
CS 101: Working with
numbers in C++

Abhiram Ranade

Outline

• How to store numbers in the memory
of a computer

• How to perform arithmetic on them.

• How to read them from the keyboard
and how to print them.

• Some programs based on what we
learn.

Let us start with something you
already know!

• A statement we saw in lecture 1:

– int nsides;

• First half of the lecture:

– formalization and generalization of this
statement.

Drawing a polygon
main_program{

 turtleSim();

 cout << “How many sides?”

 int nsides;

 cin >> nsides;

 repeat(nsides){

 forward(10); right(360/nsides);

 }

 wait(10); closeTurtleSim();

}

int nsides;

• nsides: name of variable defined.

• int : Says

– Use 1 word of memory (typically).

– Variable will hold integers, positive or negative. So
use appropriate number representation.

• “Essentially” 1 sign bit and 31 bits of magnitude.

• Actual representation: 2’s complement. See book.

• int : Data type

Some definitions

• Variable: A region of memory that
stores a single piece of data

– Variables can have names

• Data type: Specifies

– how much memory is to be used

– what kind of data will be stored,
representation used for storing values.

Variable names

• Sequence of 1 or more letters, digits, or the
underscore character

– Should not begin with a digit.
– Exceptions: C++ keywords, e.g. int

• Examples: nsides, nSides, a_123, A_123;

• Non-examples: #sides, 123_a

• Recommendation: Use names that describe
the purpose for which the variable will be
used.

Another data type: unsigned int

• 1 word (typically).

• only non-negative integers will be
stored. Use binary representation.

Example:

unsigned int telephone_number;

int, unsigned int : built-in data types

More built in data types

float
● 1 word (typical). Stores real numbers. Use 24

bits for fraction, 8 bits for exponent.
● 24 bits precision = 7-8 decimal digits

double
● 2 words (typ.). Stores real numbers. 53 bits

for fraction, 11 bits for exponent.
● 15 decimal digits

float velocity; double pressure;

More built in data types

short

– Stores integers. 2s comp. Typ. 16 bits.

long

– stores integers. 2s complement. Typ. 32 bits.

long long

– stores integers 2s complement. Typ. 64 bits.

unsigned versions also allowed

long long very_long_var;

unsigned short short_var;

Examples of variable definitions

float velocity, pressure, temperature;

float vx=1.0, vy=2.0, weight;

– vx, vy given values as well as defined.

const double PI = 3.141592654;

– given value cannot be changed.

Reading values into variables

cin >> varname;

cin >> var1 >> var2;

– “white space” ignored
– “enter” needed to signal end of

typing.

Assignment statement

Form: varname = expression

Expression: almost as in mathematics. *,/ have
higher precedence than +,-.

Multiplication must be written explicitly as *.

() can be used.

double s, u, a, t;

cin >> u >> a >> t;

s = u*t + a * t * t / 2;

More examples

int x=2, y=3, p=4, q=5, r, s, t;

r = x*y + p*q; // 2*3 + 4*5 = 26

s = x*(y+p)*q; // 2*(3+4)*5 = 70

t = x – y + p – q // equal precedence,

 // left to right, = -2

More examples

int x=2, y=3, z, w;

float q=3.5, r, s;

r = x; // representation changed

z = q; // store with truncation

s = x * q; // convert to same type,

 // then multiply.

 // Which type?

Evaluating “varA op varB”
e.g. x*q

• if varA, varB have same data type: result will
have same data type.

• if varA, varB have different data types: result
will have “more expressive” data type.

• int/short/unsigned int are less expressive than
float/double

• shorter types are less expressive than longer.

Another example

int x=2, y=3, p=4, q=5, u;

u = x/y + p/q;

cout << p/y;

x/y : both are int. So truncation. Hence 0.

p/q : similarly 0.

p/y : 4/3 after truncation will be 1. prints 1.

Yet another example

int nsides=100, i_angle1, i_angle2;

i_angle1 = 360/nsides;

i_angle2 = 360.0/nsides;

float f_angle1, fangle_2;

f_angle1 = 360/nsides;

f_angle2 = 360.0/nsides;

Implication of limited precision

float w, y=1.5, avogadro = 6.022e23;

w = y + avogadro;

“Actual sum” : 602200000000000000000001.5

y + avogadro will have type float, i.e. about 7
digits of precision. To 7 digits of precision
avogadro is same as y+avogadro.

w will equal avogadro. no effect of addition!

Program example

main_program{

 double centigrade, fahrenheit;

 cout << “Give temperature in Centigrade: ”;

 cin >> centigrade;

 fahrenheit = centigrade * 9 / 5 + 32;

 cout << “In Fahrenheit: ” << fahrenheit

 << endl; // newline.

}

Re assignment

• Same variable can be assigned again.

int p=3, q=4, r;

r = p + q;

cout << r << endl;

r = p * q;

cout << r << endl;

An interesting assignment
expression

int p=12;

p = p + 1;

Rule for evaluation: first evaluate the value on the left
hand side. Then store the result into the lhs variable.

At the end p will be 13.

“p = p + 1” is nonsensical in mathematics.

“=” in C++ is different from “=” in math.

Repeat and reassignment

• What does the following program print?

main_program{

int i=1;

 repeat(10){

 cout << i << endl;

 i = i + 1;

 }

}

Fundamental idiom

Sequence generation

• Variable takes consecutive values.

• Can we make i take values 1, 3, 5, 7,
…?

• Can we make i take values 1, 2, 4, 8,
16, …?

Repeat and reassignment

• What does the following program print?

main_program{

int term, s = 0;

 repeat(10){

 cin >> term;

 s = s + term;

 }

 cout << s << endl;

}

Another fundamental idiom

Accumulation

• Can we make s become the product
of all values read?

Composing the two idioms

• Write a program to calculate n! given
n.

Composing the two idioms

• Write a program to calculate n! given n.

main_program{

 int n, nfac=1, i=1;

 cin >> n;

 repeat(n){

 nfac = nfac * i;

 i++; // short for i = i + 1;

 }

 cout << nfac << endl;

}

Exercises (practice)

• Compute ex = 1 + x/1! + x2/2! + x3/3! + …

• Compute ln x by integrating f(x)=1/x from 1 to x.
Break the area from 1 to x into some n strips, and
if x is the x-coordinate at the center of some strip,
estimate the area of the strip to be width * height
= (x-1)/n * (1/x)

• Draw a spiral. The spiral should intersect any
radial line at equal intervals.

• Chapter 2 of book.

	Slide 1
	Outline
	Let us start with something you already know!
	Drawing a polygon
	int nsides;
	Some definitions
	Variable names
	Another data type: unsigned int
	More built in data types
	Slide 10
	Examples of variable definitions
	Reading values into variables
	Assignment statement
	More examples
	Slide 15
	Evaluating “varA op varB”, e.g. a/b
	Another example
	Yet another xample
	Implication of limited precision
	Program example
	Re assignment
	An interesting assignment expression
	Repeat and reassignment
	Fundamental idiom
	Repeat and reassignment
	Another fundamental idiom
	Composing the two idioms
	Composing the two idioms
	Exercises

