CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 24/Jan/2007

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

1) In the open list there always exists a node n' such that $f(n) \le f^*(S)$.

2) If A* does not terminate, the *f* value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma

Any time before A* terminates there exists in the open list a node n' such that $f(n') \le f^*(S)$

For any node n_i on optimal path,

$$f(n_{i}) = g(n_{i}) + h(n_{i}) \quad \text{Also } f^{*}(n_{i}) = f^{*}(S)$$

$$<= g(n_{i}) + h^{*}(n_{i})$$

Let n' be the fist node in the optimal path that is in OL. Since <u>all</u> parents of n' have gone to CL,

$$g(n') = g^{*}(n')$$

 $f(n') \le f^{*}(S)$

If A* does not terminate

Let *e* be the least cost of all arcs in the search graph.

Then $g(n) \ge e.l(n)$ where l(n) = # of arcs in the path from *S* to *n* found so far. If A* does not terminate, g(n) and hence $f(n) = g(n) + h(n) [h(n) \ge 0]$ will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal Let G be expanded in a non-optimal path. At the point of expansion of G,

$$f(G) = g(G) + h(G)$$

= $g(G) + 0$
> $g^*(G) = g^*(S) + h^*(S)$
= $f^*(S) [f^*(S) = \text{cost of optimal path}]$

This is a contradiction So path should be optimal

Theorem

A version A_2^* of A^* that has a "better" heuristic than another version A_1^* of A^* performs at least "as well as" A_1^*

<u>Meaning of "better"</u> h2(n) > h1(n) for all n

<u>Meaning of "as well as"</u> A_1^* expands at least all the nodes of A_2^*

<u>Proof</u> by induction on the search tree of A_2^* .

A* on termination carves out a tree out of G

Induction

on the depth k of the search tree of A_2^* . A_1^* before termination expands all the nodes of depth k in the search tree of A_2^* .

k=0. True since start node *S* is expanded by both

Suppose A_1^* terminates without expanding a node *n* at depth (*k*+1) of A_2^* search tree.

Since A_1^* has seen all the parents of *n* seen by A_2^* $g1(n) \le g2(n)$ (1)

Since A_1^* has terminated without expanding *n*, $fl(n) \ge f^*(S)$ (2)

Any node whose f value is strictly less than $f^*(S)$ has to be expanded. Since A_2^* has expanded n $f^2(n) \le f^*(S)$ (3)

From (1), (2), and (3) $h1(n) \ge h2(n)$ which is a contradiction. Therefore, A₁* has to expand all nodes that A₂* has expanded. <u>Exercise</u>

If better means h2(n) > h1(n) for some *n* and h2(n) = h1(n) for others, then Can you prove the result ?