CS 344

Artificial Intelligence
By Prof: Pushpak Bhattacharya
Class on 05/Feb/2007

Deduction Theorem: Application and Proof

- Shortens the proof procedure.
- Statement:

If $A_{1}, A_{2}, A_{3}, \ldots, A_{n} /--B$ then
$A_{1}, A_{2}, A_{3}, \ldots, A_{n-1} \mid--A_{n} \rightarrow B \quad$ ($/--$ means derives)

- We will try to prove the following:

1. $p \rightarrow p$
2. $p \rightarrow p \vee q$
3.A) $\quad(p \rightarrow q) \rightarrow(\sim q \rightarrow \sim p)$
B) $\quad(\sim q \rightarrow \sim p) \rightarrow(p \rightarrow q)$
3. $(p \rightarrow q) \rightarrow((\sim p \rightarrow q) \rightarrow q)$

3 is called the law of composition.

Example proofs

- Proofs for axioms are tough to obtain from $1^{\text {st }}$ principles.
- Proof for example 3A: $(p \rightarrow q) \rightarrow(\sim q \rightarrow \sim p)$

$$
\begin{array}{lll}
(p \rightarrow q), \sim q, p & \mid-- & \mathcal{F} \\
(p \rightarrow q), \sim q & \mid-- & (p \rightarrow \mathcal{F}) \\
(p \rightarrow q) & \mid-- & (\sim q \rightarrow \sim p) \\
& \mid-- & (p \rightarrow q) \rightarrow(\sim q \rightarrow \sim p)
\end{array}
$$

Example proofs (contd.)

- Proof of example 3B: $(\sim q \rightarrow \sim p) \rightarrow(p \rightarrow$ q)

$$
\begin{array}{lll}
(\sim q \rightarrow \sim p), p,(q \rightarrow \mathcal{F}) & 1--\mathcal{F} \\
(\sim q \rightarrow \sim p), p & \mid-- & ((q \rightarrow \mathcal{F}) \rightarrow \mathcal{F}) \\
(\sim q \rightarrow \sim p), p & \mid-- & q \\
(\sim q \rightarrow \sim p) & \mid-- & (p \rightarrow q) \\
& 1-- & (\sim q \rightarrow \sim p) \rightarrow(p \rightarrow q)
\end{array}
$$

Example proofs: uses a previous theorem

- Proof of example 4:

$$
\begin{gathered}
(p \rightarrow q) \rightarrow((\sim p \rightarrow q) \rightarrow q) \\
(p \rightarrow q),(\sim p \rightarrow q),(q \rightarrow \mathcal{F}) \\
\left.\right|_{--} \\
(p \rightarrow q) \rightarrow(\sim q \rightarrow \sim p)(\text { prev theorem }) \\
\mathcal{F}
\end{gathered}
$$

Now repeated application of DT will get the result

Exercise

- Prove the laws of Propositional Calculus using Deduction Theorem
- Associativity
- Commutativity
- Distributivity
- De Morgan's Laws

