CS 344
Artificial Intelligence
By Prof: Pushpak Bhattacharyya
Class on 15/Mar/2007
Fuzzy Inferencing

Core

The Lukasiewitz rule

\[t(P \rightarrow Q) = \min[1, 1 + t(P) - t(Q)] \]

An example

Controlling an inverted pendulum

\[\dot{\theta} = \frac{d\theta}{dt} = \text{angular velocity} \]
The goal: To keep the pendulum in vertical position ($\theta=0$) in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current ‘i’

Controlling factors for appropriate current

Angle θ, Angular velocity θ^\prime

Some intuitive rules

If θ is +ve small and θ^\prime is –ve small
then current is zero

If θ is +ve small and θ^\prime is +ve small
then current is –ve medium
Control Matrix

<table>
<thead>
<tr>
<th></th>
<th>-ve med</th>
<th>-ve small</th>
<th>Zero</th>
<th>+ve small</th>
<th>+ve med</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ve med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ve small</td>
<td>+ve med</td>
<td>+ve small</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>+ve small</td>
<td>Zero</td>
<td>-ve small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ve small</td>
<td>Zero</td>
<td>-ve small</td>
<td>-ve med</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ve med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Region of interest
Each cell is a rule of the form
If θ is $<>$ and θ' is $<>$
then i is $<>$

4 “Centre rules”

1. if $\theta = = \text{Zero}$ and $\theta' = = \text{Zero}$ then $i = \text{Zero}$

2. if θ is $+\text{ve}$ small and $\theta' = = \text{Zero}$ then i is $-\text{ve}$ small

3. if θ is $-\text{ve}$ small and $\theta' = = \text{Zero}$ then i is $+\text{ve}$ small

4. if $\theta = = \text{Zero}$ and θ' is $+\text{ve}$ small then i is $-\text{ve}$ small

5. if $\theta = = \text{Zero}$ and θ' is $-\text{ve}$ small then i is $+\text{ve}$ small
Linguistic variables

1. Zero
2. +ve small
3. -ve small

Profiles
Inference procedure

1. Read actual numerical values of θ and θ'.

2. Get the corresponding μ values μ_{Zero}, $\mu_{(+\text{ve small)}}$, $\mu_{(-\text{ve small)}}$. This is called FUZZIFICATION.

3. For different rules, get the fuzzy I-values from the R.H.S of the rules.

4. “Collate” by some method and get ONE current value. This is called DEFUZZIFICATION.

5. Result is one numerical value of ‘i’.