
CS 101: A bird’s eye view

Abhiram Ranade



A computer can do many things

 Predict the weather
 Make railway bookings
 Play chess and beat human world champions
 Control machinery in large factories

How can a single machine do all this?



A short answer

 Most problems that we want to solve can be 
formulated as numerical problems

 We can design electrical circuits that can 
perform numerical calculations.

 Computer = single universal circuit for all 
calculations.



Outline

 How to represent real life problems as 

problems on numbers.

− “What is in this picture?”

− “Will it rain tomorrow?”

− “Find information about Bt brinjal”

 Basics of processing numbers using circuits.

 Sketch of a computer as a huge circuit



“What is in this picture?”



How to represent black and white 
pictures

− Suppose picture is 10cm x 10cm.

− Break it up into 0.1 mm x 0.1 mm squares

− 1000 x 1000 squares.

− If square is mostly white, represent it as 0.  

− If square is mostly black, represent it as 1.

− Picture = 1 million numbers!



Picture, Representation, 
Reconstruction

0   0   0    1  1   1   0  0   0  0
0   0   1    0  0   0   1  1   0  0
0   1   0    0  0   0   0  0   1  0
1   0   0    0  0   0   0  0   1  0
1   0   1    0  0   0   1  0   0  1
1   0   0    0  0   0   0  0   0  1
1   0   0    1  1   1   0  0   1  0
0   1   0    0  0   0   0  0   1  0
0   0   1    0  0   0   1  1   0  0
0   0   0    1  1   1   0  0   0  0

(a) (b) (c)



Remarks

 Better representation if picture divided into 
more cells.

 Pictures with different “gray levels”: sequence 
of numbers indicating degree of darkness

 Pictures with colours: picture = 3 sequences

−  sequence for red component, 

− sequence for blue component, 

− sequence for green component



Is there a vertical line in this picture?



Is there a vertical line in this picture?



Does the picture contain a 
chameleon?

 Question expressed as:

− Does the sequence of numbers representing the 
picture contain a subsequence satisfying certain 
properties?

 “certain properties”: Enormous ingenuity 
needed to specify.

 Main concern of the deep subject “Computer 
Vision”



Predicting weather

 Divide the surface of the earth into small cells, 
e.g. cut along integer latitude and integer 
longitude.

 For each cell have several numbers:

− A number representing its temperature

− A number representing its pressure

− …

 Numbers we wrote down = representation of the 
current weather!



Predicting the weather (contd.)

 Laws of physics can be used to determine numbers for 
the next step

 “Laws of physics”:

− “Heat Equation”: how to calculate temperature for 
next time step given current temperature for a 
simple object

− Laws are complex for land-sea-air system.
 Central concern of the deep subject “Meteorology”

 Representation better if cells are small



“Tell me about Bt brinjal”

 Each character that we can type on the keyboard 
is represented by a specific number.

 American Standard Code for Information 
Interchange (ASCII)

− ‘a’ = 97, ‘b’ = 98, …’z’ = 122.

− ‘A’ = 65, ‘B’ = 66, …’Z’ = 90.

− ‘brinjal’ = 98, 114, 105, 110, 106, 97, 108.

 Document = very long sequence of numbers.



“Tell me about Bt brinjal”

 Find the sequence for ‘brinjal’ in all the different 
sequences representing different documents on 
the computer.

 Brinjal = also called Eggplant.  Must look in 
document for sequences for both words.

 “Is Bt Brinjal good for you?” : much more 
complicated searches..

 Subject of deep area of CS: “Information 
Retrieval”



Summary

 Questions about pictures, weather, documents 
can be converted to questions about properties 
of number sequences.

 Finding answers requires solving interesting 
math problems.

 How will you represent Chess playing as a 
question on numbers?



Representing numbers in circuits

 0 : low voltage, say 0.0 volts on some wire or capacitor 

 1 : high voltage, say 0.7 volts

 Larger numbers: 

− Convert number to binary.  Then use above representation 
for each bit. Bit = Binary digit

− 25 = 2 x 101 + 5 x 100 

− 25 = 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20

− 25 : 11001 : high, high, low, low, high



Representing Numbers (contd.)

 Standard representations use fixed number of voltages, 
e.g. 32.

25: LLLLLLLLLLLLLLLLLLLLLLLLLLLHHLLH

Often we write 0 for L and 1 for H

25: 00000000000000000000000000011001

 With 32 voltages (L/H) we can only represent numbers 
between 0 and  232 – 1 (“all 1s”)

 How to represent negative numbers and fractions: next.



General principles of representation

 If we have 32 voltages, each taking value L/H, we 
can have a total of 232 voltage patterns.

 We can decide what each pattern means.
 Previous representation: 

− each voltage pattern represents binary number 
obtained by setting Low = 0, High = 1.

− But we can make other correspondences.

 Terminology: Bit = voltage taking value L/H



Representing Positive/Negative 
Integers using 32 bits

 Represent magnitude using 31 bits/voltages.
 Represent sign using 1 bit/voltage: 

− L = +ve, H = -ve

 -25: 10000000000000000000000000011001
 Largest: 231 – 1, smallest: - (231 -1)
 Actual representation on real computers is 

slightly different.



Representing real numbers

 Example: Avogadro’s number 6.022 x 1023

− Convert to binary: 1.11111110001010111 x 21001110

− Use 23 bits for magnitude of fraction, 1 bit for sign of 
fraction. Equivalent of 7-8 decimal digits.

− Use 7 bits for magnitude of exponent, 1 bit for sign of 
exponent

− 0111111110001010111000001001110

− Decimal point is assumed after 2nd bit.

− Actual representation slightly different.



Other representations

 Positive and negative integers: 16 bit, 64 bit
 Real numbers: 64 bits (“double precision”)

− 53 bit fraction = 18 decimal digits

− 11 bit exponent

 96 or 128 bits also used.



An adder circuit

 Different circuit for each number representation.

 Input port A: 32 wires

 Input port B: 32 wires

 Output port: 32 wires

 First addend : Feed voltages representing the number 
on port A.

 Second addend: Feed on port B.

 After some delay: voltages representing sum available 
on output port.



An Adder Circuit (8 bit input/output)

Input Port A

Input Port B

Output Port



Organization of a computer

 Memory unit
 Arithmetic and Logic Unit (ALU)
 Control Unit
 Keyboard, monitor screen, disk, …
 Wiring to connect these together



Memory Unit

 Collection of capacitors.  

− Group of 8 capacitors storing 8 bits = 1 byte

− Group of 32 capacitors storing 32 bits = 1 word

 Example:

− Memory contains 230 words, about 109 words.

− Imagine words are located on a long line. Distance 
along the line = address of the byte.

− Addresses are between 0 and 230 – 1.

− Addresses fit in 30 bits



Memory Unit Example (contd.)

 Connection to the outside world:

− Data port: 32 wires

− Address port: 30 wires

− Read control wire

− Write control wire



Example (contd.)

 Writing value V into word at address A:

− Convert A to binary (30 bits)

− Place corresponding voltages on Address port.

− Place representation of V (32 bits) on Data port wires

− Set write control wire to “high”.

− Wait for circuit to do its work.

 Result: value V stored in word A of memory. 

− V will stay in address A even after address/data port values change.

 How: magic of circuit design!



Example (contd.)

 Reading value from word starting at address A:

− Convert A to binary (30 bits)

− Place corresponding voltages on Address port.

− Set read control wire to “high”.

− Wait for circuit to do its work

 Result: value V stored in word A of memory 
appears on Data port.

 How: magic of circuit design!



Arithmetic and Logic Unit (ALU)
Example

 Addition already discussed. Circuits available 
for other arithmetic operations, e.g. subtraction, 
multiplication, division.



Input/Output devices

 Keyboard: sends ASCII bit pattern of key 
pressed on connecting wire.

 Monitor: will display character whose value is 
sent on connecting wire.

 More complex devices/protocols possible.



Control Unit

 Consists of Instruction Fetch Unit (IFU) + 
Decode and execute unit (DEU)

 DEU:

− Connected to other units in the computer.

− Decides what other units in the computer will do.

− Has many preset “command sequences”



Command Sequences

 Example: command sequence 0:

− Send a value V to Address port of memory

− Command memory to read

− Ask for the data read to be sent to input port A of ALU.

 Example command sequence 1:

− Same as above, except data goes to input port B.

 Example command sequence 10:

− Command the ALU to add, assuming numbers are non-
negative.



Command sequence example 
(contd)

 Example: command sequence 2

− Move value V to address port of memory

− Move value at ALU outport to memory data port.

− Command memory to write.

 What if DEU executes command sequences 0, 
1, 10, 2 in succession?



Control Unit functioning

 Which command sequence will be executed by 
DEU? What value V will it use?

− IFU sends the sequence number, and value V.

 How does the IFU decide what to send?

− IFU fetches the sequence number and V from 
memory!



Sketch of IFU functioning

 IFU contains a register called program counter (PC).

 IFU sends PC to address port of memory, and reads a 
word.  This will be sent to DEU as sequence number.

 IFU adds 1 to PC.

 Sends PC again to address port, reads another word.  
This will be the value V.

 IFU adds 1 to PC.

 Waits for DEU to do its work.

 Repeat 



Example

 PC = 100, Memory contains 0, 50, 1, 51, 10, 0, 
2, 52 in locations 100 through 107.

 What happens when the computer executes?

− IFU fetches 0, sends as sequence number to DEU

− IFU fetches 50, sends as V to DEU

− DEU executes: Data from address 50 goes to ALU 
port A.

− IFU fetches 1, sends as sequence number to DEU

− …   



Example (contd.)

 Effect of IFU fetching 0,50,1,51,10,0:

− Content of memory address 50, 51 moved to ALU input 
ports, and added.

 Effect of 2,52:

− Suppose command sequence 2 causes data in ALU 
output to be moved to address V, which has been 
specified as 52.

− Sum of values in addresses 50, 51 stored in 52

 Sequence 0,50,1,51,10,0,2,52: “machine language 
program to add two numbers”



Terminology

 Sequence number : operation code

 Value V: operand

 Sequence number + V : instruction

 Normally, IFU fetches instructions from consecutive addresses 
in memory.

 Some operation codes may cause DEU to modify PC register in 
IFU.  This will cause IFU to fetch instructions from a new 
address.

− Jump instruction



What C++ compiler does

 Take a C++ program, generate an equivalent 
machine language program.

 Machine language program can be loaded into 
memory and run.



Summary

 Numbers can be represented in many ways.

 Memory is organized as several words, each word has 
an address.

 What the computer does, what instruction it executes, 
are also stored in memory.

− “Stored program computer”

 Compilation = translating C++ to machine language.


	CS 101: A bird’s eye view
	A computer can do many things
	A short answer
	Outline
	“What is in this picture?”
	How to represent black and white pictures
	Picture, Representation, Reconstruction
	Remarks
	Is there a vertical line in this picture?
	Slide 10
	Does the picture contain a chameleon?
	Predicting weather
	Predicting the weather (contd.)
	“Tell me about Bt brinjal”
	Slide 15
	Summary
	Representing numbers in circuits
	Representing Numbers (contd.)
	General principles of representation
	Representing Positive/Negative Integers using 32 bits
	Representing real numbers
	Other representations
	An adder circuit
	An Adder Circuit (8 bit input/output)
	Organization of a computer
	Memory Unit
	Memory Unit Example (contd.)
	Example (contd.)
	Slide 29
	Arithmetic and Logic Unit (ALU) Example
	Input/Output devices
	Control Unit
	Command Sequences
	Command sequence example (contd)
	Control Unit functioning
	Sketch of IFU functioning
	Example
	Slide 38
	Terminology
	What C++ compiler does
	Slide 41

