CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 15/Feb/2007

Completeness of Propositional Calculus

Statement

If V(A) = T for all V, then |-A i.e. A is a theorem.

• Lemma:

If A consists of propositions $P_1, P_2, ..., P_n$ then $P'_1, P'_2, ..., P'_n \mid --A'$, where A' = A if V(A) = true $= \sim A$ otherwise Similarly for each P'_i

Proof for Lemma

• Proof by induction on the number of ' \rightarrow ' symbols in A

<u>Basis</u>: Number of ' \rightarrow ' symbols is zero.

A is \mathcal{F} or P. This is true as, $|--(A \rightarrow A)$ *i.e.* $A \rightarrow A$ is a theorem.

<u>Hypothesis</u>: Let the lemma be true for number of \rightarrow 'symbols $\leq n$.

<u>Induction</u>: Let A which is $B \rightarrow C$ contain n+1 \rightarrow'

Proof of Lemma (contd.)

Induction: ۲ By hypothesis, *P*'₁, *P*'₂, ..., *P*'_n |-- *B*' $P'_{1}, P'_{2}, \dots, P'_{n} \mid --C'$ If we show that B', C' |-- A' (A is $B \rightarrow C$), then the proof is complete. For this we have to show: $B, C \mid -- B \rightarrow C$ True as *B*, *C*, *B* |-- *C* • $B_{,} \sim C \mid -- B \rightarrow C$ True since $B, \sim C, B \rightarrow C \mid -- \mathcal{F}$ • $\sim B, C \mid -- B \rightarrow C$ True since $\sim B, C, B \mid -- C$ • $\sim B, \sim C \mid -- B \rightarrow C$ True since $\sim B$, $\sim C$, B, C, $C \rightarrow \mathcal{F} \mid -\mathcal{F}$ Hence the lemma is proved. ٠

Proof of Theorem

- *A* is a tautology.
- There are 2ⁿ models corresponding to P₁, P₂, ..., P_n propositions.
- Consider,

 $P_1, P_2, \dots, P_n \mid -- A$ and $P_1, P_2, \dots, \sim P_n \mid -- A$

$$\begin{array}{cccc} P_{1}, P_{2}, \dots, P_{n-1} & |-- & P_{n} \to A \\ \text{and } P_{1}, P_{2}, \dots, P_{n-1} & |-- & \sim P_{n} \to A \end{array}$$

RHS can be written as:

$$|-- ((P_n \to A) \to ((\sim P_n \to A) \to A)) \\ |-- (\sim P_n \to A) \to A \\ |-- A$$

• Thus dropping the propositions progressively we show |-- A

Detour

- Reasoning
 - two types:
 - Monotonic: Adding inferred knowledge monotonically to the system but not retracting from the knowledge base.
 - Nonmonotonic: Retracts knowledge which becomes false in the face of new evidence
- Types of Sentences in English: 3 kinds of sentences important from Natural Language Processing point of view. Useful to remember in *knowledge extraction*.
 - Simple Sentence: Single verb, *e.g., Ram plays cricket*
 - Compound Sentence: Two independent clauses joined by coordinator. Two verbs are present.
 - e.g. Ram went to school and Shyam played cricket
 - Complex Sentence: Independent clauses joined by one or more dependent clauses. More than one verb

e.g. Ram who sings well is performing in the festival today

Predicate Calculus

- Introduction through an example (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. *Is there a member who is a mountain climber and not a skier?*
- Given knowledge has:
 - Facts
 - Rules

Predicate Calculus: Example contd.

- Let *mc* denote mountain climber and *sk* denotes skier. Knowledge representation in the given problem is as follows:
 - 1. member(A)
 - 2. member(B)
 - 3. member(C)
 - 4. $\Box x[member(x) \rightarrow (mc(x) \Box sk(x))]$
 - 5. $\Box x[mc(x) \rightarrow \sim like(x, rain)]$
 - 6. $\Box x[sk(x) \rightarrow like(x, snow)]$
 - 7. $\Box x[like(B, x) \rightarrow \sim like(A, x)]$
 - 8. $\Box x[\sim like(B, x) \rightarrow like(A, x)]$
 - 9. like(A, rain)
 - 10. like(A, snow)
 - 11. Question: $\Box x[member(x) \Box mc(x) \Box \sim sk(x)]$
- We have to infer the 11th expression from the given 10.
- Done through Resolution Refutation.