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What is VHDL

VHSIC Hardware Description Language

a large and complicated programming language with 
many constructs and semantics meanings

to support the design and development of circuits of 
large scale (circuit complexity and project 
management)

a powerful modeling tool
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Background

1960's - 1980's
over 200 languages, either proprietary or academic

1983 VHSIC Program initiates definition of VHDL

1987 VHDL Standard (IEEE 1076) approved

1990 Verilog dominates the marketplace
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Background, continued

1992 IEEE 1164 (abstract data types for different 
signal characteristics, i.e. 3, 4, 9-valued logic 
standard) 

1993 VHDL re-balloted 
minor changes make it more user-friendly.

1994 Widespread acceptance of VHDL.
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Other HDLs

Verilog -- very popular, has been used for a long time
C like syntax
wide support of simulation libraries of semiconductor 
devices
lack of higher-level management features -- such as 
VHDL’s configuration, package, and library

PLD-oriented HDLs (ABEL, PALASM, etc.)
simple and low cost 
specialized for PLD device synthesis
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VHDL Design Example

Problem:  Design a single bit half adder with carry 
and enable

Specifications
Inputs and outputs are each one bit
When enable is high, result gets x plus y
When enable is high, carry gets any carry of x plus y
Outputs are zero when enable input is low

x
y

enable

carry

result
Half Adder
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VHDL Design Example
Entity Declaration

As a first step, the entity declaration describes 
the interface of the component

input and output ports are declared

x
y

enable

carry

result
Half

Adder

ENTITY half_adder IS

PORT( x, y, enable: IN BIT;
carry, result: OUT BIT);

END half_adder;

X

Y

en
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VHDL Design Example
Behavioral Specification 

A high level description can be used to describe 
the function of the adder

ARCHITECTURE half_adder_a OF half_adder IS
BEGIN

PROCESS (x, y, enable)
BEGIN

IF enable = ‘1’ THEN
result <= x XOR y;
carry <= x AND y;

ELSE
carry <= ‘0’;
result <= ‘0’;

END IF;
END PROCESS;

END half_adder_a;

The model can then be simulated to verify correct 
functionality of the component
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VHDL Design Example
Data Flow Specification

A second method is to use logic equations to 
develop a data flow description

ARCHITECTURE half_adder_b OF half_adder 
IS

BEGIN
carry <= enable AND (x AND y);

result <= enable AND (x XOR y);
END half_adder_b;

Again, the model can be simulated at this level to 
confirm the logic equations
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VHDL Design Example
Structural Specification

As a third method, a structural description can be 
created from predescribed components

x
y

enable
carry

result

These gates can be pulled from a library of parts
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VHDL Design Example
Structural Specification (Cont.)

ARCHITECTURE half_adder_c OF half_adder IS

COMPONENT and2
PORT (in0, in1 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

COMPONENT and3
PORT (in0, in1, in2 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

COMPONENT xor2
PORT (in0, in1 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

FOR ALL : and2 USE ENTITY gate_lib.and2_Nty(and2_a);
FOR ALL : and3 USE ENTITY gate_lib.and3_Nty(and3_a);
FOR ALL : xor2 USE ENTITY gate_lib.xor2_Nty(xor2_a);

-- description is continued on next slide
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VHDL Design Example
Structural Specification (cont.)

-- continuing half_adder_c description

SIGNAL xor_res : BIT; -- internal signal
-- Note that other signals are already declared in entity

BEGIN

A0 : and2 PORT MAP (enable, xor_res, result);
A1 : and3 PORT MAP (x, y, enable, carry);
X0 : xor2 PORT MAP (x, y, xor_res);

END half_adder_c;
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Language Syntax

BNF format for syntax rule
“<=“ ---- is defined to be

variable_assignment <= target;
[ clause ] ---- optional
{ clause } ---- optional and can be repeated
| ---- alternatives

mode <= in | out | inout
constant_declaration <=

constant identifier { , . . . } : subtype_indication [ := expression ] ;
constant number_of_byte : integer := 4;
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Example

maximum:  if a > b then
if a > c then

result := a ;
else

result := c;
end if;

elsif b > c then
result := b;

else 
result := c;

end if ;

if_statement <=
[ if_label : ]
if boolean_expression then

{ sequential_statement }
{ elsif boolean_expression

then
{ sequential_statement }

[ else
{ sequential_statement } ]

end if [ if_label ] ;
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Primitive Objects in VHDL

Object  -- a named item that has a value of a specified type
4 classes of objects:

constants, variables, signals, and files
Types –

scalar type: individual values that are ordered
discrete, floating-point, and physical

composite type: array and record
file type
access type

VHDL is a strongly typed language



1616

Primitive Objects in VHDL

Variable -- often no direct correspondence in hardware. Holds 
values that change over time.

Example:variable  i_slice:  integer range 0 to Reg_size-1;
assignment (:=) – immediately overwrites the existing value

Signal -- analogous to wire or device output. Holds values 
which may change over time.

used to establish connectivity and pass values between 
concurrently active design elements. A value for a signal is 
computed and added to a waveform for future application.
Examples signal  preset, clear:  bit;

signal CS1:  bit;
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Primitive Data Types

Integer -- to count in discrete steps 
type integer is range -(231-1) to 231-1 (at least)

Bit -- to represent the most commonly occurring model of 
discrete digital circuit value 

type bit is ('0','1');
Boolean -- to represent decisions, outcomes of logical 
expression evaluation, especially used in procedural control 
flow 

type boolean is (false, true); 
Enumeration types  -- values are in a list of identifiers | 
character_literal

type octal_digital is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’);
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Primitive Data Types

Character -- to create models which work with textual data and 
communication / control symbols  to provide textual 
information to designer-users through design tool windows to 
the model 

type character is the set of ASCII symbols
Reals to represent analog, continuously variable, measurable 
values in design space.  (at least –1.0E+38 to 1.0E+38 and with 
6 decimal digits of precision)

The predefined package standard (stored in the library std )

Type declaration
type byte_integer is integer range -128 to 127;
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STANDARD.VHD

-- This is Package STANDARD as defined in the VHDL 1992 Language 
Reference Manual.

package standard is 
type boolean is (false,true); 
type bit is ('0', '1'); 
type character is (

nul, soh, stx, etx, eot, …..
'@', 'A', 'B', 'C', 'D', …..);

type severity_level is (note, warning, error, failure); 
type integer is range -2147483647 to 2147483647; 
type real is range -1.0E308 to 1.0E308; 
type time is range -2147483647 to 2147483647 

units 
fs;
ps = 1000 fs;
… 
hr = 60 min; 

end units; 
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STANDARD.VHD (cont’d)

subtype delay_length is time range 0 fs to time'high;
impure function now return delay_length; 
subtype natural is integer range 0 to integer'high; 
subtype positive is integer range 1 to integer'high; 
type string is array (positive range <>) of character; 
type bit_vector is array (natural range <>) of bit; 
type file_open_kind is (

read_mode,
write_mode,
append_mode);

type file_open_status is (
open_ok,
status_error,
name_error,
mode_error);

attribute foreign : string;
end standard; 



types-+-scalar----+-discrete-------+-integer-------+-integer
|           |                |               +-natural
|           |                |               +-positive
|           |                |
|           |                +-enumeration---+-boolean
|           |                                +-bit
|           |                                +-character
|           |                                +-file_open_kind
|           |                                +-file_open_status
|           |                                +-severity_level
|           |
|           +-floating point-+-----------------real
|           |
|           +-physical-------+-----------------delay_length
|                            +-----------------time
|
+-composite-+-array----------+-constrained-
|           |                |
|           |                +-unconstrained-+-bit_vector
|           |                                +-string
|           |
|           +-record-
|
+-access-
|
+-file-

STANDARD.VHD (cont’d)
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Generics

Pass information from its environment into the 
design unit which is not time-varying

Very useful for creating and using generalized 
designs. 
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Generics: Example

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;

ENTITY Generic_Mux IS
GENERIC (n:    INTEGER);
PORT (Y: OUT std_logic_vector(n-1 downto 0);

a: IN std_logic_vector(n-1 downto 0);
b: IN std_logic_vector(n-1 downto 0);
S: IN std_logic

);
END ENTITY;

0

1

a

b

S

Y
n

n
n
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Entities and Architectures

Entities 
are Design Bodies
provide the Interface 
description

Architectures 
are concurrent
may be behavioral
may be structural

Entity

Architecture
A

Architecture
B

Architecture
C

Architecture
D
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Entities and Architecture

Entity
External view: Pin-out description, Interface 
description, I-O port definition etc

Architecture
Internal view

Structural description: Gates, wires etc.
Behavioral description: functions, procedures, RTL 
description

ENTITY  mux

ARCHITECTURE

4

2

Din

Dout

sel
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Ports

Pass information through the interface which is 
time-varying.

Are signal objects
connected together by signals
used to pass values between concurrently active 
units. 
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Interface Modes 

Represent direction of value flow 
In entities, components, and blocks the 
modes may be:

IN  within the design unit (both entity and body) the value 
may be read, but not written. 

OUT   within the design unit (both entity and body) the value 
may be written, but not read. 

INOUT within the design unit (both entity and body) the value 
may be both read and written.
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Format of an Architecture

architecture identifier of entity_identifier is
-- local declarations, typically signals
begin
-- concurrent statements
end identifier ; 
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Simple Example

entity  XOR  
port (a,b:in bit;  

z : out bit );
end;

architecture  nand_gates of  
XOR  is

signal s0, s1, s2:
bit;

begin
s0 <= a nand b;
s1 <= a nand s0;
s2 <= b nand s0;
z <=  s1 nand s2;

end  nand_gates;
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Hierarchical Design Strategies

Bottom Up Strategy
create low level and auxiliary models first, entity and 
architecture 
once low level entities are present, they can be used 
as components in the next higher level architectural 
body. 

Top Down Strategy
create highest level entity and architecture first, 
creating only the interface definitions (entity 
declarations) for lower level architectures 
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Packages

An important way of organizing the data.
A collection of related declaration grouped to serve a 
common purpose.
The external view of a package is specified in ‘package 
declaration’.
Its implementation is provided in the ‘package body’.
The packages can be shared among models.
Several predefined packages exist, such as IEEE 
standard packages.
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Packages

Packages consist of two parts
Package declaration -- contains declarations of 
objects defined in the package
Package body -- contains necessary definitions 
for certain objects in package declaration

e.g. subprogram descriptions
Examples of VHDL items included in packages :

Basic declarations
Types, subtypes
Constants
Subprograms
Use clause

Signal declarations
Attribute declarations
Component declarations
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Packages
Declaration

An example of a package declaration :

Note some items only require declaration while 
others need further detail provided in subsequent 
package body

for type and subtype definitions, declaration is 
sufficient
subprograms require declarations and descriptions

PACKAGE my_stuff IS
TYPE binary IS ( ON, OFF );
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

PACKAGE my_stuff IS
TYPE binary IS ( ON, OFF );
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;
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Packages
Package Body

The package body includes the necessary 
functional descriptions needed for objects 
declared in the package declaration

e.g. subprogram descriptions, assignments to 
constants 

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN    -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN    -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;
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Packages
Use Clause

Packages must be made visible before their 
contents can be used

The USE clause makes packages visible to entities, 
architectures, and other packages

-- use only the binary and add_bits3 declarations
USE my_stuff.binary, my_stuff.add_bits3;

... ENTITY declaration...

... ARCHITECTURE declaration ...

-- use all of the declarations in package my_stuff
USE my_stuff.ALL;

... ENTITY declaration...

... ARCHITECTURE declaration ...
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Libraries

Analogous to directories of files
VHDL libraries contain analyzed (i.e. compiled) VHDL 
entities, architectures, and packages

Facilitate administration of configuration and 
revision control

E.g. libraries of previous designs
Libraries accessed via an assigned logical name

Current design unit is compiled into the Work library
Both Work and STD libraries are always available
Many other libraries usually supplied by VHDL 
simulator vendor

E.g. proprietary libraries and IEEE standard libraries
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Packages: Example



3838

Special Library: Work

The identifier “work” is a special library that maps on to 
the present directory.
All the design units in the present directory are visible to 
all models.
Hence, an explicit declaration of “work” library is not 
required.
However, one needs to specify the “work” when 
accessing declarations and design units in other files.
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Work Library: Example



Processes
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Procedural Modeling USE: 
High level abstraction of behavior

entity traffic_light_controller
generic ( yellow_time : time; 

min_hwygreen : time;
max_hwyred : time );

port ( 
farmroad_trip : in boolean;
farmroad_light : out color;
highway_light : out color   );

end traffic_light_controller;

architecture specification of traffic_light_controller is begin
. . . 



4242

Procedural Modeling USE: 
High level abstraction of behavior

architecture specification of traffic_light_controller is begin
cycle:  process is
begin

highway_light <= green;
farmroad_light <= red;

wait for min_green;
wait  until farmroad_trip;

highway_light <= yellow;
wait for yellow_time;

highway_light <= red;
farmroad_light <= green;

wait until not farmroad_trip for max_hwyred;
farmroad_light <= yellow;

wait for yellow_time;
end process;

end specification;
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Procedural Modeling Use: 
Detailed Modeling of Behavior

Example: Timed Behavior of Primitive Elements
AND_n:  process (x) is   -- x is an array of bit

variable Zvar : bit;

begin
Zvar := ‘1’;
for i in x'range loop  -- for every i in the range of x

if x(i) = '0' then
Zvar := '0' ;
exit ; 

end if;
end loop;
Z <= Zvar after Tprop ;

end process AND_n;
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Process Statement

Is the “wrapper” around a sequential routine to compute 
the behavior desired for the design at a specific moment 
in time.

label: process [ (signal list) ] is 
{ declarations }

begin 
{ sequential statements }
-- (typically ended by a wait statement) 

end process [ label ];
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Process Execution Model

Executes once (at TIME = 0) -- initialization, running till it 
hits a WAIT statement.
Time advances until the wait condition is satisfied, then 
execution resumes. 
Executes in an endless loop, 

interrupted only by WAIT statements;
bottom of the process contains an implicit "go to 
the top.”

TIME DOES NOT ADVANCE within a process; it 
advances during a WAIT statement.
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Process Statement 
- A Concurrent Statement

A process is a kind of concurrent statement.
includes declarations, sequential body, and all

Evaluation of a process is triggered when one of a list of
signals in the wait statement changes value

Note:  Just because a process is sequential does NOT 
mean it is modeling the sequential behavior of a design.

a description of functional behavior
For example:  the AND_n process example is the model of a 
combinational logic element.



library IEEE;
use IEEE.std_logic_1164.all;

entity andcircuit is
port(

in1, in2, in3 : in std_ulogic;
out1 : out std_ulogic
);

end andcircuit;
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Initialization of Objects

Signals, variables, constants can all be set to 
default values:
signal enable : bit := 0;
variable Fval : std_logic := '0'; 
constant Tplh : Time := Tprop + K * load ;

where Tprop, K, load are generics or 
constants, 

Ports can be initialized by
entity xyz port ( a : in bit := '0'; . . . )
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Signal assignment

Signals 
Used to communicate between concurrently 
executing processes. 
Within a process they continue to have the form

sig <= waveform ;

Means that for the signal a sequence of value 
updating events is to be scheduled for the future.
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Variable assignment

Variables: 
Exist within procedural bodies, like processes, 
functions, and procedures. Not visible to others.
Variable assignment statements appear as follows:

var := expression;
Used within the sequential body just as in other 
procedural languages. 

X <= Y; X := Y;
Y <= X; Y := X;
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Misuse of Sequential Signal 
Assignments 

Note a signal does not take on its new value until 
time advances. 
Until the process hits a WAIT (hold, or suspend) 
statement, simulation time does not advance, 
Therefore, the signal will never be updated before 
the WAIT

and may not be updated even after the WAIT is 
complete if the WAIT completed faster than the 
signal update has delay associated with it.
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Signals and Variables

This example highlights the difference between 
signals and variables

ARCHITECTURE test2 OF mux IS 
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

ARCHITECTURE test2 OF mux IS 
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

Assuming a 1 to 0 transition on in_sig, what are 
the resulting values for y in the both cases?
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VHDL Objects
Signals vs Variables

A key difference between variables and signals is 
the assignment delay

ARCHITECTURE sig_ex OF test IS
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

ARCHITECTURE sig_ex OF test IS
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

Time   a  b  c  out_1  out_2

0    0  1  1    1      0
1    1  1  1    1      0

1+d    1  1  1    0      0
1+2d   1  1  1    0      1 
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VHDL Objects
Signals vs Variables (Cont.)

ARCHITECTURE var_ex OF test IS
BEGIN

PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

ARCHITECTURE var_ex OF test IS
BEGIN

PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

Time   a  b  c  out_3  out_4  

0    0  1  1    1      0
1    1  1  1    0      0

1+d    1  1  1    0      1
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Wait Statements

wait_stmt <=
[ label : ] wait [ on signal_name{ , … } ]

[ until boolean_expr ]
[ for time_expr ] ;

wait;
wait on a, b, c;
wait until x = 1;
wait for 100 ns;
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Wait on

process being suspended until an event takes place on any 
one of the signals.
The list of signals is also called a sensitivity list.

half_adder: process is half_adder: process (a, b) is
begin begin

s <= a xor b after 10 ns; s <= a xor b after 10 ns;
c <= a and b after 10 ns; c <= a and b after 10 ns;

end process; wait on a, b;
end process;
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Wait until

wait on s1, s2, s3 until condition;

The condition is evaluated only when an event occurs 
on a signal in the sensitivity list.
The process is resumed when the condition evaluates   
to TRUE.
Hence the process is resumed when

An event occurs in the sensitivity list and
The condition evaluates to TRUE.
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Example Use of Multiple Wait Statements:
CPU and Memory Handshaking

Memory: process  is
begin 

DAV <= '0'; 
wait until Mem_Req = '1'; 
Data <= ROM_DATA(Address) after 50 ns; 
DAV <= '1' after 60 ns; 
wait until Mem_Req = '0'; 

end process;
CPU_Read: process is

begin 
Mem_Req <= '0'; 
wait until ... the need for memory read ; 
Address <= . . . address value . . . 
Mem_Req <= '1' after 10 ns; 
wait until DAV = '1'; 
MD_Reg <= Data; 

end process;
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label: process ( a, b, c, d ) is
where signals a, b, c, d are the sensitivity list 

is equivalent to a single WAIT with a sensitivity list at 
the bottom of the process:

process 
begin 
. . . . . . .
wait on a, b, c, d;

end process; 
Whenever any of the signals in the sensitivity list 
change value, the process will be executed.
Note: Processes with a sensitivity list may not 
contain any wait statements, nor may they call 
procedures with wait statements.
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Configuration & Component 
Instantiation

HALF_ADDER
HA1

HALF_ADDER
HA2

OR
O1

COUT 

SUM

A

B

Cin

C1

S1

C2

XOR
X1

AND
A1

D0

D1
S

C
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Configuration & Component 
Instantiation

entity FULL_ADDER is
….
end FULL_ADDER;

architecture FA_WITH_HA of FULL_ADDER is

component HALF_ADDER
port (HA,HB: in BIT; HS,HC: out BIT);
end component;

component OR2
port (A,B: in BIT; Z: out BIT);
end component;
signal S1, C1, C2: BIT; (contd. on next slide)
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Configuration & Component 
Instantiation

begin
HA1: HALF_ADDER port map (A, B, S1, C1);
HA2: HALF_ADDER port map (S1, Cin, SUM, C2);
O1: OR2 port map (C1, C2, COUT);
end FA_WITH_HA;

- - similar declaration for entity HA and architecture HA_STR
- - HA_STR has components XOR2 and AND2
(contd. also on the next slide : ) )
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Configuration & Component 
Instantiation

library ECL;
configuration FA_HA_CON of FULL_ADDER is

for FA_WITH_HA - - Top-level configuration
for HA1,HA2: HALF_ADDER

use entity WORK.HA(HA_STR)
port map (D0=> HA,  D1, S, C);

for HA_STR - - Nested configuration
for all: XOR2

use entity WORK.XOR(XOR2);
end for;
for A1: AND2

use configuration ECL.AND2CON;
end for;

end for;
end for;



Sequential VHDL Statements
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Sequential Statements

These statements can appear inside a process description 
• variable assignments
• if-then-else
• case
• loop

• infinite loop
• while loop
• for loop

• assertion and report
• signal assignments
• function and procedure calls
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If statement: Examples
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Case statement: Example
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Null statement: Example

To take care of conditions when no action is 
needed
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Loop statements: Infinite Loop

Repeats a sequence of statements indefinitely.
• avoid this situation in any high level programming 
language.
• In digital systems this is useful as hardware 
devices repeatedly perform the same operation as 
long as power supply is on.

• Typical structure: Loop statement in process body 
with a wait statement.
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Infinite Loop: Example
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While Loop: Example
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For loop
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For Loop: Rules

Loop parameter’s type is the base type of the discrete
range.
Loop parameter is a constant inside the loop body.
It can be used in an expression but not written to.
Loop parameter is not required to be explicitly 
declaration.
Loop parameter’s scope is defined by the loop body.
Consequently, it hides any variable of the same name
inside the loop body.
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For Loop: Example



7575

A Typical use of CASE: FSM

A part of a process used to model the next state computation 
for a finite state machine. 

case machine_state is
when sv0 => machine_state <= sv1 
when sv1 => machine_state <= sv2; 
when sv2 => machine_state <= sv3; 
when sv3 => machine_state <= sv0; 

end case;
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Typical use of CASE: Multiplexer

Model the output value generation for a finite state 
machine.

case Current_state is
when sv0 | sv1 | sv2 => Z_out <= '0'; 
when sv3 => Z_out <= '1'; 

end case; 
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While Loops

Form:
while condition loop

sequential statements 
end loop;

Example:
while bus_req = '1' loop 

wait until ad_valid_a = '1'; 
bus_data <= data_src; 
msyn <= '1' after 50 ns; 

wait until ssyn = '1'; 
msyn <= '0'; 

end loop; 
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Next 

branches back to the beginning of the loop (like a Fortran 
CONTINUE statement).

loop 
sequential statements

next when condition
sequential statements

end loop;
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Exit 

branches completely out of the loop to the first 
statement following the end loop;

loop 
sequential statements

exit when condition
sequential statements

end loop;
Example: where x_in is an array of inputs

for i := 2 to x_in'length loop
new_val := new_val and x_in(i) ;
exit when  new_val = '0';

end loop;



Concurrent VHDL
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Need for Concurrent VHDL
Intuitively closer to actual hardware than procedural 
descriptions

More compact representation than procedural 
descriptions

Provides natural way to represent the natural 
concurrency arising in hardware
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Concurrent statements

Signal assignment statements
(unconditional)
Conditional  (when-else)
Selected  (with-select)

Process  (interface to procedural descriptions)
Component instantiation (interface to structural 
descriptions)
Block statement
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Concurrent VHDL Statements

Execution whenever an input (RHS) changes 
value.
Execution order totally independent of order of 
appearance in source code.

Example:  Exchange of signal values
X <= Y;
Y <= X;
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Simulation Cycle Revisited
Sequential vs Concurrent Statements

VHDL is inherently a concurrent language
All VHDL processes execute concurrently
Concurrent signal assignment statements are actually 
one-line processes

VHDL statements execute sequentially within a 
process

Concurrent processes with sequential execution 
within a process offers maximum flexibility

Supports various levels of abstraction

Supports modeling of concurrent and sequential 
events as observed in real systems
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Simple Example

entity  XOR  
port (a,b:in bit;  

z : out bit );
end;

architecture  nand_gates of  
XOR  is

signal s0, s1, s2:
bit;

begin
s0 <= a nand b;
s1 <= a nand s0;
s2 <= b nand s0;
z <=  s1 nand s2;

end  nand_gates;
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Concurrent statements - more

In the example
begin

s0 <= a nand b;
s1 <= a nand s0;
s2 <= b nand s0;
z <=  s1 nand s2;

end  nand_gates;

placing the first statement (s0 <= …) after the last statement has 
absolutely no effect on execution or the result.  The s1 <= …  and 
s2 <= … statements would have used the old s0 value anyhow.
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Conditional signal assignment 
(When-else statements)

When-else statements imply priority encoding.
S <=
W0 after delay0 when c0 else
W1 after delay1 when c1 else
W2 after delay2 when c2 else
W3 after delay3 when c3 else 
Wx after delayx ;

Note: Priority encoding is implied since more than one condition might be 
true at the same time. The condition appearing first in the statement has 
the priority.
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Circuit implementation
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Equivalent process

PROCESS (W0,  W1, . . .,  WX, C0, C1, . . . );
BEGIN

IF c0 THEN
S <=   W0 after delay0 

ELSIF c1 THEN
S <= W1 after delay1 

ELSIF c2 THEN
S <= W2 after delay2 

ELSE S <= Wx after delayx ;
END PROCESS;
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Simple when - else

S <= Wa after Ta when c0  
else 

Wb after Tb;

No ELSE implies Memory

S <= X after t WHEN C;

UNAFFECTED has the same 
effect as a null clause

S <= X after t WHEN C
ELSE 

UNAFFECTED;
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No ELSE implies Memory

Memory is implied where no else clause is provided. 
In the simulation model, no event is implied when the 
condition is false, so the signal retains its old value. I.e., 
it has memory.
Examples: 

Q <= D when rising_edge (clock);
B <= A when phase_a = '1' ;
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Simple enabling

-- for simple AND enabling

B <= A when en else '0’; 
B <= A when en else (others =>'0');

-- for tri-state driver output
B <= A when en else 'Z';
B <= A when en else (others => 'Z'); 
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Selected Signal Assignment

Form

WITH selector SELECT
signame <= W0 after delay0 when c0,

W1 after delay1 when c1,
W2 after delay2 when c2, 
Wx after delayx when OTHERS;
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Example: Branch Condition Selector

Typically the cond field of the instruction specifies which 
of several logical expressions of status flipflops is to be 
used.
With IR.cond select

branch  <= '1'      when uncond,
Z       when zero,
S xor V when less,
(S xor V) and Z   when lteq,
'0'    when never ,
not Z   when nzero ,
not (S xor V)     when gteq,
not (S xor V) and Z when grtr;



Circuit
example
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Selected Signal Assignment

All values must be included 
the range of values for the selector should be restricted with 
some care.

Otherwise, a declaration like  “signal csel : integer;”
calls for a 2**32-1 input multiplexer which we would not want to 
build!  Even where address decoding is required the range 
should be 0 to 255 or so, the address partitioned to correspond 
to the decoding method being used.

Since no more than one value can be selected at a time, 
no priority encoding is involved.
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OTHERS Clause

handle 'X' -- synthesis standard
unused inputs 
optimization possibilities

Forces explicit consideration of what is to be done if 
unexpected input values occur.
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Example:  An ALU

LIBRARY ieee; USE ieee.std_logic_1164.all; 
USE work.ALU_funcs.add_w_carry;
ENTITY ALU is

-- IO ports
port  (dout: out std_logic_vector; -- Data Out(latched) 

a, b: in std_logic_vector; -- A and B leg inputs
cin: in std_logic;     -- Carry in, 1 bit
cout: out std_logic; -- Carry Out, 1 bit,unlatched  
func_sel:   in std_logic_vector (0 to 1);

-- Function select (2 bits)  00 => ADD 
-- 10 => AND 01=> OR 11=> XOR  

clk:    in std_logic );-- Result register clock 
end ALU;
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Example continued

ARCHITECTURE concurrent of ALU is
constant XOUT:  std_logic_vector(a’range)

:= (others=>'X')

--ALU output: carry concatentated to left end makes an extra bit
signal ALUout:  std_logic_vector(xt_reg’range);     

-- Opcode interpretation
constant OPADD: std_logic_vector := "00";  
constant OPOR:  std_logic_vector := "01";
constant OPAND: std_logic_vector := "10";
constant OPXOR: std_logic_vector := "11";

BEGIN
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Example continued

BEGIN
with func_sel select
(cout, ALUout) <= '0' & (a OR b)       when OPOR,

'0' & (a AND b)      when OPAND,
'0' & (a XOR b)      when OPXOR,
add_w_carry(a, b, cin) when OPADD,
XOUT                 when OTHERS;

-- where add_w_carry returns a value with its width  
-- one greater than the size of its inputs,

dout <= ALUout when rising_edge(clk);

END concurrent;
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Note use of OTHERS clause

Only intended values are “00”, “01”, “10”, “11”.
However!!!!  The inputs are type STD_LOGIC_VECTOR 
(0 to 1).  Other legal values that must be accounted for 
include:  0X, X0, X1,1X, XX, --
In fact, since STD_LOGIC is a 9-valued system, there 
are 81-4 “other” selector values that must be handled.
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Procedures

Procedure: Declared and then called
Example:
procedure average_samples is

variable total: real := 0.0;
--------
--------

end procedure average_samples;

This can be called inside a process as:
average_samples;
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Functions

Syntax is very similar to that of the procedures.
Unlike procedure, function calculates and returns a result that can 
be used in an expression.
Parameters of the function must be of ‘in’ mode and may not be of 
class variable.
Example:

function bv_add (bv1, bv2 : in bit_vector) return bit_vector is
begin

---------------
end function bv_add;

signal source1, source2, sum: bit_vector (0 to 31);
adder: sum <= bv_add(source1, source2) after T_delay_adder;
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Assertion & Report statements

A functionally correct model may need to satisfy certain 
conditions.
Some of these can specified by “assert” statements.
Report Statement are useful for providing extra 
information from specific assertion statements (as there 
can be several assertion statements).
Assert and report statements are particularly useful for 
de-bugging.
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Assertion & Report: Example
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Block Statement

Three major purposes:
Disable signal drivers by using guards
Limit scope of declarations (including signals)
Represent a portion of design

B1: block (STROBE=‘1’)
begin

Z <= guarded (not A);
end block B1;



Signal Assignment, Delay and 
Attributes
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Event-driven Simulation

Event: occurrence of an signal change (transaction)
When an event occurs, need to handle it (execution) 

to execute any concurrent statements that are 
sensitive to the change
to activate a waiting process if the condition becomes 
true

The execution triggered by an event may generate 
future events

sig_a <= a_in after 5 ns;
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Event-driven Simulation

Initialization

execute statements 
activated by the event(s)

find the next event(s)

generate future eventsexit

No future event
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Event-driven Simulation

Events must be handled in sequence
current_time advances when the execution all current 
events is done and the next event is triggered
event queue – an internal data structure to manage 
the event sequence

System state
represented by the states of all objects 
thus, need a data structure to indicate that 

the current state (value) of “sig_a” is “0” and
it will be changed to “1” at current_time+5ns
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Waveforms in Signal Assignment

Form
Sig_identifier <= val_expr1 after delay1

{ , val_expr_ after delay_  } ;

Delay values must appear in ascending order
List of updating events (I.e., value / time) is called a 
Driver of the signal.
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Simulation of VHDL

All components work concurrently
If an event triggers 2 statements and the result of 
the 1st one is also the input of the 2nd one

Sequential statements allow immediate updates
for functional behavior
no notion of time

Concurrent statement – execute and update stages
for circuit operation
only signal assignment and process statements



113113

Simulation of signal assignment 
statements

sig_a <= a_input; -- statement (1)
add_a <= sig_a xor c_in xor a_input; -- statement (2)

If a_input changes at current_time 
execution stage -- sig_a and add_a will be 
computed in the statements (1) and (2) 
update stage -- the new values will be written to the 
objects sig_a and add_a, and new events can be 
generated due to the changes
no change in current_time
It seems there is a delay between execution and 
update (delta delay)
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Examples of a waveform

OS_Out <= OS_in, ‘0’ after Tperiod;
Test sequence for an RS latch:

Set_pattern <= ‘1’, 
‘0’ after 20 ns,  
‘1’ after 80 ns; 

Clear_pattern <= ‘0’, 
‘1’ after 40 ns, 
‘0’ after 60 ns, 
‘1’ after 80 ns; 

time S C

0 1 0
20ns 0 0
40ns 0 1
60ns 0 0
80ns 1 1
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Concurrent VHDL Assignments

NQ <= NZ after tprop;
NZ <= Z  nor SET after tprop;
Q <= Z after tprop;
Z <= NZ nor CLEAR after 

tprop;

Order of listing these 
implies nothing about 
execution order!
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Inertial Delay

Inputs:
a <= ‘0’, ‘1’ after 4 ns;
b <= ‘1’, ‘0’ after 5 ns;
y <= a xor b after 4 ns;

Output Y is initially ‘1’ and 
will be scheduled:

‘0’ after 8 ns
‘1’ after 9 ns

• 1st event is 
removed when 2nd 
is created and 
before it is done.

a

b

Y
4  5          8  9
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Transport Delay

Inputs:  -- again
a <= ‘0’, ‘1’ after 4 ns;
b <= ‘1’, ‘0’ after 5 ns;
y <= a xor b after 4 ns;

Output Y is initially ‘1’ and 
will be scheduled:

‘0’ after 8 ns
‘1’ after 9ns

1st event is NOT 
removed when 2nd is 
created.

a

b

Y
4  5          8  9
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Signal Attributes

S’delayed(t)
a waveform all of its 
own, delayed by t

S’stable(t)
a waveform all of its 
own, type boolean

S’event
a function true only 
when S changes
value

S’last_event
time since last value 
change
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Attributes

Attributes provide information about certain items in 
VHDL

E.g. types, subtypes, procedures, functions, signals, 
variables
General form of attribute use :

VHDL has several predefined, e.g :
X'EVENT  -- TRUE when there is an event on signal X
X'LAST_VALUE -- returns the previous value of signal 
X
Y'HIGH -- returns the highest value in the range of Y

name'attribute_identifier  -- read as "tick" name'attribute_identifier  -- read as "tick" 
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Operators

chained to form complex expressions

Defined precedence levels in decreasing order :
Miscellaneous operators -- **, abs, not
Multiplication operators -- *, /, mod, rem
Sign operator -- +, -
Addition operators -- +, -, &
Shift operators -- sll, srl, sla, sra, rol, ror
Relational operators -- =, /=, <, <=, >, >=
Logical operators -- AND, OR, NAND, NOR, XOR, 
XNOR

res <= a AND NOT(B) OR NOT(a) AND b;res <= a AND NOT(B) OR NOT(a) AND b;



Array, Records, and Aggregated 
Constants
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Composite structures

Arrays
group elements of same types

Records
group elements of different types

Access
like pointers in “C”, may be useful in file I/O and 
creation of test environments.
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Declaring Arrays

FORM
TYPE array_name IS ARRAY (discrete_range {,…}) 

OF element_subtype_indication;

Examples
TYPE carrier IS ARRAY (15 downto 0) of bit;
TYPE regs IS ARRAY ( 0 to 31) of byte;

(where we previously defined type byte by
type byte is 0 to 255;)
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USE of Discrete Range

Discrete range is
index_value TO index_value  
index_value DOWNTO index_value
using a previously defined type

type_name RANGE left_value TO right_value OR
type_name RANGE right_value DOWNTO left_value
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Objects or Types

Can declare objects to be arrays directly
SIGNAL AX : ARRAY ( 31 DOWNTO 0 ) of BIT;

HOWEVER!  Almost always MULTIPLE arrays of the 
same dimensions and with the same element types 
are needed, so usually 

declare array type 
declare objects

TYPE word IS ARRAY ( 31 DOWNTO 0 ) of BIT;
SIGNAL AX, BX, CX, DX : word;
VARIABLE temp : word;
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Array Attributes

left   -- left index defined in range
right  -- right index defined in range
low  -- smallest index value defined in range
high  -- largest index value defined in range
range -- left index, direction, right index
reverserange -- right index, opposite direction, left 
index
length  -- number of elements in array
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Reference to Elements of an Array

Use parenthesis, not brackets for index
Example:
Put a new example here

Example
FOR j in AX’range LOOP

IF j <> AX’right THEN AX ( j) <= AX(j-1);
ELSE AX(j) <= new_right_bit;

END LOOP;
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Unconstrained Arrays

In a package,
declare element types
declare array types

At the time the array type is declared, the actual size 
of the array objects is unknown
Necessary because OPERATIONs on the array need 
to be written generally

operate the objects regardless of the size they may 
have.
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How to Declare an Unconstrained Array

FORM
TYPE arrayname IS ARRAY ( indextype RANGE <> ) OF element_type;

Examples:
TYPE bit_vector IS ARRAY ( NATURAL RANGE <>) OF BIT;
TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF 

STD_LOGIC;
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Bit_Vectors and Strings

Predefined for use in STD.STANDARD
Both are unconstrained array declarations
Examples of use:

constant Error_Msg : string := “System is Unstable”;  -- string is 
-- an array of characters

constant zeroes : bit_vector := B”0000_0000”;
constant empty: bit_vector := O”052”;
constant restart:  bit_vector := X”0FC”;

B, O, X indicate binary, octal, hex representation of bits
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Std_Logic_Vectors

Unconstrained array defined for us in
Library IEEE; 
USE Package IEEE.STD_LOGIC_1164.all;

Example of use:
entity alu (  left, right : in std_logic_vector;

result : out std_logic_vector;
cy_in : in std_logic;
cy_out : out std_logic;
control : in std_logic_vector (0 to 3) );
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Records

Declaration 
TYPE record_type IS 

RECORD
field1 : type;
field2 : type;

END RECORD

Should be used to group elements of different types 
which logically belong together.
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Records

Definition --
TYPE time_stamp IS RECORD

second : integer range 0 to 59;
minute : integer range 0 to 59;
hour : integer range 0 to 23;

END RECORD;

VARIABLE current_time : time_stamp;
current_time.second := 0;

no variant field allowed in VHDL
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Example of Record

Type declarations
TYPE Operations is (move, add, sub, adc, sbb, bra, call, inc, dec, 

push, pop, shf, rot flag);
TYPE Address_mode is (reg, direct, indirect, displ, indexed); 
TYPE Xreg is (ax, bx, cx, dx, sp, bp, si, di);

A type describing the structure of instructions:

TYPE Instruction is RECORD
opcode : Operations;
src_mode: Address_mode;
src_reg, dst_reg: Xreg;
dst_mode: Address_mode;
END RECORD;
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References to records

Just as in other languages, name the object 
followed by period and the field
FORM:  objectname.fieldname

Example
SIGNAL IR : Instruction;
. . .
case IR.opcode IS -- references opcode field

where mov => . . .
where add => . . .
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Aggregated constants

The way to define constant values for composite 
data objects like arrays and records.

FORM
( index_or_field_name(s) => value,

repeated as many times as needed. . . );

index_or_field_name(s) can be a range of values for 
array indexing, several enumerated values separated 
by |, or the field names for records.
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Examples of Aggregated Constants

Assume
type clock_level is (low, rising, high, falling);
type ctable is array (clock_level) of bit;

constant conversion_table : ctable := (‘0’,’1’,’1’,’0’);
constant conversion_table : ctable := (“0110”);
constant conversion_table : ctable := 

(low=>’0’,rising=>’1’,high=>’1’,falling=>’0’);
constant conversion_table : ctable := (low|falling => ‘0’, 

high|rising => ‘1’);

All have the same meaning
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Referencing into tables

Suppose we declare
Variable clk_tran : clock_level;
Signal bit_action : bit;

Then we can write the following statement:

bit_action <= ctable ( clk_tran );

Note that the index values are NOT integers, but that’s OK!
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Aggregated Constants

Strings and derived types on character can be 
placed in “  . . .”

Examples
Constant X : bit_vector := “0010”;
Constant Y : std_logic_vector := “001X”;
Constant Z : string := “ABCD”;
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More examples of aggregated 
constants

Record example
Constant CLEARAX : Instruction :=

(opcode => xor,
src_reg => ax,
dst_reg => ax,
src_mode=> reg,
dst_mode => reg);

Array example
Constant ZZs : cpureg := (cpureg’range => ‘Z’);
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Multidimensional Arrays

TYPE array_name IS ARRAY(index_type1, 
index_type2, . . .) OF element_type;

Most useful in creating lookup tables for functions
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Creating tables for lookup 
functions - example

TYPE stdlogic_table IS ARRAY(std_ulogic,std_ulogic) OF std_ulogic;
-- truth table for "and" function

CONSTANT and_table : stdlogic_table := (
-- ----------------------------------------------------
-- |  U    X    0    1    Z    W    L    H    - |   |  
-- ----------------------------------------------------

( 'U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U' ),  -- | U |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ),  -- | X |
( '0', '0', '0', '0', '0', '0', '0', '0', '0' ),  -- | 0 |
( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ),  -- | 1 |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ),  -- | Z |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ),  -- | W |
( '0', '0', '0', '0', '0', '0', '0', '0', '0' ),  -- | L |
( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ),  -- | H |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' )); -- | - |
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Another table lookup example

Suppose inputs P and Q are std_ulogic, then the 
quickest way to get the new value for AND is a table 
lookup, handled by the AND operation in the 
Package STD_LOGIC_1164 Body.

Result := and_table (P,Q);

Note:  the values of P and Q are enumerated, 
not indexed.
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Use of OTHERS keyword

Filling in all the default values in Arrays
Extremely useful where unconstrained arrays need to 
be initialized.
FORM:  

use keyword OTHERS as the index_name

Constant S_ONE : std_logic_vector := (S_ONE’right
=> ‘1’, OTHERS => ‘0’);
Constant S_ZZZ : std_logic_vector := (OTHERS => 
‘Z’);
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Design Processing

Analysis
Elaboration
Simulation
Synthesis
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Design Processing: Analysis

Check for syntax and semantic errors
Analyze each design unit separately
– entity declaration
– architecture body
– …
– best if each design unit is in a separate file
Analyzed design units are placed in a library
– in an implementation dependent internal form
– current library is called work
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Design Processing: Elaboration

“Flattening” the design hierarchy
– create ports
– create signals and processes within architecture body
– for each component instance, copy instantiated entity   

and architecture body 
-- repeat recursively
Final result of elaboration
– flat collection of signal nets and processes
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Design Processing: Elaboration 
Example
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Design Processing: Elaboration 
Example
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Design Processing: Simulation

Execution of the processes in the elaborated model
• Discrete event simulation

– time advances in discrete steps
– when signal values change—events

• A processes is sensitive to events on input signals
– specified in wait statements
– resumes and schedules new values on output 

signals
• schedules transactions
• event on a signal if new value different from 

old value
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Design Processing: Simulation 
Algorithm

Initialization phase
– each signal is given its initial value
– simulation time set to 0 
– for each process

• activate
• execute until a wait statement, then suspend

– execution usually involves scheduling transactions on 
signals for later times
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Design Processing: Simulation 
Algorithm

• Simulation cycle
– advance simulation time to time of next transaction
– for each transaction at this time

• update signal value
– event if new value is different from old value

– for each process sensitive to any of these events, or
whose “wait for …” time-out has expired

• resume
• execute until a wait statement, then suspend

• Simulation finishes when there are no further scheduled 
transactions
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Design Processing: Synthesis

Translates register-transfer-level (RTL) design into gate-
level netlist
• Restrictions on coding style for RTL model
• Tool dependent: A subset of RTL is synthesizable 
depending on the tool
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