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Formalization of propositional logic (review)
Axioms :

A1

A2

A3

Inference rule:

Given               and A, write B

A Proof is:

A sequence of 

i) Hypotheses

ii) Axioms

iii) Results of MP

A Theorem is an

Expression proved from axioms and inference rules
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Example: To prove 

i) A1 : P for A and B

ii) A1: P for A and for B

iii) 

A2: with P for A, for B and P for C

iv) MP, (ii), (iii)

v) MP, (i), (iv)
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Shorthand
1. is written as and called 'NOT P'

2. is written as and called                      

'P OR Q’

3. is written as and called 

'P AND Q'

Exercise: (Challenge)

- Prove that 

¬ P FP →
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A very useful theorem (Actually a meta 
theorem, called deduction theorem)
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Use of Deduction Theorem

Prove 

i.e.,

├ F (M.P)

A├ (D.T)

├ (D.T)

Very difficult to prove from first principles, i.e., using axioms and 
inference rules only
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Prove

i.e. 

├ F

├ (D.T)

├ Q (M.P with A3)

P├

├
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