
CS 101: Computer Programming

and Utilization

Abhiram Ranade

CS 101: Computer Programming

and Utilization

Abhiram Ranade

Course Overview

● How to represent problems on a computer and

solve them

● Programming examples to be drawn from

CSE, Mathematics, Engineering, and anything

fun!

● C++ programming language

● No prior knowledge necessary.

Course Resources

● Textbook: Introduction to Problem Solving and

Programming Through C++ (draft) on moodle

● Lecture slides: www.cse.iitb.ac.in/~cs101/...

● Other resources: www.cplusplus.com

● Previous years' course pages.

● Teaching Assistants, and me!

Grading

12 % : Quiz 1, Friday 31/8, 8:30-9:30 am

25 % : Midterm

12 % : Quiz 2, Friday 26/10, 8:30-9:30 am

35 % : Final Examination

8 % : Lab assignments

8 % : Lab Project

Teachers

● Lecturer: Abhiram Ranade.

● 12 Senior Teaching Assistants (Mtech 2)

● 6 lab supervisors

● 6 other duties

● 48+ Junior Teaching Assistants. (Mtech 1)

● Lab consultants

Lectures

● Students divided into 4 divisions. Each lecture

first to Divisions 1,2, and again to Divisions 3,4.

● Div 1,2: Slot 11A,11B.

● Tu, Fr 3:30-4:55

● Div 3,4: Slots 5A, 5B

● We, Fr 9:30-10:55

● Venue: Hall 1, Lecture Hall Complex.

Tutorials

● Div 1, 2:
● X3: Wednesday 3:30-4:25
● Div 3, 4:
● 4C: Thursday 9:30-10:25
● Venue: Hall 1.
● Tutorial = Clearing of doubts. You must ask.
● Tutorial = Will be used for lectures if holidays

cause batches to go out of sync. Keep Free!!

Labs (6 batches)

● Batch 1: Tuesday 9:30-11:30
● CSE

● Batch 2: Tuesday 8:30-10:30:
● Ch BTech + MSc MA+ASI

● Batches 3-6: W,Th,Fr,M 8:30 pm -10:30 pm
● You will receive mail

● Venue: Old Software Lab (OSL). Ground floor
of Math Building (Next to Library).

Lab Assignments

● Announced before the session.

● You may discuss assignment, but code individually.

● Lab assignments are meant more for you to practice
than for us to grade you.

● This week:
● how to log in,

● how to use an editor to write a program,

● how to compile the program and run it.

● General information about Unix.

C++ programming language

● Designed by Bjarne Stroustrup, 1980s.
Derived from C programming language.

● Substantial evolution. Still continues.
● Early part of the course: C++ augmented with

a package called simplecpp
● Simplecpp: easier to use than bare C++. More

fun. Built-in graphics.

Today's topic

● Use “Turtle Simulator” contained in simplecpp
● Inspired by LOGO programming language

● You can drive around the turtle.
● Turtle has a pen, so it draws as it moves.
● To drive the turtle you write a simple C++

program.

Turtle Simulator

● Turtle = small red triangle of the screen.
● Turtle commands: forward, right, left
● Turtle has pen touching the ground.
● Picture drawn as turtle moves!
● Your goal: drive the turtle around and draw

nice pictures.

C++ Program to draw a square
#include <simplecpp>

main_program{

 turtleSim();

 forward(10); right(90);

 forward(10); right(90);

 forward(10); right(90);

 forward(10);

 wait(5); closeTurtleSim();

}

Explanation

● #include <simplecpp> : I am using simplecpp

● main_program{ ..Your program goes here.. }

● turtleSim() : open a window, turtle at the center.

● forward(100) : move turtle forward by 100 pixels.

● right(90) : turn right 90˚. Similarly left.

● wait(5): do nothing for 5 seconds.

● closeTurtleSim(): close window.

How to run this program

● Log in to an OSL computer.

● Open an editor and type in the program call it

square.cpp

● Compile it:

● s++ square.cpp

● Run it

● ./a.out

General Ideas

● C++ program = sequence of
commands/statements inside main_program{…}

● Statement/command: terminated by “;”

● Arguments: additional data needed by command to
do its work.

● forward(argument): how much forward?

● right(argument): what angle?

● () if no arguments, e.g. turtleSim()

General Ideas (contd)

● {} () [] are all different.
● Case is important “Main_program” is different

from “main_program”.

How to draw a square 2

#include <simplecpp>

main_program{

 turtleSim();

 repeat(4){

 forward(10); right(90);

 }

 wait(10); closeTurtleSim();

}

Repeat Statement

repeat (x) { ... } : execute x times whatever is

inside { }.

How to draw a polygon

main_program{

 turtleSim();

 cout << “How many sides?”;

 int nsides;

 cin >> nsides;

 repeat(nsides){

 forward(10); right(360.0/nsides);

 }

 wait(10); closeTurtleSim();

}

Explanation of statements

● “int nsides;” : Reserve a cell for me in memory in

which I will store some integer value, and call that

cell “nsides”.

● “cout << ...”: Print that message on the screen.

● “cin >> nsides;” Read an integer value from the

keyboard and put it in the cell nsides.

● nside: Variable taking integer values. Can be

used wherever numbers may appear.

Some useful commands

penUp(): Causes the pen to be raised.

penDown(): Causes the pen to be lowered.

sqrt(x) : square root of x.

sine(x), cosine(x), tangent(x) : trigonometric

functions, x is in degrees.

sin(x), cos(x), tan(x) : x is in radians.

Repeat within repeat

repeat(4){

repeat(3){

forward(10); penup(); forward(10); pendown();

}

right(90);

}

Summary 1

Control flow: execution starts at top and goes
down. Retraced if there is a repeat statement.

Variables: used for storing data. Think of a
variable as a box which contains a slip of paper
on which a value is written.

Wherever ordinary numbers can be given, we
can give variables, or expressions involving
variables.

Summary 2

● Commands: You can use them without
worrying about how exactly they do their work.

● Symmetry/repetitive pattern in picture is
matched by repeat statement.

Spirit of the course 1

● Learn C++ statements. We have covered a lot of ground
today, even if it doesn’t seem so.

● Learn how to express problems you want to solve using C++.
● Drawing pictures. Will need interesting geometric calculation.

● Solving math problems, e.g. Finding roots, curve fitting, ..

● ...

● Goal 1: if you can solve a problem by manual calculation,
possibly taking an enormous amount of time, by the end of the
course, you should be able to write a program for it.

● Goal 2: Learn new ways of solving problems!

Spirit of the course 2

● Do not be afraid of using the computer.
● “What if I write xyz in my program instead of

pqr?” : Just do so and find out.
● Be adventurous.
● Exercise your knowledge by writing programs

– that is the real test.

Homework

● Read chapter 1.

● Draw a 5 pointed star.

● Draw a 7 pointed star. How many different 7 pointed

stars can you have?

● Draw 7 identical circles, with 6 touching the central

circle. Circle = polygon of large no of sides, say 360.

● Draw 4x4 array of tiles slightly separated from each

other.

	CS 101: Computer Programming and Utilization
	CS 101: Computer Programming and Utilization
	Course Overview
	Course Resources
	Grading
	Teachers
	Lectures
	Tutorials
	Labs
	Lab Assignments
	C++ programming language
	This week’s assignment
	Turtle Simulator (from Logo)
	Slide 14
	Explanation
	How to run this program
	General Ideas
	Slide 18
	How to draw a square 2
	Repeat Statement
	How to draw a polygon
	Explanation of statements
	More procedures for you
	Repeat within repeat
	Summary 1
	Summary 2
	Spirit of the course 1
	Spirit of the course 2
	Homework

