CS 344
Artificial Intelligence
By Prof: Pushpak Bhattacharyya
Class on 24/Jan/2007
Admissibility of A

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

1) In the open list there always exists a node \(n' \) such that \(f(n) \leq f^*(S) \).

2) If A* does not terminate, the \(f \) value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate
Lemma
Any time before A* terminates there exists in the open list a node n' such that $f(n') \leq f^*(S)$

For any node n_i on optimal path,

$$f(n_i) = g(n_i) + h(n_i) \quad \text{Also } f^*(n_i) = f^*(S) \leq g(n_i) + h^*(n_i)$$

Let n' be the first node in the optimal path that is in OL. Since all parents of n' have gone to CL,

$$g(n') = g^*(n')$$

$$f(n') \leq f^*(S)$$
If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then $g(n) \geq e \cdot l(n)$ where $l(n) =$ # of arcs in the path from S to n found so far. If A* does not terminate, $g(n)$ and hence $f(n) = g(n) + h(n)$ [$h(n) \geq 0$] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.
2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof
Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of G,

$$f(G) = g(G) + h(G)$$
$$= g(G) + 0$$
$$> g^*(G) = g^*(S) + h^*(S)$$
$$= f^*(S) \quad [f^*(S) = \text{cost of optimal path}]$$

This is a contradiction
So path should be optimal
Theorem

A version A_2^* of A* that has a “better” heuristic than another version A_1^* of A* performs at least “as well as” A_1^*

Meaning of “better”
$h_2(n) > h_1(n)$ for all n

Meaning of “as well as”
A_1^* expands at least all the nodes of A_2^*

For all nodes n, except the goal node
Proof by induction on the search tree of A_2^*.

A^* on termination carves out a tree out of G

Induction
on the depth k of the search tree of A_2^*. A_1^* before termination expands all the nodes of depth k in the search tree of A_2^*.

$k=0$. True since start node S is expanded by both

Suppose A_1^* terminates without expanding a node n at depth $(k+1)$ of A_2^* search tree.

Since A_1^* has seen all the parents of n seen by A_2^*

$$g_1(n) \leq g_2(n) \quad (1)$$
Since A_1^* has terminated without expanding n,
\[f_1(n) \geq f^*(S) \] (2)

Any node whose f value is strictly less than $f^*(S)$ has to be expanded.

Since A_2^* has expanded n
\[f_2(n) \leq f^*(S) \] (3)

From (1), (2), and (3)
\[h_1(n) \geq h_2(n) \] which is a contradiction. Therefore, A_1^* has to expand all nodes that A_2^* has expanded.

Exercise

If better means $h_2(n) > h_1(n)$ for some n and $h_2(n) = h_1(n)$ for others, then Can you prove the result?