
CS 101: A bird’s eye view

Abhiram Ranade

A computer can do many things

 Predict the weather
 Make railway bookings
 Play chess and beat human world champions
 Control machinery in large factories

How can a single machine do all this?

A short answer

 Most problems that we want to solve can be
formulated as numerical problems

 We can design electrical circuits that can
perform numerical calculations.

 Computer = single universal circuit for all
calculations.

Outline

 How to represent real life problems as

problems on numbers.

− “What is in this picture?”

− “Will it rain tomorrow?”

− “Find information about Bt brinjal”

 Basics of processing numbers using circuits.

 Sketch of a computer as a huge circuit

“What is in this picture?”

How to represent black and white
pictures

− Suppose picture is 10cm x 10cm.

− Break it up into 0.1 mm x 0.1 mm squares

− 1000 x 1000 squares.

− If square is mostly white, represent it as 0.

− If square is mostly black, represent it as 1.

− Picture = 1 million numbers!

Picture, Representation,
Reconstruction

0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 1 1 1 0 0 1 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 0
0 0 0 1 1 1 0 0 0 0

(a) (b) (c)

Remarks

 Better representation if picture divided into
more cells.

 Pictures with different “gray levels”: sequence
of numbers indicating degree of darkness

 Pictures with colours: picture = 3 sequences

− sequence for red component,

− sequence for blue component,

− sequence for green component

Is there a vertical line in this picture?

Is there a vertical line in this picture?

Does the picture contain a
chameleon?

 Question expressed as:

− Does the sequence of numbers representing the
picture contain a subsequence satisfying certain
properties?

 “certain properties”: Enormous ingenuity
needed to specify.

 Main concern of the deep subject “Computer
Vision”

Predicting weather

 Divide the surface of the earth into small cells,
e.g. cut along integer latitude and integer
longitude.

 For each cell have several numbers:

− A number representing its temperature

− A number representing its pressure

− …

 Numbers we wrote down = representation of the
current weather!

Predicting the weather (contd.)

 Laws of physics can be used to determine numbers for
the next step

 “Laws of physics”:

− “Heat Equation”: how to calculate temperature for
next time step given current temperature for a
simple object

− Laws are complex for land-sea-air system.
 Central concern of the deep subject “Meteorology”

 Representation better if cells are small

“Tell me about Bt brinjal”

 Each character that we can type on the keyboard
is represented by a specific number.

 American Standard Code for Information
Interchange (ASCII)

− ‘a’ = 97, ‘b’ = 98, …’z’ = 122.

− ‘A’ = 65, ‘B’ = 66, …’Z’ = 90.

− ‘brinjal’ = 98, 114, 105, 110, 106, 97, 108.

 Document = very long sequence of numbers.

“Tell me about Bt brinjal”

 Find the sequence for ‘brinjal’ in all the different
sequences representing different documents on
the computer.

 Brinjal = also called Eggplant. Must look in
document for sequences for both words.

 “Is Bt Brinjal good for you?” : much more
complicated searches..

 Subject of deep area of CS: “Information
Retrieval”

Summary

 Questions about pictures, weather, documents
can be converted to questions about properties
of number sequences.

 Finding answers requires solving interesting
math problems.

 How will you represent Chess playing as a
question on numbers?

Representing numbers in circuits

 0 : low voltage, say 0.0 volts on some wire or capacitor

 1 : high voltage, say 0.7 volts

 Larger numbers:

− Convert number to binary. Then use above representation
for each bit. Bit = Binary digit

− 25 = 2 x 101 + 5 x 100

− 25 = 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20

− 25 : 11001 : high, high, low, low, high

Representing Numbers (contd.)

 Standard representations use fixed number of voltages,
e.g. 32.

25: LLLLLLLLLLLLLLLLLLLLLLLLLLLHHLLH

Often we write 0 for L and 1 for H

25: 00000000000000000000000000011001

 With 32 voltages (L/H) we can only represent numbers
between 0 and 232 – 1 (“all 1s”)

 How to represent negative numbers and fractions: next.

General principles of representation

 If we have 32 voltages, each taking value L/H, we
can have a total of 232 voltage patterns.

 We can decide what each pattern means.
 Previous representation:

− each voltage pattern represents binary number
obtained by setting Low = 0, High = 1.

− But we can make other correspondences.

 Terminology: Bit = voltage taking value L/H

Representing Positive/Negative
Integers using 32 bits

 Represent magnitude using 31 bits/voltages.
 Represent sign using 1 bit/voltage:

− L = +ve, H = -ve

 -25: 10000000000000000000000000011001
 Largest: 231 – 1, smallest: - (231 -1)
 Actual representation on real computers is

slightly different.

Representing real numbers

 Example: Avogadro’s number 6.022 x 1023

− Convert to binary: 1.11111110001010111 x 21001110

− Use 23 bits for magnitude of fraction, 1 bit for sign of
fraction. Equivalent of 7-8 decimal digits.

− Use 7 bits for magnitude of exponent, 1 bit for sign of
exponent

− 0111111110001010111000001001110

− Decimal point is assumed after 2nd bit.

− Actual representation slightly different.

Other representations

 Positive and negative integers: 16 bit, 64 bit
 Real numbers: 64 bits (“double precision”)

− 53 bit fraction = 18 decimal digits

− 11 bit exponent

 96 or 128 bits also used.

An adder circuit

 Different circuit for each number representation.

 Input port A: 32 wires

 Input port B: 32 wires

 Output port: 32 wires

 First addend : Feed voltages representing the number
on port A.

 Second addend: Feed on port B.

 After some delay: voltages representing sum available
on output port.

An Adder Circuit (8 bit input/output)

Input Port A

Input Port B

Output Port

Organization of a computer

 Memory unit
 Arithmetic and Logic Unit (ALU)
 Control Unit
 Keyboard, monitor screen, disk, …
 Wiring to connect these together

Memory Unit

 Collection of capacitors.

− Group of 8 capacitors storing 8 bits = 1 byte

− Group of 32 capacitors storing 32 bits = 1 word

 Example:

− Memory contains 230 words, about 109 words.

− Imagine words are located on a long line. Distance
along the line = address of the byte.

− Addresses are between 0 and 230 – 1.

− Addresses fit in 30 bits

Memory Unit Example (contd.)

 Connection to the outside world:

− Data port: 32 wires

− Address port: 30 wires

− Read control wire

− Write control wire

Example (contd.)

 Writing value V into word at address A:

− Convert A to binary (30 bits)

− Place corresponding voltages on Address port.

− Place representation of V (32 bits) on Data port wires

− Set write control wire to “high”.

− Wait for circuit to do its work.

 Result: value V stored in word A of memory.

− V will stay in address A even after address/data port values change.

 How: magic of circuit design!

Example (contd.)

 Reading value from word starting at address A:

− Convert A to binary (30 bits)

− Place corresponding voltages on Address port.

− Set read control wire to “high”.

− Wait for circuit to do its work

 Result: value V stored in word A of memory
appears on Data port.

 How: magic of circuit design!

Arithmetic and Logic Unit (ALU)
Example

 Addition already discussed. Circuits available
for other arithmetic operations, e.g. subtraction,
multiplication, division.

Input/Output devices

 Keyboard: sends ASCII bit pattern of key
pressed on connecting wire.

 Monitor: will display character whose value is
sent on connecting wire.

 More complex devices/protocols possible.

Control Unit

 Consists of Instruction Fetch Unit (IFU) +
Decode and execute unit (DEU)

 DEU:

− Connected to other units in the computer.

− Decides what other units in the computer will do.

− Has many preset “command sequences”

Command Sequences

 Example: command sequence 0:

− Send a value V to Address port of memory

− Command memory to read

− Ask for the data read to be sent to input port A of ALU.

 Example command sequence 1:

− Same as above, except data goes to input port B.

 Example command sequence 10:

− Command the ALU to add, assuming numbers are non-
negative.

Command sequence example
(contd)

 Example: command sequence 2

− Move value V to address port of memory

− Move value at ALU outport to memory data port.

− Command memory to write.

 What if DEU executes command sequences 0,
1, 10, 2 in succession?

Control Unit functioning

 Which command sequence will be executed by
DEU? What value V will it use?

− IFU sends the sequence number, and value V.

 How does the IFU decide what to send?

− IFU fetches the sequence number and V from
memory!

Sketch of IFU functioning

 IFU contains a register called program counter (PC).

 IFU sends PC to address port of memory, and reads a
word. This will be sent to DEU as sequence number.

 IFU adds 1 to PC.

 Sends PC again to address port, reads another word.
This will be the value V.

 IFU adds 1 to PC.

 Waits for DEU to do its work.

 Repeat

Example

 PC = 100, Memory contains 0, 50, 1, 51, 10, 0,
2, 52 in locations 100 through 107.

 What happens when the computer executes?

− IFU fetches 0, sends as sequence number to DEU

− IFU fetches 50, sends as V to DEU

− DEU executes: Data from address 50 goes to ALU
port A.

− IFU fetches 1, sends as sequence number to DEU

− …

Example (contd.)

 Effect of IFU fetching 0,50,1,51,10,0:

− Content of memory address 50, 51 moved to ALU input
ports, and added.

 Effect of 2,52:

− Suppose command sequence 2 causes data in ALU
output to be moved to address V, which has been
specified as 52.

− Sum of values in addresses 50, 51 stored in 52

 Sequence 0,50,1,51,10,0,2,52: “machine language
program to add two numbers”

Terminology

 Sequence number : operation code

 Value V: operand

 Sequence number + V : instruction

 Normally, IFU fetches instructions from consecutive addresses
in memory.

 Some operation codes may cause DEU to modify PC register in
IFU. This will cause IFU to fetch instructions from a new
address.

− Jump instruction

What C++ compiler does

 Take a C++ program, generate an equivalent
machine language program.

 Machine language program can be loaded into
memory and run.

Summary

 Numbers can be represented in many ways.

 Memory is organized as several words, each word has
an address.

 What the computer does, what instruction it executes,
are also stored in memory.

− “Stored program computer”

 Compilation = translating C++ to machine language.

	CS 101: A bird’s eye view
	A computer can do many things
	A short answer
	Outline
	“What is in this picture?”
	How to represent black and white pictures
	Picture, Representation, Reconstruction
	Remarks
	Is there a vertical line in this picture?
	Slide 10
	Does the picture contain a chameleon?
	Predicting weather
	Predicting the weather (contd.)
	“Tell me about Bt brinjal”
	Slide 15
	Summary
	Representing numbers in circuits
	Representing Numbers (contd.)
	General principles of representation
	Representing Positive/Negative Integers using 32 bits
	Representing real numbers
	Other representations
	An adder circuit
	An Adder Circuit (8 bit input/output)
	Organization of a computer
	Memory Unit
	Memory Unit Example (contd.)
	Example (contd.)
	Slide 29
	Arithmetic and Logic Unit (ALU) Example
	Input/Output devices
	Control Unit
	Command Sequences
	Command sequence example (contd)
	Control Unit functioning
	Sketch of IFU functioning
	Example
	Slide 38
	Terminology
	What C++ compiler does
	Slide 41

