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Outline

• How to store numbers in the memory 
of a computer

• How to perform arithmetic on them.

• How to read them from the keyboard 
and how to print them.

• Some programs based on what we 
learn.



Let us start with something you 
already know!

• A statement we saw in lecture 1:

– int nsides;

• First half of the lecture:

– formalization and generalization of this 
statement.



Drawing a polygon
main_program{

  turtleSim();

  cout << “How many sides?”

  int nsides; 

  cin >> nsides;

  repeat(nsides){

        forward(10); right(360/nsides);

  }

  wait(10); closeTurtleSim();

}



int nsides;

• nsides: name of variable defined.

• int : Says

– Use 1 word of memory (typically).

– Variable will hold integers, positive or negative.  So 
use appropriate number representation.

• “Essentially” 1 sign bit and 31 bits of magnitude.

• Actual representation: 2’s complement.  See book.

• int : Data type



Some definitions

• Variable: A region of memory  that 
stores a single piece of data

– Variables can have names

• Data type:  Specifies

– how much memory is to be used

– what kind of data will be stored, 
representation used for storing values.



Variable names

• Sequence of 1 or more letters, digits, or the 
underscore character

– Should not begin with a digit.
– Exceptions: C++ keywords, e.g. int

• Examples: nsides, nSides, a_123, A_123;

• Non-examples: #sides, 123_a

• Recommendation: Use names that describe 
the purpose for which the variable will be 
used.



Another data type: unsigned int

• 1 word (typically).  

• only non-negative integers will be 
stored.  Use binary representation.

Example: 

unsigned int telephone_number;

int, unsigned int : built-in data types



More built in data types

float  
● 1 word (typical). Stores real numbers.  Use 24 

bits for fraction, 8 bits for exponent.
● 24 bits precision = 7-8 decimal digits

double
● 2 words (typ.). Stores real numbers. 53 bits 

for fraction, 11 bits for exponent.
● 15 decimal digits

float velocity; double pressure;



More built in data types

short 

– Stores integers. 2s comp.  Typ.  16 bits.

long 

– stores integers.  2s complement. Typ. 32 bits.

long long

– stores integers 2s complement. Typ. 64 bits.

unsigned versions also allowed

long long very_long_var; 

unsigned short  short_var;



Examples of variable definitions

float velocity, pressure, temperature;

float vx=1.0, vy=2.0, weight;

– vx, vy given values as well as defined.

const double PI = 3.141592654;

– given value cannot be changed.



Reading values into variables

cin >> varname;

cin >> var1 >> var2;

– “white space” ignored
– “enter” needed to signal end of 

typing.



Assignment statement

Form: varname = expression

Expression: almost as in mathematics. *,/ have 
higher precedence than +,-.

Multiplication must be written explicitly as *.

() can be used.

double s, u, a, t;

cin >> u >> a >> t;

s = u*t + a * t * t / 2;



More examples

int x=2, y=3, p=4, q=5, r, s, t;

r = x*y + p*q;      // 2*3 + 4*5 = 26

s = x*(y+p)*q;     // 2*(3+4)*5 = 70

t = x – y + p – q   // equal precedence, 

                              // left to right, = -2



More examples

int x=2, y=3, z, w;

float q=3.5, r, s;

r = x;   // representation changed

z = q;  // store with truncation

s = x * q;  // convert to same type,                

                 // then multiply.

                 // Which type?



Evaluating  “varA  op  varB”
e.g. x*q

• if varA, varB have same data type: result will 
have same data type.

• if varA, varB have different data types: result 
will have “more expressive” data type.

• int/short/unsigned int  are less expressive than 
float/double

• shorter types are less expressive than longer.



Another example

int x=2, y=3, p=4, q=5, u;

u = x/y + p/q;

cout << p/y;

x/y : both are int.  So truncation.  Hence 0.

p/q : similarly 0.

p/y : 4/3 after truncation will be 1.  prints 1.



Yet another example

int nsides=100, i_angle1, i_angle2;

i_angle1 = 360/nsides;

i_angle2 = 360.0/nsides;

float f_angle1, fangle_2;

f_angle1 = 360/nsides;

f_angle2 = 360.0/nsides;



Implication of limited precision

float w, y=1.5, avogadro = 6.022e23;

w = y + avogadro;

“Actual sum” : 602200000000000000000001.5

y + avogadro will have type float, i.e. about 7 
digits of precision.  To 7 digits of precision 
avogadro is same as y+avogadro.

w will equal avogadro. no effect of addition! 



Program example

main_program{

  double centigrade, fahrenheit;

  cout << “Give temperature in Centigrade: ”;

  cin >> centigrade;

  fahrenheit = centigrade * 9 / 5 + 32;

  cout << “In Fahrenheit: ” << fahrenheit 

          << endl;  // newline.

} 



Re assignment

• Same variable can be assigned again.

int p=3, q=4, r;

r = p + q;

cout << r << endl;

r = p * q;

cout << r << endl;



An interesting assignment 
expression

int p=12;

p = p + 1;

Rule for evaluation: first evaluate the value on the left 
hand side.  Then store the result into the lhs variable.

At the end p will be 13.

“p = p + 1” is nonsensical in mathematics. 

“=” in C++ is different from “=” in math.



Repeat and reassignment

• What does the following program print?

main_program{

int i=1;

     repeat(10){

          cout << i << endl;

          i = i + 1;

     }

}



Fundamental idiom

Sequence generation

• Variable takes consecutive values.

• Can we make i take values 1, 3, 5, 7, 
…?

• Can we make i take values 1, 2, 4, 8, 
16, …? 



Repeat and reassignment

• What does the following program print?

main_program{

int term, s = 0;

     repeat(10){

          cin >> term; 

          s = s + term;

     }

     cout << s << endl;

}



Another fundamental idiom

Accumulation

• Can we make s become the product 
of all values read?



Composing the two idioms

• Write a program to calculate n! given 
n.



Composing the two idioms

• Write a program to calculate n! given n.

main_program{

  int n, nfac=1, i=1;

  cin >> n;

  repeat(n){

     nfac = nfac * i;

     i++;                                 // short for i = i + 1;

  }

  cout << nfac << endl;

}



Exercises (practice)

• Compute ex = 1  +  x/1!  +  x2/2!  +  x3/3! + …

• Compute ln x by integrating f(x)=1/x from 1 to x.  
Break the area from 1 to x into some n strips, and 
if x is the x-coordinate at the center of some strip, 
estimate the area of the strip to be width * height 
= (x-1)/n  *  (1/x)

• Draw a spiral.  The spiral should intersect any 
radial line at equal intervals.

• Chapter 2 of book.
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