CS 344
Artificial Intelligence
By Prof: Pushpak Bhattacharya
Class on 15/Jan/2007
General Graph search Algorithm (Review)

Graph $G = (V,E)$
1) Open List: S \((\emptyset, 0)\)
Closed list: \(\emptyset\)

2) OL: A\(^{(S,1)}\), B\(^{(S,3)}\), C\(^{(S,10)}\)
CL: S

3) OL: B\(^{(S,3)}\), C\(^{(S,10)}\), D\(^{(A,6)}\)
CL: S, A

4) OL: C\(^{(S,10)}\), D\(^{(A,6)}\), E\(^{(B,7)}\)
CL: S, A, B

5) OL: D\(^{(A,6)}\), E\(^{(B,7)}\)
CL: S, A, B, C

6) OL: E\(^{(B,7)}\), F\(^{(D,8)}\), G\(^{(D,9)}\)
CL: S, A, B, C, D

7) OL: F\(^{(D,8)}\), G\(^{(D,9)}\)
CL: S, A, B, C, D, E

8) OL: G\(^{(D,9)}\)
CL: S, A, B, C, D, E, F

9) OL: \(\emptyset\)
CL: S, A, B, C, D, E, F, G
Key data structures: Open List, Closed list

- Nodes from open list are taken in some order, expanded and children are put into open list and parent is put into closed list.
- Assumption: Monotone restriction is satisfied. That is the estimated cost of reaching the goal node for a particular node is no more than the cost of reaching a child and the estimated cost of reaching the goal from the child.

\[
 h(n_1) \leq C(n_1, n_2) + h(n_2)
\]
OL is a queue (BFS)
OL is stack (DFS)
OL is accessed by using a function $f = g + h$
(Algorithm A)

BFS, DFS – Uninformed / Brute Force Search methods
Algorithm A

- A function f is maintained with each node
 \[f(n) = g(n) + h(n), \text{ } n \text{ is the node in the open list} \]
- Node chosen for expansion is the one with least f value
- For BFS: $h = 0$, $g =$ number of edges in the path to S
- For DFS: $h = 0$, $g = \frac{1}{\text{No of edges in the path to } S}$
Algorithm A*

- One of the most important advances in AI
- $g(n) =$ least cost path to n from S found so far
- $h(n) \leq h^*(n)$ where $h^*(n)$ is the actual cost of optimal path to G(node to be found) from n

“Optimism leads to optimality”