CS 344
 Artificial Intelligence
 By Prof: Pushpak Bhattacharya
 Class on 02/Feb/2007

Formalization of propositional logic (review)

 Axioms:$$
\begin{array}{ll}
(A \rightarrow(B \rightarrow A)) \\
((A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))) & \text { A1 } \\
(((A \rightarrow F) \rightarrow F) \rightarrow A) & \text { A2 }
\end{array}
$$

Inference rule:
Given $(A \rightarrow B)$ and A, write B
A Proof is:
A sequence of
i) Hypotheses
ii) Axioms
iii) Results of MP

A Theorem is an
Expression proved from axioms and inference rules

Example: To prove $(P \rightarrow P)$
i) $P \rightarrow(P \rightarrow P)$

A1: P for A and B
ii) $P \rightarrow((P \rightarrow P) \rightarrow P)$

A1: P for A and $(P \rightarrow P)$ for B
iii) $[(P \rightarrow((P \rightarrow P) \rightarrow P)) \rightarrow((P \rightarrow(P \rightarrow P)) \rightarrow(P \rightarrow P))]$

A2: with P for $A,(P \rightarrow P)$ for B and P for C
iv) $(P \rightarrow(P \rightarrow P) \rightarrow(P \rightarrow P))$
v) $(P \rightarrow P)$

MP, (ii), (iii)
MP, (i), (iv)

Shorthand

1. $\neg P \quad$ is written as $P \rightarrow F$ and called 'NOT P^{\prime}
2. $\quad((P \rightarrow F) \rightarrow Q)$ is written as $(P \vee Q)$ and called

$$
' P \text { OR } Q \text { ' }
$$

3. $((P \rightarrow(Q \rightarrow F)) \rightarrow F)$ is written as $(P \wedge Q)$ and called 'P AND Q'

Exercise: (Challenge)

- Prove that $\quad A \rightarrow \neg(\neg(A))$

A very useful theorem (Actually a meta theorem, called deduction theorem)

Statement
If
then

$$
A_{1}, A_{2}, A_{3}, \ldots \ldots \ldots \ldots \ldots . . A_{n-1} \vdash \quad A_{n} \rightarrow B
$$

F is read as 'derives'
Given

Picture 1

Use of Deduction Theorem

Prove

$$
A \rightarrow \neg(\neg(A))
$$

i.e., $\quad A \rightarrow((A \rightarrow F) \rightarrow F)$
$A, A \rightarrow F \vdash \mathrm{~F}$
$\mathrm{A} \vdash(A \rightarrow F) \rightarrow F$
$\vdash \quad A \rightarrow((A \rightarrow F) \rightarrow F)$
(D.T)

Very difficult to prove from first principles, i.e., using axioms and inference rules only

Prove $P \rightarrow(P \vee Q)$

$$
\text { i.e. } P \rightarrow((P \rightarrow F) \rightarrow Q)
$$

$$
P, P \rightarrow F, Q \rightarrow F \vdash F
$$

$$
P, P \rightarrow F \vdash(Q \rightarrow F) \rightarrow F \text { (D.T) }
$$

$$
\vdash Q \quad \text { (M.P with A3) }
$$

$$
\mathrm{P} \vdash(P \rightarrow F) \rightarrow Q
$$

$$
\vdash P \rightarrow((P \rightarrow F) \rightarrow Q)
$$

