Virahanka Numbers

Abhiram Ranade

Virahanka's Problem (7th century AD?)

Find the number of ways of building an n feet wall using bricks of length 2 feet and 1 foot.

Possibilities for n=8

- 2,2,2,2
- 1,1,1,1,1,1,1,1
- 2,2,2,1,1
- •

Virahanka's Actual Problem

Find number of of poetic meters with 8 beats, made of:

- Short syllables, each 1 beat duration
- Long syllables, each 2 beat duration

Example: Shardulavikridita (19 syllables, 15 beats)

L L L S S L S L S S S L L L S L L S L ya kun den du tu sha r ha r dha va la ya shubh r vas tra vru ta ya vee na va ra dan d man di ta k ra ya shwe t pad ma s na Aa ji chya ja wa lii gha dya I ka sa lay aa he ch mat kaa ri ka De ii the vu ni te ku the a ju n hii na hi ku na tha u ka

Trial and error solution

```
P_i = Set of all i beat patterns

V_i = |P_i| = number of patterns having i beats.

V_1 = 1 : P_1 = {S}

V_2 = 2 : P_2 = {SS, L}
```

 $V_3 = 3 : P_3 = \{SL, SSS, LS\}$

 $V_4 = 5 : P_4 = \{SSL, LL, SLS, SSSS, LSS\}$

Virahanka's Solution

- "By the method of Pingala, it is enough to observe that the last syllable is long or short"
- Pingala: mathematician/poet from 300 B.C.
- Virahanka is giving credit to someone who lived 1000 years before him!!
- Copy but give credit...

Virahanka's solution

```
P_i = set of i beat patterns

L_i = set of i beat patterns ending in L

S_i = set of i beat patterns ending in S

P_i = L_i U S_i ... disjoint union
```

$$|P_i| = |L_i| + |S_i|$$

$|L_i|$

Let p = any pattern in L_8 f(p) = p with last syllable, L, removed. Thus f(p) is in P_6

Let p' be any pattern in P_6 . $f^{-1}(p)$ exists? Yes, = p'L f is 1-1

Thus
$$|L_8| = |P_6|$$
 $|L_i| = |P_{i-2}|$
Similarly $|S_8| = |P_7|$ $|S_i| = |P_{i-1}|$

$|P_i|$

$$|P_i| = |L_i| + |S_i|$$

= $|P_{i-2}| + |P_{i-1}|$

$$V_i = V_{i-2} + V_{i-1}$$

 $V_1 = 1$, $V_2 = 2$, found by exhaustive trial and error

$$V_3 = V_1 + V_2 = 1 + 2 = 3$$

$$V_4 = V_2 + V_3 = 2 + 3 = 5$$

• • •

Recursive function

```
int Virahanka(int n){
 if(n == 1) return 1;
 if(n == 2) return 2;
 return Virahanka(n-1) + Virahanka(n-2);
int main(){ cout << Virahanka(10) << endl;
```

Iterative Program

```
int n; cin >> n; // Need nth Virahanka number
int v1 = 1, v2 = 2;
int vlast = v2, vsecondlast = v1;
repeat(n-2){
 int vcur = vlast + vsecondlast;
 vsecondlast = vlast;
                                // This iteration's last =
                                // next iterations' secondlast
 vlast = vcur;
cout << vlast << endl;
```

Which is better?

"Recursion tree for recursive program"

Which is better (contd.)

Recursive function: computation is repeated.

Time proportional to $2^{n/2}$.

Not practical even for small values.

Summary

Recursion: way of discovering algorithms.

- Relate solution of large problems to solution of small problems of same type.
- Extremely powerful

Recursion: way of writing programs.

Elegant, but sometimes may be inefficient

On Virahanka Numbers

- Series is very interesting.
 - Number of petals in many flowers.
 - Ratio of consecutive terms tends to a limit.
- Mathematics from poetry!
- More commonly known as Fibonacci numbers, though Virahanka lived well before Fibonacci.
- What has gone wrong with our country in the last 1000 years? What do we need to do?

Remark on functions

 Functions that return values may be called without using the returned value. e.g.

```
getClick();
```

Useful when function has a side effect and output.