CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 15/Mar/2007

Fuzzy Inferencing

Core

The Lukasiewitz rule

 $t(P \rightarrow Q) = \min[1, 1 + t(P) - t(Q)]$

An example

The goal: To keep the pendulum in vertical position (θ =0) in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current 'i'

Controlling factors for appropriate current

Angle θ , Angular velocity $\dot{\theta}$

Some intuitive rules

If θ is +ve small and $\dot{\theta}$ is -ve small

then current is zero

If θ is +ve small and θ is +ve small

then current is -ve medium

Control Matrix

Each cell is a rule of the form

If θ is \ll and θ is \ll

then i is <>

<u>4 "Centre rules"</u>

1. if $\theta = =$ Zero and $\dot{\theta} = =$ Zero then i = Zero

2. if θ is +ve small and $\dot{\theta} = =$ Zero then i is –ve small

3. if θ is -ve small and $\dot{\theta} =$ Zero then i is +ve small

4. if $\theta = =$ Zero and θ is +ve small then i is –ve small

5. if $\theta = =$ Zero and θ is –ve small then i is +ve small

Linguistic variables

- 1. Zero
- 2. +ve small
- 3. -ve small

Inference procedure

- 1. Read actual numerical values of θ and $\dot{\theta}$
- 2. Get the corresponding μ values μ_{Zero} , $\mu_{(+ve small)}$, $\mu_{(-ve small)}$. This is called FUZZIFICATION
- 3. For different rules, get the fuzzy I-values from the R.H.S of the rules.
- 4. "Collate" by some method and get <u>ONE</u> current value. This is called DEFUZZIFICATION
- 5. Result is one numerical value of 'i'.