
CS390: Microprocessors and Interfaces Lab

18 January, 2005

Adapted from lectures delivered at
ASU, UMASS and NEU

22

What is VHDL

VHSIC Hardware Description Language

a large and complicated programming language with
many constructs and semantics meanings

to support the design and development of circuits of
large scale (circuit complexity and project
management)

a powerful modeling tool

33

Background

1960's - 1980's
over 200 languages, either proprietary or academic

1983 VHSIC Program initiates definition of VHDL

1987 VHDL Standard (IEEE 1076) approved

1990 Verilog dominates the marketplace

44

Background, continued

1992 IEEE 1164 (abstract data types for different
signal characteristics, i.e. 3, 4, 9-valued logic
standard)

1993 VHDL re-balloted
minor changes make it more user-friendly.

1994 Widespread acceptance of VHDL.

55

Other HDLs

Verilog -- very popular, has been used for a long time
C like syntax
wide support of simulation libraries of semiconductor
devices
lack of higher-level management features -- such as
VHDL’s configuration, package, and library

PLD-oriented HDLs (ABEL, PALASM, etc.)
simple and low cost
specialized for PLD device synthesis

66

VHDL Design Example

Problem: Design a single bit half adder with carry
and enable

Specifications
Inputs and outputs are each one bit
When enable is high, result gets x plus y
When enable is high, carry gets any carry of x plus y
Outputs are zero when enable input is low

x
y

enable

carry

result
Half Adder

77

VHDL Design Example
Entity Declaration

As a first step, the entity declaration describes
the interface of the component

input and output ports are declared

x
y

enable

carry

result
Half

Adder

ENTITY half_adder IS

PORT(x, y, enable: IN BIT;
carry, result: OUT BIT);

END half_adder;

X

Y

en

88

VHDL Design Example
Behavioral Specification

A high level description can be used to describe
the function of the adder

ARCHITECTURE half_adder_a OF half_adder IS
BEGIN

PROCESS (x, y, enable)
BEGIN

IF enable = ‘1’ THEN
result <= x XOR y;
carry <= x AND y;

ELSE
carry <= ‘0’;
result <= ‘0’;

END IF;
END PROCESS;

END half_adder_a;

The model can then be simulated to verify correct
functionality of the component

99

VHDL Design Example
Data Flow Specification

A second method is to use logic equations to
develop a data flow description

ARCHITECTURE half_adder_b OF half_adder
IS

BEGIN
carry <= enable AND (x AND y);

result <= enable AND (x XOR y);
END half_adder_b;

Again, the model can be simulated at this level to
confirm the logic equations

1010

VHDL Design Example
Structural Specification

As a third method, a structural description can be
created from predescribed components

x
y

enable
carry

result

These gates can be pulled from a library of parts

1111

VHDL Design Example
Structural Specification (Cont.)

ARCHITECTURE half_adder_c OF half_adder IS

COMPONENT and2
PORT (in0, in1 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

COMPONENT and3
PORT (in0, in1, in2 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

COMPONENT xor2
PORT (in0, in1 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

FOR ALL : and2 USE ENTITY gate_lib.and2_Nty(and2_a);
FOR ALL : and3 USE ENTITY gate_lib.and3_Nty(and3_a);
FOR ALL : xor2 USE ENTITY gate_lib.xor2_Nty(xor2_a);

-- description is continued on next slide

1212

VHDL Design Example
Structural Specification (cont.)

-- continuing half_adder_c description

SIGNAL xor_res : BIT; -- internal signal
-- Note that other signals are already declared in entity

BEGIN

A0 : and2 PORT MAP (enable, xor_res, result);
A1 : and3 PORT MAP (x, y, enable, carry);
X0 : xor2 PORT MAP (x, y, xor_res);

END half_adder_c;

1313

Language Syntax

BNF format for syntax rule
“<=“ ---- is defined to be

variable_assignment <= target;
[clause] ---- optional
{ clause } ---- optional and can be repeated
| ---- alternatives

mode <= in | out | inout
constant_declaration <=

constant identifier { , . . . } : subtype_indication [:= expression] ;
constant number_of_byte : integer := 4;

1414

Example

maximum: if a > b then
if a > c then

result := a ;
else

result := c;
end if;

elsif b > c then
result := b;

else
result := c;

end if ;

if_statement <=
[if_label :]
if boolean_expression then

{ sequential_statement }
{ elsif boolean_expression

then
{ sequential_statement }

[else
{ sequential_statement }]

end if [if_label] ;

1515

Primitive Objects in VHDL

Object -- a named item that has a value of a specified type
4 classes of objects:

constants, variables, signals, and files
Types –

scalar type: individual values that are ordered
discrete, floating-point, and physical

composite type: array and record
file type
access type

VHDL is a strongly typed language

1616

Primitive Objects in VHDL

Variable -- often no direct correspondence in hardware. Holds
values that change over time.

Example:variable i_slice: integer range 0 to Reg_size-1;
assignment (:=) – immediately overwrites the existing value

Signal -- analogous to wire or device output. Holds values
which may change over time.

used to establish connectivity and pass values between
concurrently active design elements. A value for a signal is
computed and added to a waveform for future application.
Examples signal preset, clear: bit;

signal CS1: bit;

1717

Primitive Data Types

Integer -- to count in discrete steps
type integer is range -(231-1) to 231-1 (at least)

Bit -- to represent the most commonly occurring model of
discrete digital circuit value

type bit is ('0','1');
Boolean -- to represent decisions, outcomes of logical
expression evaluation, especially used in procedural control
flow

type boolean is (false, true);
Enumeration types -- values are in a list of identifiers |
character_literal

type octal_digital is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’);

1818

Primitive Data Types

Character -- to create models which work with textual data and
communication / control symbols to provide textual
information to designer-users through design tool windows to
the model

type character is the set of ASCII symbols
Reals to represent analog, continuously variable, measurable
values in design space. (at least –1.0E+38 to 1.0E+38 and with
6 decimal digits of precision)

The predefined package standard (stored in the library std)

Type declaration
type byte_integer is integer range -128 to 127;

1919

STANDARD.VHD

-- This is Package STANDARD as defined in the VHDL 1992 Language
Reference Manual.

package standard is
type boolean is (false,true);
type bit is ('0', '1');
type character is (

nul, soh, stx, etx, eot, …..
'@', 'A', 'B', 'C', 'D', …..);

type severity_level is (note, warning, error, failure);
type integer is range -2147483647 to 2147483647;
type real is range -1.0E308 to 1.0E308;
type time is range -2147483647 to 2147483647

units
fs;
ps = 1000 fs;
…
hr = 60 min;

end units;

2020

STANDARD.VHD (cont’d)

subtype delay_length is time range 0 fs to time'high;
impure function now return delay_length;
subtype natural is integer range 0 to integer'high;
subtype positive is integer range 1 to integer'high;
type string is array (positive range <>) of character;
type bit_vector is array (natural range <>) of bit;
type file_open_kind is (

read_mode,
write_mode,
append_mode);

type file_open_status is (
open_ok,
status_error,
name_error,
mode_error);

attribute foreign : string;
end standard;

types-+-scalar----+-discrete-------+-integer-------+-integer
| | | +-natural
| | | +-positive
| | |
| | +-enumeration---+-boolean
| | +-bit
| | +-character
| | +-file_open_kind
| | +-file_open_status
| | +-severity_level
| |
| +-floating point-+-----------------real
| |
| +-physical-------+-----------------delay_length
| +-----------------time
|
+-composite-+-array----------+-constrained-
| | |
| | +-unconstrained-+-bit_vector
| | +-string
| |
| +-record-
|
+-access-
|
+-file-

STANDARD.VHD (cont’d)

2222

Generics

Pass information from its environment into the
design unit which is not time-varying

Very useful for creating and using generalized
designs.

2323

Generics: Example

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;

ENTITY Generic_Mux IS
GENERIC (n: INTEGER);
PORT (Y: OUT std_logic_vector(n-1 downto 0);

a: IN std_logic_vector(n-1 downto 0);
b: IN std_logic_vector(n-1 downto 0);
S: IN std_logic

);
END ENTITY;

0

1

a

b

S

Y
n

n
n

2424

Entities and Architectures

Entities
are Design Bodies
provide the Interface
description

Architectures
are concurrent
may be behavioral
may be structural

Entity

Architecture
A

Architecture
B

Architecture
C

Architecture
D

2525

Entities and Architecture

Entity
External view: Pin-out description, Interface
description, I-O port definition etc

Architecture
Internal view

Structural description: Gates, wires etc.
Behavioral description: functions, procedures, RTL
description

ENTITY mux

ARCHITECTURE

4

2

Din

Dout

sel

2626

Ports

Pass information through the interface which is
time-varying.

Are signal objects
connected together by signals
used to pass values between concurrently active
units.

2727

Interface Modes

Represent direction of value flow
In entities, components, and blocks the
modes may be:

IN within the design unit (both entity and body) the value
may be read, but not written.

OUT within the design unit (both entity and body) the value
may be written, but not read.

INOUT within the design unit (both entity and body) the value
may be both read and written.

2828

Format of an Architecture

architecture identifier of entity_identifier is
-- local declarations, typically signals
begin
-- concurrent statements
end identifier ;

2929

Simple Example

entity XOR
port (a,b:in bit;

z : out bit);
end;

architecture nand_gates of
XOR is

signal s0, s1, s2:
bit;

begin
s0 <= a nand b;
s1 <= a nand s0;
s2 <= b nand s0;
z <= s1 nand s2;

end nand_gates;

3030

Hierarchical Design Strategies

Bottom Up Strategy
create low level and auxiliary models first, entity and
architecture
once low level entities are present, they can be used
as components in the next higher level architectural
body.

Top Down Strategy
create highest level entity and architecture first,
creating only the interface definitions (entity
declarations) for lower level architectures

3131

Packages

An important way of organizing the data.
A collection of related declaration grouped to serve a
common purpose.
The external view of a package is specified in ‘package
declaration’.
Its implementation is provided in the ‘package body’.
The packages can be shared among models.
Several predefined packages exist, such as IEEE
standard packages.

3232

Packages

Packages consist of two parts
Package declaration -- contains declarations of
objects defined in the package
Package body -- contains necessary definitions
for certain objects in package declaration

e.g. subprogram descriptions
Examples of VHDL items included in packages :

Basic declarations
Types, subtypes
Constants
Subprograms
Use clause

Signal declarations
Attribute declarations
Component declarations

3333

Packages
Declaration

An example of a package declaration :

Note some items only require declaration while
others need further detail provided in subsequent
package body

for type and subtype definitions, declaration is
sufficient
subprograms require declarations and descriptions

PACKAGE my_stuff IS
TYPE binary IS (ON, OFF);
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

PACKAGE my_stuff IS
TYPE binary IS (ON, OFF);
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

3434

Packages
Package Body

The package body includes the necessary
functional descriptions needed for objects
declared in the package declaration

e.g. subprogram descriptions, assignments to
constants

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;

3535

Packages
Use Clause

Packages must be made visible before their
contents can be used

The USE clause makes packages visible to entities,
architectures, and other packages

-- use only the binary and add_bits3 declarations
USE my_stuff.binary, my_stuff.add_bits3;

... ENTITY declaration...

... ARCHITECTURE declaration ...

-- use all of the declarations in package my_stuff
USE my_stuff.ALL;

... ENTITY declaration...

... ARCHITECTURE declaration ...

3636

Libraries

Analogous to directories of files
VHDL libraries contain analyzed (i.e. compiled) VHDL
entities, architectures, and packages

Facilitate administration of configuration and
revision control

E.g. libraries of previous designs
Libraries accessed via an assigned logical name

Current design unit is compiled into the Work library
Both Work and STD libraries are always available
Many other libraries usually supplied by VHDL
simulator vendor

E.g. proprietary libraries and IEEE standard libraries

3737

Packages: Example

3838

Special Library: Work

The identifier “work” is a special library that maps on to
the present directory.
All the design units in the present directory are visible to
all models.
Hence, an explicit declaration of “work” library is not
required.
However, one needs to specify the “work” when
accessing declarations and design units in other files.

3939

Work Library: Example

Processes

4141

Procedural Modeling USE:
High level abstraction of behavior

entity traffic_light_controller
generic (yellow_time : time;

min_hwygreen : time;
max_hwyred : time);

port (
farmroad_trip : in boolean;
farmroad_light : out color;
highway_light : out color);

end traffic_light_controller;

architecture specification of traffic_light_controller is begin
. . .

4242

Procedural Modeling USE:
High level abstraction of behavior

architecture specification of traffic_light_controller is begin
cycle: process is
begin

highway_light <= green;
farmroad_light <= red;

wait for min_green;
wait until farmroad_trip;

highway_light <= yellow;
wait for yellow_time;

highway_light <= red;
farmroad_light <= green;

wait until not farmroad_trip for max_hwyred;
farmroad_light <= yellow;

wait for yellow_time;
end process;

end specification;

4343

Procedural Modeling Use:
Detailed Modeling of Behavior

Example: Timed Behavior of Primitive Elements
AND_n: process (x) is -- x is an array of bit

variable Zvar : bit;

begin
Zvar := ‘1’;
for i in x'range loop -- for every i in the range of x

if x(i) = '0' then
Zvar := '0' ;
exit ;

end if;
end loop;
Z <= Zvar after Tprop ;

end process AND_n;

4444

Process Statement

Is the “wrapper” around a sequential routine to compute
the behavior desired for the design at a specific moment
in time.

label: process [(signal list)] is
{ declarations }

begin
{ sequential statements }
-- (typically ended by a wait statement)

end process [label];

4545

Process Execution Model

Executes once (at TIME = 0) -- initialization, running till it
hits a WAIT statement.
Time advances until the wait condition is satisfied, then
execution resumes.
Executes in an endless loop,

interrupted only by WAIT statements;
bottom of the process contains an implicit "go to
the top.”

TIME DOES NOT ADVANCE within a process; it
advances during a WAIT statement.

4646

Process Statement
- A Concurrent Statement

A process is a kind of concurrent statement.
includes declarations, sequential body, and all

Evaluation of a process is triggered when one of a list of
signals in the wait statement changes value

Note: Just because a process is sequential does NOT
mean it is modeling the sequential behavior of a design.

a description of functional behavior
For example: the AND_n process example is the model of a
combinational logic element.

library IEEE;
use IEEE.std_logic_1164.all;

entity andcircuit is
port(

in1, in2, in3 : in std_ulogic;
out1 : out std_ulogic
);

end andcircuit;

4848

Initialization of Objects

Signals, variables, constants can all be set to
default values:
signal enable : bit := 0;
variable Fval : std_logic := '0';
constant Tplh : Time := Tprop + K * load ;

where Tprop, K, load are generics or
constants,

Ports can be initialized by
entity xyz port (a : in bit := '0'; . . .)

4949

Signal assignment

Signals
Used to communicate between concurrently
executing processes.
Within a process they continue to have the form

sig <= waveform ;

Means that for the signal a sequence of value
updating events is to be scheduled for the future.

5050

Variable assignment

Variables:
Exist within procedural bodies, like processes,
functions, and procedures. Not visible to others.
Variable assignment statements appear as follows:

var := expression;
Used within the sequential body just as in other
procedural languages.

X <= Y; X := Y;
Y <= X; Y := X;

5151

Misuse of Sequential Signal
Assignments

Note a signal does not take on its new value until
time advances.
Until the process hits a WAIT (hold, or suspend)
statement, simulation time does not advance,
Therefore, the signal will never be updated before
the WAIT

and may not be updated even after the WAIT is
complete if the WAIT completed faster than the
signal update has delay associated with it.

5252

Signals and Variables

This example highlights the difference between
signals and variables

ARCHITECTURE test2 OF mux IS
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

ARCHITECTURE test2 OF mux IS
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

Assuming a 1 to 0 transition on in_sig, what are
the resulting values for y in the both cases?

5353

VHDL Objects
Signals vs Variables

A key difference between variables and signals is
the assignment delay

ARCHITECTURE sig_ex OF test IS
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

ARCHITECTURE sig_ex OF test IS
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

Time a b c out_1 out_2

0 0 1 1 1 0
1 1 1 1 1 0

1+d 1 1 1 0 0
1+2d 1 1 1 0 1

5454

VHDL Objects
Signals vs Variables (Cont.)

ARCHITECTURE var_ex OF test IS
BEGIN

PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

ARCHITECTURE var_ex OF test IS
BEGIN

PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

Time a b c out_3 out_4

0 0 1 1 1 0
1 1 1 1 0 0

1+d 1 1 1 0 1

5555

Wait Statements

wait_stmt <=
[label :] wait [on signal_name{ , … }]

[until boolean_expr]
[for time_expr] ;

wait;
wait on a, b, c;
wait until x = 1;
wait for 100 ns;

5656

Wait on

process being suspended until an event takes place on any
one of the signals.
The list of signals is also called a sensitivity list.

half_adder: process is half_adder: process (a, b) is
begin begin

s <= a xor b after 10 ns; s <= a xor b after 10 ns;
c <= a and b after 10 ns; c <= a and b after 10 ns;

end process; wait on a, b;
end process;

5757

Wait until

wait on s1, s2, s3 until condition;

The condition is evaluated only when an event occurs
on a signal in the sensitivity list.
The process is resumed when the condition evaluates
to TRUE.
Hence the process is resumed when

An event occurs in the sensitivity list and
The condition evaluates to TRUE.

5858

Example Use of Multiple Wait Statements:
CPU and Memory Handshaking

Memory: process is
begin

DAV <= '0';
wait until Mem_Req = '1';
Data <= ROM_DATA(Address) after 50 ns;
DAV <= '1' after 60 ns;
wait until Mem_Req = '0';

end process;
CPU_Read: process is

begin
Mem_Req <= '0';
wait until ... the need for memory read ;
Address <= . . . address value . . .
Mem_Req <= '1' after 10 ns;
wait until DAV = '1';
MD_Reg <= Data;

end process;

5959

label: process (a, b, c, d) is
where signals a, b, c, d are the sensitivity list

is equivalent to a single WAIT with a sensitivity list at
the bottom of the process:

process
begin
.
wait on a, b, c, d;

end process;
Whenever any of the signals in the sensitivity list
change value, the process will be executed.
Note: Processes with a sensitivity list may not
contain any wait statements, nor may they call
procedures with wait statements.

6060

Configuration & Component
Instantiation

HALF_ADDER
HA1

HALF_ADDER
HA2

OR
O1

COUT

SUM

A

B

Cin

C1

S1

C2

XOR
X1

AND
A1

D0

D1
S

C

6161

Configuration & Component
Instantiation

entity FULL_ADDER is
….
end FULL_ADDER;

architecture FA_WITH_HA of FULL_ADDER is

component HALF_ADDER
port (HA,HB: in BIT; HS,HC: out BIT);
end component;

component OR2
port (A,B: in BIT; Z: out BIT);
end component;
signal S1, C1, C2: BIT; (contd. on next slide)

6262

Configuration & Component
Instantiation

begin
HA1: HALF_ADDER port map (A, B, S1, C1);
HA2: HALF_ADDER port map (S1, Cin, SUM, C2);
O1: OR2 port map (C1, C2, COUT);
end FA_WITH_HA;

- - similar declaration for entity HA and architecture HA_STR
- - HA_STR has components XOR2 and AND2
(contd. also on the next slide :))

6363

Configuration & Component
Instantiation

library ECL;
configuration FA_HA_CON of FULL_ADDER is

for FA_WITH_HA - - Top-level configuration
for HA1,HA2: HALF_ADDER

use entity WORK.HA(HA_STR)
port map (D0=> HA, D1, S, C);

for HA_STR - - Nested configuration
for all: XOR2

use entity WORK.XOR(XOR2);
end for;
for A1: AND2

use configuration ECL.AND2CON;
end for;

end for;
end for;

Sequential VHDL Statements

6565

Sequential Statements

These statements can appear inside a process description
• variable assignments
• if-then-else
• case
• loop

• infinite loop
• while loop
• for loop

• assertion and report
• signal assignments
• function and procedure calls

6666

If statement: Examples

6767

Case statement: Example

6868

Null statement: Example

To take care of conditions when no action is
needed

6969

Loop statements: Infinite Loop

Repeats a sequence of statements indefinitely.
• avoid this situation in any high level programming
language.
• In digital systems this is useful as hardware
devices repeatedly perform the same operation as
long as power supply is on.

• Typical structure: Loop statement in process body
with a wait statement.

7070

Infinite Loop: Example

7171

While Loop: Example

7272

For loop

7373

For Loop: Rules

Loop parameter’s type is the base type of the discrete
range.
Loop parameter is a constant inside the loop body.
It can be used in an expression but not written to.
Loop parameter is not required to be explicitly
declaration.
Loop parameter’s scope is defined by the loop body.
Consequently, it hides any variable of the same name
inside the loop body.

7474

For Loop: Example

7575

A Typical use of CASE: FSM

A part of a process used to model the next state computation
for a finite state machine.

case machine_state is
when sv0 => machine_state <= sv1
when sv1 => machine_state <= sv2;
when sv2 => machine_state <= sv3;
when sv3 => machine_state <= sv0;

end case;

7676

Typical use of CASE: Multiplexer

Model the output value generation for a finite state
machine.

case Current_state is
when sv0 | sv1 | sv2 => Z_out <= '0';
when sv3 => Z_out <= '1';

end case;

7777

While Loops

Form:
while condition loop

sequential statements
end loop;

Example:
while bus_req = '1' loop

wait until ad_valid_a = '1';
bus_data <= data_src;
msyn <= '1' after 50 ns;

wait until ssyn = '1';
msyn <= '0';

end loop;

7878

Next

branches back to the beginning of the loop (like a Fortran
CONTINUE statement).

loop
sequential statements

next when condition
sequential statements

end loop;

7979

Exit

branches completely out of the loop to the first
statement following the end loop;

loop
sequential statements

exit when condition
sequential statements

end loop;
Example: where x_in is an array of inputs

for i := 2 to x_in'length loop
new_val := new_val and x_in(i) ;
exit when new_val = '0';

end loop;

Concurrent VHDL

8181

Need for Concurrent VHDL
Intuitively closer to actual hardware than procedural
descriptions

More compact representation than procedural
descriptions

Provides natural way to represent the natural
concurrency arising in hardware

8282

Concurrent statements

Signal assignment statements
(unconditional)
Conditional (when-else)
Selected (with-select)

Process (interface to procedural descriptions)
Component instantiation (interface to structural
descriptions)
Block statement

8383

Concurrent VHDL Statements

Execution whenever an input (RHS) changes
value.
Execution order totally independent of order of
appearance in source code.

Example: Exchange of signal values
X <= Y;
Y <= X;

8484

Simulation Cycle Revisited
Sequential vs Concurrent Statements

VHDL is inherently a concurrent language
All VHDL processes execute concurrently
Concurrent signal assignment statements are actually
one-line processes

VHDL statements execute sequentially within a
process

Concurrent processes with sequential execution
within a process offers maximum flexibility

Supports various levels of abstraction

Supports modeling of concurrent and sequential
events as observed in real systems

8585

Simple Example

entity XOR
port (a,b:in bit;

z : out bit);
end;

architecture nand_gates of
XOR is

signal s0, s1, s2:
bit;

begin
s0 <= a nand b;
s1 <= a nand s0;
s2 <= b nand s0;
z <= s1 nand s2;

end nand_gates;

8686

Concurrent statements - more

In the example
begin

s0 <= a nand b;
s1 <= a nand s0;
s2 <= b nand s0;
z <= s1 nand s2;

end nand_gates;

placing the first statement (s0 <= …) after the last statement has
absolutely no effect on execution or the result. The s1 <= … and
s2 <= … statements would have used the old s0 value anyhow.

8787

Conditional signal assignment
(When-else statements)

When-else statements imply priority encoding.
S <=
W0 after delay0 when c0 else
W1 after delay1 when c1 else
W2 after delay2 when c2 else
W3 after delay3 when c3 else
Wx after delayx ;

Note: Priority encoding is implied since more than one condition might be
true at the same time. The condition appearing first in the statement has
the priority.

8888

Circuit implementation

8989

Equivalent process

PROCESS (W0, W1, . . ., WX, C0, C1, . . .);
BEGIN

IF c0 THEN
S <= W0 after delay0

ELSIF c1 THEN
S <= W1 after delay1

ELSIF c2 THEN
S <= W2 after delay2

ELSE S <= Wx after delayx ;
END PROCESS;

9090

Simple when - else

S <= Wa after Ta when c0
else

Wb after Tb;

No ELSE implies Memory

S <= X after t WHEN C;

UNAFFECTED has the same
effect as a null clause

S <= X after t WHEN C
ELSE

UNAFFECTED;

9191

No ELSE implies Memory

Memory is implied where no else clause is provided.
In the simulation model, no event is implied when the
condition is false, so the signal retains its old value. I.e.,
it has memory.
Examples:

Q <= D when rising_edge (clock);
B <= A when phase_a = '1' ;

9292

Simple enabling

-- for simple AND enabling

B <= A when en else '0’;
B <= A when en else (others =>'0');

-- for tri-state driver output
B <= A when en else 'Z';
B <= A when en else (others => 'Z');

9393

Selected Signal Assignment

Form

WITH selector SELECT
signame <= W0 after delay0 when c0,

W1 after delay1 when c1,
W2 after delay2 when c2,
Wx after delayx when OTHERS;

9494

Example: Branch Condition Selector

Typically the cond field of the instruction specifies which
of several logical expressions of status flipflops is to be
used.
With IR.cond select

branch <= '1' when uncond,
Z when zero,
S xor V when less,
(S xor V) and Z when lteq,
'0' when never ,
not Z when nzero ,
not (S xor V) when gteq,
not (S xor V) and Z when grtr;

Circuit
example

9696

Selected Signal Assignment

All values must be included
the range of values for the selector should be restricted with
some care.

Otherwise, a declaration like “signal csel : integer;”
calls for a 2**32-1 input multiplexer which we would not want to
build! Even where address decoding is required the range
should be 0 to 255 or so, the address partitioned to correspond
to the decoding method being used.

Since no more than one value can be selected at a time,
no priority encoding is involved.

9797

OTHERS Clause

handle 'X' -- synthesis standard
unused inputs
optimization possibilities

Forces explicit consideration of what is to be done if
unexpected input values occur.

9898

Example: An ALU

LIBRARY ieee; USE ieee.std_logic_1164.all;
USE work.ALU_funcs.add_w_carry;
ENTITY ALU is

-- IO ports
port (dout: out std_logic_vector; -- Data Out(latched)

a, b: in std_logic_vector; -- A and B leg inputs
cin: in std_logic; -- Carry in, 1 bit
cout: out std_logic; -- Carry Out, 1 bit,unlatched
func_sel: in std_logic_vector (0 to 1);

-- Function select (2 bits) 00 => ADD
-- 10 => AND 01=> OR 11=> XOR

clk: in std_logic);-- Result register clock
end ALU;

9999

Example continued

ARCHITECTURE concurrent of ALU is
constant XOUT: std_logic_vector(a’range)

:= (others=>'X')

--ALU output: carry concatentated to left end makes an extra bit
signal ALUout: std_logic_vector(xt_reg’range);

-- Opcode interpretation
constant OPADD: std_logic_vector := "00";
constant OPOR: std_logic_vector := "01";
constant OPAND: std_logic_vector := "10";
constant OPXOR: std_logic_vector := "11";

BEGIN

100100

Example continued

BEGIN
with func_sel select
(cout, ALUout) <= '0' & (a OR b) when OPOR,

'0' & (a AND b) when OPAND,
'0' & (a XOR b) when OPXOR,
add_w_carry(a, b, cin) when OPADD,
XOUT when OTHERS;

-- where add_w_carry returns a value with its width
-- one greater than the size of its inputs,

dout <= ALUout when rising_edge(clk);

END concurrent;

101101

Note use of OTHERS clause

Only intended values are “00”, “01”, “10”, “11”.
However!!!! The inputs are type STD_LOGIC_VECTOR
(0 to 1). Other legal values that must be accounted for
include: 0X, X0, X1,1X, XX, --
In fact, since STD_LOGIC is a 9-valued system, there
are 81-4 “other” selector values that must be handled.

102102

Procedures

Procedure: Declared and then called
Example:
procedure average_samples is

variable total: real := 0.0;

end procedure average_samples;

This can be called inside a process as:
average_samples;

103103

Functions

Syntax is very similar to that of the procedures.
Unlike procedure, function calculates and returns a result that can
be used in an expression.
Parameters of the function must be of ‘in’ mode and may not be of
class variable.
Example:

function bv_add (bv1, bv2 : in bit_vector) return bit_vector is
begin

end function bv_add;

signal source1, source2, sum: bit_vector (0 to 31);
adder: sum <= bv_add(source1, source2) after T_delay_adder;

104104

Assertion & Report statements

A functionally correct model may need to satisfy certain
conditions.
Some of these can specified by “assert” statements.
Report Statement are useful for providing extra
information from specific assertion statements (as there
can be several assertion statements).
Assert and report statements are particularly useful for
de-bugging.

105105

Assertion & Report: Example

106106

Block Statement

Three major purposes:
Disable signal drivers by using guards
Limit scope of declarations (including signals)
Represent a portion of design

B1: block (STROBE=‘1’)
begin

Z <= guarded (not A);
end block B1;

Signal Assignment, Delay and
Attributes

108108

Event-driven Simulation

Event: occurrence of an signal change (transaction)
When an event occurs, need to handle it (execution)

to execute any concurrent statements that are
sensitive to the change
to activate a waiting process if the condition becomes
true

The execution triggered by an event may generate
future events

sig_a <= a_in after 5 ns;

109109

Event-driven Simulation

Initialization

execute statements
activated by the event(s)

find the next event(s)

generate future eventsexit

No future event

110110

Event-driven Simulation

Events must be handled in sequence
current_time advances when the execution all current
events is done and the next event is triggered
event queue – an internal data structure to manage
the event sequence

System state
represented by the states of all objects
thus, need a data structure to indicate that

the current state (value) of “sig_a” is “0” and
it will be changed to “1” at current_time+5ns

111111

Waveforms in Signal Assignment

Form
Sig_identifier <= val_expr1 after delay1

{ , val_expr_ after delay_ } ;

Delay values must appear in ascending order
List of updating events (I.e., value / time) is called a
Driver of the signal.

112112

Simulation of VHDL

All components work concurrently
If an event triggers 2 statements and the result of
the 1st one is also the input of the 2nd one

Sequential statements allow immediate updates
for functional behavior
no notion of time

Concurrent statement – execute and update stages
for circuit operation
only signal assignment and process statements

113113

Simulation of signal assignment
statements

sig_a <= a_input; -- statement (1)
add_a <= sig_a xor c_in xor a_input; -- statement (2)

If a_input changes at current_time
execution stage -- sig_a and add_a will be
computed in the statements (1) and (2)
update stage -- the new values will be written to the
objects sig_a and add_a, and new events can be
generated due to the changes
no change in current_time
It seems there is a delay between execution and
update (delta delay)

114114

Examples of a waveform

OS_Out <= OS_in, ‘0’ after Tperiod;
Test sequence for an RS latch:

Set_pattern <= ‘1’,
‘0’ after 20 ns,
‘1’ after 80 ns;

Clear_pattern <= ‘0’,
‘1’ after 40 ns,
‘0’ after 60 ns,
‘1’ after 80 ns;

time S C

0 1 0
20ns 0 0
40ns 0 1
60ns 0 0
80ns 1 1

115115

Concurrent VHDL Assignments

NQ <= NZ after tprop;
NZ <= Z nor SET after tprop;
Q <= Z after tprop;
Z <= NZ nor CLEAR after

tprop;

Order of listing these
implies nothing about
execution order!

116116

Inertial Delay

Inputs:
a <= ‘0’, ‘1’ after 4 ns;
b <= ‘1’, ‘0’ after 5 ns;
y <= a xor b after 4 ns;

Output Y is initially ‘1’ and
will be scheduled:

‘0’ after 8 ns
‘1’ after 9 ns

• 1st event is
removed when 2nd
is created and
before it is done.

a

b

Y
4 5 8 9

117117

Transport Delay

Inputs: -- again
a <= ‘0’, ‘1’ after 4 ns;
b <= ‘1’, ‘0’ after 5 ns;
y <= a xor b after 4 ns;

Output Y is initially ‘1’ and
will be scheduled:

‘0’ after 8 ns
‘1’ after 9ns

1st event is NOT
removed when 2nd is
created.

a

b

Y
4 5 8 9

118118

Signal Attributes

S’delayed(t)
a waveform all of its
own, delayed by t

S’stable(t)
a waveform all of its
own, type boolean

S’event
a function true only
when S changes
value

S’last_event
time since last value
change

119119

Attributes

Attributes provide information about certain items in
VHDL

E.g. types, subtypes, procedures, functions, signals,
variables
General form of attribute use :

VHDL has several predefined, e.g :
X'EVENT -- TRUE when there is an event on signal X
X'LAST_VALUE -- returns the previous value of signal
X
Y'HIGH -- returns the highest value in the range of Y

name'attribute_identifier -- read as "tick" name'attribute_identifier -- read as "tick"

120120

Operators

chained to form complex expressions

Defined precedence levels in decreasing order :
Miscellaneous operators -- **, abs, not
Multiplication operators -- *, /, mod, rem
Sign operator -- +, -
Addition operators -- +, -, &
Shift operators -- sll, srl, sla, sra, rol, ror
Relational operators -- =, /=, <, <=, >, >=
Logical operators -- AND, OR, NAND, NOR, XOR,
XNOR

res <= a AND NOT(B) OR NOT(a) AND b;res <= a AND NOT(B) OR NOT(a) AND b;

Array, Records, and Aggregated
Constants

122122

Composite structures

Arrays
group elements of same types

Records
group elements of different types

Access
like pointers in “C”, may be useful in file I/O and
creation of test environments.

123123

Declaring Arrays

FORM
TYPE array_name IS ARRAY (discrete_range {,…})

OF element_subtype_indication;

Examples
TYPE carrier IS ARRAY (15 downto 0) of bit;
TYPE regs IS ARRAY (0 to 31) of byte;

(where we previously defined type byte by
type byte is 0 to 255;)

124124

USE of Discrete Range

Discrete range is
index_value TO index_value
index_value DOWNTO index_value
using a previously defined type

type_name RANGE left_value TO right_value OR
type_name RANGE right_value DOWNTO left_value

125125

Objects or Types

Can declare objects to be arrays directly
SIGNAL AX : ARRAY (31 DOWNTO 0) of BIT;

HOWEVER! Almost always MULTIPLE arrays of the
same dimensions and with the same element types
are needed, so usually

declare array type
declare objects

TYPE word IS ARRAY (31 DOWNTO 0) of BIT;
SIGNAL AX, BX, CX, DX : word;
VARIABLE temp : word;

126126

Array Attributes

left -- left index defined in range
right -- right index defined in range
low -- smallest index value defined in range
high -- largest index value defined in range
range -- left index, direction, right index
reverserange -- right index, opposite direction, left
index
length -- number of elements in array

127127

Reference to Elements of an Array

Use parenthesis, not brackets for index
Example:
Put a new example here

Example
FOR j in AX’range LOOP

IF j <> AX’right THEN AX (j) <= AX(j-1);
ELSE AX(j) <= new_right_bit;

END LOOP;

128128

Unconstrained Arrays

In a package,
declare element types
declare array types

At the time the array type is declared, the actual size
of the array objects is unknown
Necessary because OPERATIONs on the array need
to be written generally

operate the objects regardless of the size they may
have.

129129

How to Declare an Unconstrained Array

FORM
TYPE arrayname IS ARRAY (indextype RANGE <>) OF element_type;

Examples:
TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;
TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF

STD_LOGIC;

130130

Bit_Vectors and Strings

Predefined for use in STD.STANDARD
Both are unconstrained array declarations
Examples of use:

constant Error_Msg : string := “System is Unstable”; -- string is
-- an array of characters

constant zeroes : bit_vector := B”0000_0000”;
constant empty: bit_vector := O”052”;
constant restart: bit_vector := X”0FC”;

B, O, X indicate binary, octal, hex representation of bits

131131

Std_Logic_Vectors

Unconstrained array defined for us in
Library IEEE;
USE Package IEEE.STD_LOGIC_1164.all;

Example of use:
entity alu (left, right : in std_logic_vector;

result : out std_logic_vector;
cy_in : in std_logic;
cy_out : out std_logic;
control : in std_logic_vector (0 to 3));

132132

Records

Declaration
TYPE record_type IS

RECORD
field1 : type;
field2 : type;

END RECORD

Should be used to group elements of different types
which logically belong together.

133133

Records

Definition --
TYPE time_stamp IS RECORD

second : integer range 0 to 59;
minute : integer range 0 to 59;
hour : integer range 0 to 23;

END RECORD;

VARIABLE current_time : time_stamp;
current_time.second := 0;

no variant field allowed in VHDL

134134

Example of Record

Type declarations
TYPE Operations is (move, add, sub, adc, sbb, bra, call, inc, dec,

push, pop, shf, rot flag);
TYPE Address_mode is (reg, direct, indirect, displ, indexed);
TYPE Xreg is (ax, bx, cx, dx, sp, bp, si, di);

A type describing the structure of instructions:

TYPE Instruction is RECORD
opcode : Operations;
src_mode: Address_mode;
src_reg, dst_reg: Xreg;
dst_mode: Address_mode;
END RECORD;

135135

References to records

Just as in other languages, name the object
followed by period and the field
FORM: objectname.fieldname

Example
SIGNAL IR : Instruction;
. . .
case IR.opcode IS -- references opcode field

where mov => . . .
where add => . . .

136136

Aggregated constants

The way to define constant values for composite
data objects like arrays and records.

FORM
(index_or_field_name(s) => value,

repeated as many times as needed. . .);

index_or_field_name(s) can be a range of values for
array indexing, several enumerated values separated
by |, or the field names for records.

137137

Examples of Aggregated Constants

Assume
type clock_level is (low, rising, high, falling);
type ctable is array (clock_level) of bit;

constant conversion_table : ctable := (‘0’,’1’,’1’,’0’);
constant conversion_table : ctable := (“0110”);
constant conversion_table : ctable :=

(low=>’0’,rising=>’1’,high=>’1’,falling=>’0’);
constant conversion_table : ctable := (low|falling => ‘0’,

high|rising => ‘1’);

All have the same meaning

138138

Referencing into tables

Suppose we declare
Variable clk_tran : clock_level;
Signal bit_action : bit;

Then we can write the following statement:

bit_action <= ctable (clk_tran);

Note that the index values are NOT integers, but that’s OK!

139139

Aggregated Constants

Strings and derived types on character can be
placed in “ . . .”

Examples
Constant X : bit_vector := “0010”;
Constant Y : std_logic_vector := “001X”;
Constant Z : string := “ABCD”;

140140

More examples of aggregated
constants

Record example
Constant CLEARAX : Instruction :=

(opcode => xor,
src_reg => ax,
dst_reg => ax,
src_mode=> reg,
dst_mode => reg);

Array example
Constant ZZs : cpureg := (cpureg’range => ‘Z’);

141141

Multidimensional Arrays

TYPE array_name IS ARRAY(index_type1,
index_type2, . . .) OF element_type;

Most useful in creating lookup tables for functions

142142

Creating tables for lookup
functions - example

TYPE stdlogic_table IS ARRAY(std_ulogic,std_ulogic) OF std_ulogic;
-- truth table for "and" function

CONSTANT and_table : stdlogic_table := (
-- --
-- | U X 0 1 Z W L H - | |
-- --

('U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U'), -- | U |
('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | X |
('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- | 0 |
('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- | 1 |
('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | Z |
('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | W |
('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- | L |
('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- | H |
('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X')); -- | - |

143143

Another table lookup example

Suppose inputs P and Q are std_ulogic, then the
quickest way to get the new value for AND is a table
lookup, handled by the AND operation in the
Package STD_LOGIC_1164 Body.

Result := and_table (P,Q);

Note: the values of P and Q are enumerated,
not indexed.

144144

Use of OTHERS keyword

Filling in all the default values in Arrays
Extremely useful where unconstrained arrays need to
be initialized.
FORM:

use keyword OTHERS as the index_name

Constant S_ONE : std_logic_vector := (S_ONE’right
=> ‘1’, OTHERS => ‘0’);
Constant S_ZZZ : std_logic_vector := (OTHERS =>
‘Z’);

145145

Design Processing

Analysis
Elaboration
Simulation
Synthesis

146146

Design Processing: Analysis

Check for syntax and semantic errors
Analyze each design unit separately
– entity declaration
– architecture body
– …
– best if each design unit is in a separate file
Analyzed design units are placed in a library
– in an implementation dependent internal form
– current library is called work

147147

Design Processing: Elaboration

“Flattening” the design hierarchy
– create ports
– create signals and processes within architecture body
– for each component instance, copy instantiated entity

and architecture body
-- repeat recursively
Final result of elaboration
– flat collection of signal nets and processes

148148

Design Processing: Elaboration
Example

149149

Design Processing: Elaboration
Example

150150

Design Processing: Simulation

Execution of the processes in the elaborated model
• Discrete event simulation

– time advances in discrete steps
– when signal values change—events

• A processes is sensitive to events on input signals
– specified in wait statements
– resumes and schedules new values on output

signals
• schedules transactions
• event on a signal if new value different from

old value

151151

Design Processing: Simulation
Algorithm

Initialization phase
– each signal is given its initial value
– simulation time set to 0
– for each process

• activate
• execute until a wait statement, then suspend

– execution usually involves scheduling transactions on
signals for later times

152152

Design Processing: Simulation
Algorithm

• Simulation cycle
– advance simulation time to time of next transaction
– for each transaction at this time

• update signal value
– event if new value is different from old value

– for each process sensitive to any of these events, or
whose “wait for …” time-out has expired

• resume
• execute until a wait statement, then suspend

• Simulation finishes when there are no further scheduled
transactions

153153

Design Processing: Synthesis

Translates register-transfer-level (RTL) design into gate-
level netlist
• Restrictions on coding style for RTL model
• Tool dependent: A subset of RTL is synthesizable
depending on the tool

154154

