CS 344

Artificial Intelligence

By Prof: Pushpak Bhattacharya
Class on 15/Feb/2007

Completeness of Propositional Calculus

- Statement

$$
\text { If } V(A)=T \text { for all } V \text {, }
$$ then |--A i.e. A is a theorem.

- Lemma:

If A consists of propositions $P_{1}, P_{2}, \ldots, P_{n}$ then $P_{1}^{\prime}, P^{\prime}{ }_{2}, \ldots, P_{n}^{\prime} \mid--A^{\prime}$, where

$$
\begin{aligned}
A^{\prime} & =A & & \text { if } V(A)=\text { true } \\
& =\sim A & & \text { otherwise }
\end{aligned}
$$

Similarly for each P_{i}^{\prime}

Proof for Lemma

- Proof by induction on the number of ' \rightarrow ' symbols in A
Basis: Number of ' \rightarrow ' symbols is zero.
A is \mathcal{F} or P. This is true as, $\mid--(A \rightarrow A)$ i.e. $A \rightarrow A$ is a theorem.

Hypothesis: Let the lemma be true for number of \rightarrow ' symbols $\leq n$.
Induction: Let A which is $B \rightarrow C$ contain $n+1$

Proof of Lemma (contd.)

- Induction:

By hypothesis,

$$
\begin{aligned}
& P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime} \mid-B^{\prime} \\
& P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime} \mid--C
\end{aligned}
$$

If we show that $B^{\prime}, C^{\prime} \mid-A^{\prime}(A$ is $B \rightarrow C)$, then the proof is complete.
For this we have to show:

```
- \(B, C \quad \mid--B \rightarrow C\)
    True as \(B, C, B \mid-\quad C\)
- \(B, \sim C \mid-B \rightarrow C\)
    True since \(B, \sim C, B \rightarrow C \quad \mid-\mathcal{F}\)
    - \(\sim B, C \mid-B \rightarrow C\)
    True since \(\sim B, C, B \quad \mid-\quad C\)
    - \(\sim B, \sim C \mid-B \rightarrow C\)
    True since \(\sim B, \sim C, B, C, C \rightarrow \mathcal{F} \mid-\mathcal{F}\)
```

- Hence the lemma is proved.

Proof of Theorem

- A is a tautology.
- There are 2^{n} models corresponding to $P_{1}, P_{2}, \ldots, P_{n}$ propositions.
- Consider,
$\begin{aligned} P_{1}, P_{2}, \ldots, P_{n} & \mid- & A \\ \text { and } P_{1}, P_{2}, \ldots, \sim P_{n} & \mid-- & A\end{aligned}$ $\begin{array}{rlll}P_{1}, P_{2}, \ldots, P_{n-1} & \mid-- & P_{n} \rightarrow A \\ \text { and } P_{1}, P_{2}, \ldots, P_{n-1} & \mid-- & \sim P_{n} \rightarrow A\end{array}$

RHS can be written as:

$$
\begin{array}{ll}
\mid-- & \left(\left(P_{n} \rightarrow A\right) \rightarrow\left(\left(\sim P_{n} \rightarrow A\right) \rightarrow A\right)\right) \\
\mid-- & \left(\sim P_{n} \rightarrow A\right) \rightarrow A \\
\mid-- & A
\end{array}
$$

- Thus dropping the propositions progressively we show |-- A

Detour

- Reasoning
- two types:
- Monotonic: Adding inferred knowledge monotonically to the system but not retracting from the knowledge base.
- Nonmonotonic: Retracts knowledge which becomes false in the face of new evidence
- Types of Sentences in English: 3 kinds of sentences important from Natural Language Processing point of view. Useful to remember in knowledge extraction.
- Simple Sentence: Single verb, e.g., Ram plays cricket
- Compound Sentence: Two independent clauses joined by coordinator. Two verbs are present.
e.g. Ram went to school and Shyam played cricket
- Complex Sentence: Independent clauses joined by one or more dependent clauses. More than one verb
e.g. Ram who sings well is performing in the festival today

Predicate Calculus

- Introduction through an example (Zohar Manna, 1974):
- Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
- Facts
- Rules

Predicate Calculus: Example contd.

- Let $m c$ denote mountain climber and $s k$ denotes skier. Knowledge representation in the given problem is as follows:

1. member (A)
2. member (B)
3. member(C)
4. $\square x[\operatorname{member}(x) \rightarrow(\operatorname{mc}(x) \square s k(x))]$
5. $\square x[m c(x) \rightarrow \sim \operatorname{like}(x$, rain $)]$
6. $\square x[\operatorname{sk}(x) \rightarrow$ like $(x$, snow $)]$
7. $\square x[l i k e(B, x) \rightarrow \sim \operatorname{like}(A, x)]$
8. $\square x[\sim \operatorname{like}(B, x) \rightarrow \operatorname{like}(A, x)]$
9. like(A, rain)
10. like(A, snow)
11. Question: $\square x[m e m b e r(x) \square m c(x) \square \sim s k(x)]$

- We have to infer the $11^{\text {th }}$ expression from the given 10.
- Done through Resolution Refutation.

