
Friends of if

Abhiram Ranade

Outline

• Remarks on if statement
• The switch statement
• Using Boolean Variables
• Program to determine if a number is

prime
• while statement

if(a>0) if(b>0) c = 2;
else c = 3;

if(a > 0){
 if(b > 0) c = 2;
 else c = 3;
}

a,b>0 : c = 2
a>0, b<=0 : c = 3

if(a > 0){
 if(b > 0) c = 2;
}
else c = 3;

a,b>0 : c = 2;
a<=0 : c = 3;

Remarks

• C++ chooses left interpretation.
• Use parenthesization.
• Do not remember such tricky rules.
• Do not expect others to remember

them.
• If you compile using s++, you get a

warning if you don’t parenthesize.

if(a = 2) c = 3;

• Quite likely: programmer wrote = instead of ==.

• s++ will give warning

• Why not error?

• a = 2 is assignment expression, of value 2.

• C++ tries to convert 2 to bool type.
• Expression == 0 : false
• Expression != 0 : true
• So c=3 will always execute.

• If you mean if(a = 2) c = 3; write if((a = 2)) c =
3;
• s++ will not give warning. () signals you mean

expression.

The switch statement

Turtle controller revisited

main_program{
 turtleSim();
 repeat(100){
 char command; cin >> command;
 if(command == 'f') forward(100);
 else if(command == 'r') right(90);
 else if(command == 'l') left(90);
 else cout << “Invalid command.\n”;
 }
} // command determines what happens.

Another program

main_program{
 turtleSim();
 repeat(100){
 char command; cin >> command;
 switch(command){
 case 'f' : forward(100); break;
 case 'r' : right(90); break;
 case 'l' : left(90; break;
 default : cout << “Invalid command.\n”;
 }
} // stresses importance of command

General form

switch (exp){

 case v1: statements

 … // vi : constant

 case vn: statements

 default: statements // optional

}

• exp equals vi, then execution starts after case vi:

• does not equal any vi: execute from default:

• break -- ignore subsequent statements.

• vi : values known at compile time.

Remark

• Usually the statements after each
case vi: end with break;

• If break; is omitted, next set of
statements is also executed.

• Called fall-through
• High possibility of “forgetting”

break;
• So statement considered error-

prone.

Number of days in a month

main_program{

 int month; cin >> month;

 switch(month){

 case 1: case 3: case 5: case 7: case 8: case 10: case 12:

 cout << 31 << endl; break;

 case 2: cout << 28 << endl; break;

 case 4: case 6: case 9: case 11:

 cout << 30 << endl; break;

 default: cout << ``Invalid input.\n'';

 }

} // fall through is useful.

Logical data

float income; cin >> income;
bool highincome = (income >

800000);
• Value of condition can be stored.
• And used later
if(highincome)
 tax = 92000 + (income -80000) * 0.3

More Examples

char c; cin >> c;
bool capital = (‘A’ <= c) && (c <= ‘Z’);
if(capital) …

bool x = (y % 2 == 0) || (y % 3 == 0);

When is x true if y is an integer?

Is a given number n prime?

• Algorithm idea: Is there at least one number
between between 2 and n-1 that divides n
without leaving a remainder?
• at least one divides perfectly: n is composite.
• All leave a remainder: n is prime.

• between 2 and n-1 : ?

• divides perfectly : ?

• At least one : ?
sequence generation
(n % divisor == 0)
OR should be true

Primality testing program

main_program{

 int n; cin >> n;

 int divisor = 2; bool composite = false;

 repeat(n-2){

 composite = composite || (n%divisor == 0);

 divisor = divisor + 1;

 }

 if(composite) cout <<“Composite.\n”;

 else cout <<“Prime.\n”;

}

A better program,
suggested by a student

main_program{

 int n; cin >> n;

 int divisor = 2; bool composite = false;

 repeat(n-2){

 if(n%divisor == 0) composite = true;

 divisor = divisor + 1;

 }

 if(composite) cout <<“Composite.\n”;

 else cout <<“Prime.\n”;

}

Invariants
(for both programs)

At the beginning of t th iteration:
divisor = 1+t
composite = true if some number in

the range 2..t divides n

Can you prove the invariant?
Does it imply correctness?

Is the program efficient?

• Once a factor is detected, need not
check subsequent divisors.

while

while (condition) body

condition: boolean expression
body: statement
1.Evaluate condition.
2.If false, execution of statement ends.
3.If true, execute body. Then go back

and execute from step 1.

While flowchart

True

Body

Next statement in the program

Condition

Previous statement in the program

False

Primality testing program

main_program{

 int n; cin >> n;

 int divisor = 2; bool composite = false;

 repeat(n-2){

 composite = composite || (n%divisor == 0);

 divisor = divisor + 1;

 }

 if(composite) cout <<“Composite.\n”;

 else cout <<“Prime.\n”;

}

Primality testing program

main_program{

 int n; cin >> n;

 int divisor = 2; bool composite = false;

 while(!composite && divisor < n){

 composite = composite || (n%divisor == 0);

 divisor = divisor + 1;

 }

 if(composite) cout <<“Composite.\n”;

 else cout <<“Prime.\n”;

}

Arguing correctness

• In general, a program containing
while may not terminate.
• condition in while may never become

false.
i= 0; while(i >= 0){ i++; ….}
• Programs with repeat always terminate

• May not terminate correctly.
• Must argue termination and

correctness.

Invariant

• At the beginning of the t th iteration:
• divisor = t + 1
• composite = false if 2..t do not divide n.

 true otherwise.

• Will loop terminate?
• As t increases, divisor = t+1 will equal

n. Might terminate even earlier.

Proof of correctness

• What happens on termination?
• Loop condition must be false. Either

composite == true, or divisor == n

• Argue separately for the case when
program printed “Composite” and
for the case program printed
“Prime”.

Proof of correctness(sketch)

• Case: program printed “Composite”.
– composite must have been true.
– composite starts true, so must

have become true in some
iteration.

– in that iteration some factor must
have been discovered.

– Hence correct.

(Contd.)

• Case: program printed “Prime”.
– composite == false at the end.
– divisor == n must be true.
– loop executed for all values of

divisor from 2 to n-1.
– n% divisor == 0 was never true.
– Hence n must be prime.
– Hence correct.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

