CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 05/Feb/2007

Deduction Theorem: Application and Proof

- Shortens the proof procedure.
- Statement:

If $A_1, A_2, A_3, ..., A_n \mid --B$ then $A_1, A_2, A_3, ..., A_{n-1} \mid --A_n \to B$ (/-- means derives)

• We will try to prove the following:

1.
$$p \rightarrow p$$

2. $p \rightarrow p \lor q$
3. A) $(p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p)$
B) $(\sim q \rightarrow \sim p) \rightarrow (p \rightarrow q)$
4. $(p \rightarrow q) \rightarrow ((\sim p \rightarrow q) \rightarrow q)$
3 is called the *law of composition*

Example proofs

- Proofs for axioms are tough to obtain from 1st principles.
- Proof for example 3A: $(p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p)$

Example proofs (contd.)

• Proof of example 3B: $(\sim q \rightarrow \sim p) \rightarrow (p \rightarrow q)$ $(\sim q \rightarrow \sim p), p, (q \rightarrow \mathcal{F}) \quad |-- \mathcal{F}$ $(\sim q \rightarrow \sim p), p \quad |-- ((q \rightarrow \mathcal{F}) \rightarrow \mathcal{F})$ $(\sim q \rightarrow \sim p), p \quad |-- q$ $(\sim q \rightarrow \sim p), p \quad |-- (p \rightarrow q)$ $|-- (\sim q \rightarrow \sim p) \rightarrow (p \rightarrow q)$

Example proofs: uses a previous theorem

• Proof of example 4:

$$(p \rightarrow q) \rightarrow ((\sim p \rightarrow q) \rightarrow q)$$

$$\begin{array}{l} (p \rightarrow q), \ (\sim p \rightarrow q), \ (q \rightarrow \mathcal{F}) \\ |-- \\ (p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p) \ (prev \ theorem) \\ \mathcal{F} \end{array}$$

Now repeated application of DT will get the result

Exercise

- Prove the laws of Propositional Calculus using Deduction Theorem
 - Associativity
 - Commutativity
 - Distributivity
 - De Morgan's Laws