
Numbers in C++

Abhiram Ranade

Topics

• Reasoning about programs:
– Loop invariants

• Representing characters
• Some of the operators in C++

Program to find n!

main_program{
 int n; cin >> n;
 int fac = 1, i = 1;
 repeat(n){
 fac = fac * i;
 i = i + 1;
 }
 cout << fac;
}

Can we be sure that this
program is correct?

• Some people wondered when we
wrote the program “Is this program
computing n! or (n-1)! or even
(n+1)!?”

• Such confusion is natural.
• How can it be avoided?

Invariants

• Literal meaning: “Quantity that does
not change”

• Invariants in physics: Conservation
laws. Total mass is constant before
and after …

• Invariants in programming: any
formal statement about values taken
by variables in a program.

Example of an invariant

main_program{
 int n; cin >> n;
 int fac = 1, i = 1;
 repeat(n){ // On tth entry:
 // i = t, fac = (t-1)!
 fac = fac * i;
 i = i + 1;
 }
 cout << fac;
}

Loop invariants

• What is the value of the variables
when control enters a loop for the tth
time? State as a function of t.

• Used for explaining how the program
works. Will help you to write correct
programs.

• Sometimes invariants are “obvious”,
but sometimes they must be proved.

Proving Invariants

• Mathematical induction.
• Base case: Is the invariant true on

first entry?
– Argue by examining the code before the

loop.

• Induction step: Assume they are true
on tth entry. Then prove true for
t+1th entry.
– Argue by examining the code in the

loop.

Is this true on entry?

main_program{
 int n; cin >> n;
 int fac = 1, i = 1;
 repeat(n){ // On tth entry:
 //i = t, fac = (t-1)!
 fac = fac * i;
 i = i + 1;
 }
 cout << fac;
}

i = 1 = t,
fac = 1 = 0! =

(t-1)!
Base case
proved.

i = 1 = t,
fac = 1 = 0! =

(t-1)!
Base case
proved.

Induction step

main_program{
 int n; cin >> n;
 int fac = 1, i = 1;
 repeat(n){ // On tth entry: i = t,
 // fac = (t-1)!
 fac = fac * i;
 i = i + 1;
 }
 cout << fac;
}

Required: on t+1th entry,
i = t+1, fac = t!

Required: on t+1th entry,
i = t+1, fac = t!

What happens during iteration t?
fac = fac * i = (t-1)! * t = t!

i = i + 1= t + 1
Exactly what is needed on t+1th entry!

What happens during iteration t?
fac = fac * i = (t-1)! * t = t!

i = i + 1= t + 1
Exactly what is needed on t+1th entry!

Is the program correct?

• Values at the end of iteration t =
values at the beginning of iteration
t+1.

• Values at end: values at beginning of
iteration n+1 if it had been there.

• Values at end: i = n+1, facn = n!

Practice assignment

• Write invariants for the programs in
this week's lab.

Character data type

char:
• 1 byte (typically).
• Behaves like int for purposes of

arithmetic.
• can move data from int to char etc.
• Behaviour different for << and >>.

Example

char c; int x;
cin >> c; // say user types letter a
 // c gets ASCII code.
x = c;
cout << x; // 97 printed.
c++; // 1 added to c.
cout << c; // letter b printed.

Character Literals

• '<single character>' : ASCII value of
the character

char c = 'a', d = '*' ; int p = 'b';
• Some other literals: '\n' : enter key.
cout << p << '\n'; // same as endl
• ASCII codes a-z are consecutive.

Also A-Z. Also 0-9.

Case conversion program

main_program{
 char in_ch;
 cout << “Lower case character: ”;
 cin >> in_ch;
 cout << “Upper case:”
 << in_ch + 'A' – 'a' << '\n';
}

Text processing

• Requires storing and operating on
many characters. “character strings”
–will consider later.

Operators on numbers

• % : remainder operator.
int p = 100 % 37; // 26
– precedence same as *,/

• ++ : increment operator
p++; // same as p = p + 1;
++p; // same as p = p + 1;
– difference between them? later.

• -- : decrement. subtract 1. p-- or –-p.

Accumulating assignments
(compound assignments)

• += : add and assign;
p += q; // same as p = p + q;
• *=, -=, /= : similar.
• Useful in accumulation idiom:

sum += term;

• ++, -- useful in sequence generation
idiom.

“Clever” C++

• Assignment expression: var = exp
itself has value = what was assigned.

float p, q;
p = (q = 3.5); // p becomes 3.5
p = q = 3.5; // “right associative”
int r;
p = r = 3.5; // r = ?, p = ?

“Clever” C++

• Increment, decrement expressions.

p = ++q; r = s++;
• Equivalent to

q = q+1; r = s;

p = q; s = s+1;
• Similarly --.
• a = b += c--; // Dont even think about it!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

