline and then deployed

online, and some models are learnt online. Live

OI system also supports querying of historical

data to find past occurrences of patterns and

suggested actions, and a dashboard for humans to

monitor and interact with the operational system.

This paper describes the highlights of the Live

OI system as applied to monitoring oil

production operation, through the discussion of

use cases.

1. Introduction

Live Operational Intelligence (Live OI) is a framework

for developing, deploying, and executing applications that

mine and analyze large amounts of data collected from

multiple data sources such as sensors and operational

logs, in order to help operations staff take informed

decisions during management of operations. It has

applications in many industries such as hydrocarbon

production and exploration, transportation, smart grid, etc.

In this paper, we focus on use cases from oil and gas

production.

The oil and gas industry heavily relies on sensor data

to capture and record system parameters for trending

analysis and alert processing (typically using threshold

based approaches). During production, temperature,

pressure and flow rate are monitored at various points in

the well with the well head having the greatest collection

of sensors (See Figure 1). However, this large amount of

data is currently not being used to provide real time

insights to the operations staff manning the operations

center.

An example problem that requires a Live OI like

framework is that of detection of onset of unpredictable
International Conference on Management of Data
COMAD 2011, Bangalore, India, December 19--21, 2011

©Computer Society of India, 2010

Figure 1: Well and Sensor Schematic

mailto:%7bfirstname.lastname@hp.com%7d

flow rates. In hydrocarbon production, there is a direct

correlation between flow rate and revenue generated by a

well. Though high flow rates are generally preferable,

steady consistent flow is of equal importance. Highly

variable flow results in unpredictable conditions, both

physically and economically and investigation shows that

a high variable flow rate can lead to a reduction in overall

productivity of up to 5%. Onset of such unpredictable

flow rates cannot be done with simple threshold based

methods, but rather it requires more sophisticated models.

Furthermore, once the onset has been detected, it is useful

to help the operator respond in the correct fashion based

on the type of disturbance in the flow. To address

problems such as these, a Live OI system allows for

building and deploying sophisticated models, as well

suggesting actions to the operator.

Developing Live OI application that addresses

problems such as these, presents many challenges. First,

data of many disparate types – structured and

unstructured, streaming and historical – has to be

integrated, managed, and analyzed. Today, these different

types of data are typically managed and processed by

separate systems, each with its own idiosyncratic

application interfaces and development environment and

there is a lack of algorithms and techniques that span

different types of data. Second, data from different

sources has to be combined and aligned. For instance, to

build a rational analytics solution sometime requires

combining textual and time series data to obtain a data set

in the appropriate time sequence. Third, since data is

collected from multiple processes, cross-process analysis

is only possible if the variability induced due to

differences in calibration, data collection procedures,

sampling rates, and terminology are properly

comprehended and adjusted. In addition, events such as

sensor malfunctions, equipment failures, missing data,

bogus values, and a myriad others, impose challenges.

Fourth, in addition to automated data analysis, the

application must incorporate knowledge from human

experts.

Live Operational Intelligence (Live OI) system

consists of many components. Figure 2 describes an

outline of the multiple components of the Live OI system

layered in a multi-level configuration. The bottom layer

is the ETL layer, where the system assimilates data from

multiple sources (sensors, operational logs, historical

repositories, and others), and subjects the data to standard

ETL (Extraction, Transformation, and Loading)

operations. Besides storing the transformed data, the Live

OI system provides functionality for stream processing of

this transformed data. In other words, Live OI allows for

analytics over both stored and streaming data.

The Live OI supports analytical operators that

broadly fall into the following functional categories:

Multivariate time series analysis, pattern matching and

discovery, anomaly detection, correlation of events,

prediction over time series data and event streams,

Bayesian causal models for diagnostics and root cause

analysis over event streams and Visual analytics. The

Live OI application provides a plug-and-play approach to

analytical operators where different operators can be

composed into an operator flow. In order to facilitate the

multiplicity of operations, an optimizer module is

incorporated for scheduling and managing workloads

efficiently.

In the top layer, a dashboard is provided to display

streaming data and results from analytics through a set of

sophisticated visualization tools. The dashboard also

Figure 2: Reference Architecture for LOI

provides an interactive drop and drill-down menu to assist

the on-line operator in querying the historical database for

pattern analysis, matching, retrieving precedent

anomalous events sequences, and evaluating complex

event correlations in order to take corrective actions

proactively.

In this paper, instead of focusing on the details of the

architectural components of Live OI [1], we focus on the

oil production use case and the analytic components

needed for live operations management for oil production.

In the following sections, we will present use cases that

will demonstrate the functionality of the Live OI system

in order to assist in the detection, prediction, and analysis

of complex events over streaming data in oil production.

2. Use Cases

We present use cases that arise when monitoring an oil

well during production. As discussed earlier, several

sensors are placed at different points in the well (Figure

1). For example, some of the sensors are located at the

well-head and others at the bottom of the well. These

sensors measure different physical parameters such as the

pressure, temperature and flow rate. In a Live OI system,

the measurements of these sensors are monitored through

a dashboard which shows the result of algorithms aimed

at detecting interesting events/correlations and advising

the user on future actions based on the detected

events/correlations. The dashboard also contains visual

analytic tools for visual inspection of time-series data.

The dashboard and some of the functionality is shown in

Figure 3, where at the top left there is a representation of

three important variables in Visual time series [7], which

allows for succinct representation of large amount of

historical time series data. In the top left, we show the

current values of time series, with indicators for events

detected on them. These events are of many types, for

example, in the context of oil production, there are event

detectors for oscillation, outliers, etc. Bottom left is the

list of events (in some detail) in the current window and

bottom right is a panel showing the online correlation

discovered on these events.

The system monitors the measurements recorded by

various sensors placed at different locations in the well.

The measurements are inputs to algorithms that aim to

detect specific events related to oil production in the data.

As mentioned before, the system‟s dashboard has an event

panel that displays the events being detected. The system

first detects events that are local to each individual time

series, such as an anomaly in the pressure measurement.

These are primitive events. As soon as a primitive event is

detected by the system, it is recorded in an event log table

that maintains the time of occurrence of the event, the

event type and the location of the time series in the well.

The system also has the ability to detect complex events

which may be a sequence or series of primitive events that

occur within a short time window. These events are

detected based on the entries into the event log table. The

system also automatically detects whether the events

detected in the recent past co-occur frequently with other

events. This co-occurrence is defined in terms of time as

well as location within the well. Any discovered co-

occurrences or correlations are displayed in another panel

as mentioned earlier.

Figure 3: Screenshot for LOI Dashboard

The user is permitted to select one or more of the

events observed in the event panel and issue queries

regarding the events (Refer to Figure 4). The queries may

include one or more of the following: past occurrences of

the event (s), potential causes of the events (s), suggested

action for the event (s) and the set of event (s) that might

occur given that this event (s) has occurred.

Past occurrences are a table look up. The suggested

actions are generated from an action table that maintains a

recommended action for certain events. If no such

recommended action is available, the system searches the

action log, which records the actions taken and the time of

the action, for actions taken when the event occurred in

the past and suggests the most common ones. The user

can request the system to predict events that might happen

within a fixed time window beginning at the time the

query was issued. This prediction is made by the system

based on the entries in the event log table by computing

the conditional probability of observing each event given

the events observed when the query is issued.

The user can also dig deeper to unearth any serious

potential causes for the events that are being observed.

Potential causes are either learned or suggested by domain

experts and stored in a table for quick look-up. The

learning is performed using probabilistic inference based

on a causal model. This model takes into account all the

events that have occurred during a time window that ends

at the instant the query is issued, as well as the human

actions that were taken and computes the conditional

probability of several candidate causes based on the

observed events. This is output to the user who can use

this information to guide future courses of action.

A specific use case that illustrates these functionalities

is discussed below. For example, the operator observes a

complex event sequence consisting of: <”Extreme Value”

followed by “Unstable Process” and “High Frequency

Oscillation”>. He issues a query on this complex event

sequence that notifies him that in the past the complex

event in question is often followed by an event “Flow rate

out of control”. The system computes the probabilities of

two candidate causes, first being that an operator tripped a

valve during a maintenance event in a time window

preceding the complex event and the second being onset

of slugging (Slugging is a phenomena in the oil and gas

production where high amplitude, high frequency

oscillations are observed in flow of a fluid). Based on the

probable cause, the system also recommends actions that

may be taken to address the situation. An example of

how the output would appear on the Live OI dashboard is

shown in Figure 4.

Another example is where the Live OI system detects

three events: instability in temperature time series,

pressure characterized by a negative gradient, and

oscillation in flow. We may conclude that temperature

instability and pressure gradient may be temporally

correlated indicating a possible serious deterioration in the

oil flow and a warning is issued. The absence of a

response from the on-line crew, indeed leads to flow rate

churn in the well-head. (Churn in the flow rate is a

phenomenon characterized by a high frequency oscillation

which often results in turbulence that detrimentally affects

production).

Besides event detection and correlation, Live OI

allows for analysis of multivariate time series. This

includes prediction of time series values.

 The Live OI system is also designed for the user to

describe interesting events and construct detectors for

these events. In an online setting, the streaming data is

Figure 4: Screenshot Capturing Query Results in LOI Dashboard

taken as input by the detection algorithms to identify pre-

determined patterns of interest. However, as the system is

used regularly, we anticipate that the user may observe

other interesting patterns visually, analyze their

occurrence and might eventually want to add it to the list

of events that need to be detected. This functionality is

provided in an offline setting. It is meant to be used as a

diagnostic tool for identifying new events based on

patterns in the data.

As shown in Figure 5, the user might select a segment

of one or more time series as a pattern of interest. The

system then searches the historical data for all

occurrences of segments that are similar to the one

selected. The similarity can be measured using any

number of distances. The results can be used to diagnose

the importance of the pattern. Queries such as event co-

occurrence and prediction which were discussed earlier

can be run on the results to gauge whether this is a

significant pattern. Once that is determined, the pattern

can be classified as an event to be monitored. Specialized

detectors can be developed and added to the existing ones.

Alternately, one can use the raw time segment, a distance

measure and a threshold on the distance between the

pattern and a candidate segment to determine if a given

time segment corresponds to this pattern. The precise

threshold can be inferred via offline diagnosis.

3. Algorithmic Approaches

In this section we discuss in some detail the algorithms

behind some of the use cases discussed in the previous

section. We will begin by discussing multivariate time

series methods that are used for detection of primitive

events. We then discuss the algorithm for online

discovery of correlations between events (we do not

discuss the offline discovery of correlations). We then

discuss root cause discovery through Bayesian models

and finally visual analytic techniques.

3.1. Multivariate time series methods

The analytics engine inside the Live OI system utilizes a

variety of algorithms for anomaly detection, pattern

detection, and time-series prediction. We discuss these

below:

3.1.1. Anomalies

The anomaly detection (outlier detection) relies on

traditional threshold methods based on the Gaussian

distribution. In order to detect trends and anomalies, we

implemented the Western Electric Company (WECO)

rules [2]. These rules are based on the Gaussian

distribution and determine trend in the time-series by

observing sequences of data points within , between

  2, and   3,2  , and 3 and 3 .

Tracking sequences of observations within ranges of the

Gaussian distribution provides the ability to monitor

system dynamics and take proactive actions. Point

anomalies outside the 3 limits point to excursions and

merit investigation from the on-line crew.

3.1.2. Oscillation Detection and Prediction

Typical flow-rates are composed of multiple regimes

characterized by normal oscillation (NO), high amplitude

oscillation (HAO), and low amplitude oscillation (LAO)

(Figure 6). The data is both non-stationary and non-

linear. These inherent conditions render fast detection of

regime change of non-linear time series difficult in an on-

line fashion. The LAO is a structured time series

superimposed by stochastic noise. In this case, frequency

domain approaches are appropriate for the LAO regime as

its unique characteristics can be extracted by spectral

features. The HAO regime is characterized by highly

periodic structure with very little noise. Deterministic

Figure 6: Figure Depicting Different Regimes in Flow Figure 5: Sample Query for Offline Discovery of Patterns

methods from non-linear dynamical systems theory are

suitable since these provide a model independent

representation of the dynamics that generate the time

series. The HAO signal which is deterministic with

predictable periodicity (Figure 5) can be abstracted by the

well organized attractor in a multi dimensional phase

space [3,4]. Lastly, oil flow rate corresponding to normal

oscillation (NO) is a purely stochastic signal and is

modelled by an autoregressive (AR) processes from the

linear time series theory. AR methods appear to model the

series suitably when the flows are in a steady state of

normal oscillation.

3.2. Online Event Correlation

The purpose of online event correlation is to find

correlation between events flowing into the system in

real-time. Event correlation is a widely used term, but for

our purpose we say that two events are correlated if they

are in the same “time-space neighbourhood”. For finding

neighbours in time sliding windows are maintained and

for the purpose of finding neighbours in space we

maintain a data structure called Hierarchical

Neighbourhood Tree (HNT) [5], which allows us to find

neighbourhoods at different abstraction level efficiently.

For the purpose of online event correlation we store all

the events in a time window in the HNT. Whenever, two

or more events occur in the same hierarchical

neighbourhood we a correlation event is issued. Each

correlation is weighted based on the size of

neighbourhood and the frequency of events involved, with

the weight being higher for smaller neighbourhoods and

lower for events with higher frequencies.

3.3. Bayesian Causal Models

Determining root causes of observed events is a crucial

subtask for improving the operations in oil production.

We use Bayesian causal networks to perform this root

cause analysis. A Bayesian network is a graphical model

for representing the joint distribution of a collection of

random variables. The graph is a directed acyclic graph,

its vertices represent the random variables and its edges

the conditional independence information. A Bayesian

causal network is a Bayesian network where the direction

of the edges further encodes cause-effect relationships

amongst the variables (see [6]). Given the value of some

of the random variables, it is possible to infer the posterior

probability of the causes conditioned on the observed

variables. The structure can be obtained with the help of

domain experts and the probabilities can be learned from

the data.

The model presented in Figure 7 is an example of

causal model for the oil and gas production use case. The

uncoloured (white) vertices represent events associated

with the various quantities being measured. These events

are detected by the detectors and the variable

corresponding to the event takes the value „1‟ if the event

occurred in the time window under consideration and the

value „0‟ otherwise. The green coloured nodes (light grey)

represent actions undertaken, and their values are

obtained from event logs. The red coloured (dark grey)

nodes represent potential causes. These are unobservable

and the goal is to infer their posterior probabilities. This is

done by setting the values of the other variables to the

observed or recorded values and running an inference

algorithm on the causal network.

3.4. Visual Analytics

Visual Analytics combines visualization and analytics

techniques. For instance, the pixel time series map shown

in Figure 8 allows users to visualize streaming data over

several days at once. The figure shows an oil well

production pixel cell time series map [7, 8], depicting two

phenomena of interest in oil and gas production and

mentioned earlier: slugging characterized by high

frequency high amplitude oscillation in the flow through

well head and churning characterized by low amplitude-

high amplitude oscillation in the flow through the well

head.

 Using our visualization techniques, we can also

compute correlations among time series variables and

visualize them: for instance, Figure 8 shows that the flow

rate F2 and pressure P7 are correlated after a large drop in

the flow (grey box to the right).

Figure 7: Bayesian Model for Root Cause

Detection

4. Related Work

In terms of applying event detection techniques for oil

production, there has been some work [9], but unlike our

work it is a point solution. There are some data models

used in the oil and gas industry: PPDM Data Model1 –

designed to provide an E&P standard model, xML –

standards evolving from proprietary data transmission and

exchange covering, WITSML – real-time data related to

drilling and completions, PRODML – related to

production operations, RESML – real-time data related to

Reservoir Management, PIDX – includes standards for

secure data exchange, transaction documents and business

processes. There has been some work in the area of

“slugging” [10] but these are not complex event based

approaches such as ours. To the best of our knowledge,

and from speaking with many practitioners in the oil and

gas domain, we believe that there is no other Live OI like

comprehensive solution available to the oil and gas

industry.

In terms of underlying computational technology,

Complex Event Processing (CEP) and Data Stream

Management Systems (DSMS) are designed to work with

streaming data. CEP [11] engines arose from expert

systems and systems research. They are well designed for

responding in real time. However, rule-based CEP

engines are primarily meant for matching of events and do

not contain analytic operators such as outlier detection.

DSMS engines [12], [13] can handle complex operations

1 http://www.ppdm.org/about-ppdm

and are designed for fast streams. However, traditional

DSMS are designed for continuous SQL query processing

and they do not provide the rich analysis functionality

needed for oil and gas production applications and there is

no direct mechanism for real time action.

Our Live OI engine aims to capture the combined

functionality of a DSMS and a CEP engine.

5. Conclusions

We have built a prototype of the Live OI system and

implemented use cases from oil production. We have

validated the results with domain experts – meaning that

the event patterns we discovered are in fact useful

indicators of problems in oil production operations. We

have also extended the Live OI prototype to monitor

drilling operations [1] and are building an instance of Live

OI engine for monitoring traffic and predicting

congestions.

Besides building solutions for the various industry

verticals, we are working on adding new analytic

functionality to our engine with new algorithms for time

series matching, and event correlation.

References

1. Chetan Gupta et al, “Better Drilling through Sensor

Analytics: A Case Study in Live Operations

Management,” ACM SIGKDD workshop on sensor

analytics, 2011, San Diego, USA. To Appear.

Figure 8: Visual Analytics

2. Douglas C. Montgomery (2005), Introduction to

Statistical Quality Control (5 ed.), John Wiley and

Sons.

3. Evan Kriminger, Choudur Lakshminarayan, Jose C.

Principe. Modified embedding for multi-regime

detection in nonstationary streaming data, IEEE,

International Conference on Acoustics, Speech, and

Statistical signal Processing, 2011, Prague, Czech

Republic.

4. Holger Kantz and Thomas Schreiber, Nonlinear Time

Series, Analysis, Cambridge University Press, New

York, NY, USA, 2003

5. Malu Castellanos, Song Wang, Umesh Dayal, Chetan

Gupta. SIE-OBI: a streaming information extraction

platform for operational business intelligence,

SIGMOD 2010.

6. Judea Pearl. Causality: Models, Reasoning, and

Inference. Cambridge University Press, 2000.

7. Hao, M., Dayal, U., Keim, D. A., Schreck, T. Multi-

Resolution Techniques for Visual Exploration of

Large Time-Series Data. Proceedings: IEEE VGTC

Symposium on Visualization, EuroVis 2007

8. Hao, M., Marwah, M. Dayal. U, Janetzko, H., Keim

D., et al, Visualizing Frequent Patterns in Large

Multivariate Time Series. Information Visualization

VDA11, CA.

9. M. Hill, M. Campbell, Y.-C. Chang, and V. Iyengar,

“Event detection in sensor networks for modern oil

fields,” in DEBS ‟08: Proceedings of the second

international conference on Distributed event-based

systems. New York, NY, USA: ACM, 2008, pp. 95–

102.

10. F Di Meglio et al., 2006. Reproducing slugging

oscillations of a real oil well, IEEE conference on

Decision and Control, 2010, 4473 – 4479.
11. R. S. Barga, J. Goldstein, M. H. Ali and M. Hong,

Consistent Streaming Through Time: A Vision for

Event Stream Processing. CIDR , pp. 363-374. (2007).

12. D. Abadi, et. all. Aurora: A New Model and

Architecture for Data Stream Management. VLDB

Journal 12(2), 120–139 (2003).

13. Chetan Gupta, et. all. CHAOS. A Data Stream

Analysis Architecture for Enterprise Applications,

IEEE CEC, pp 33-40, (2009).

