CS 344

Artificial Intelligence
By Prof: Pushpak Bhattacharya
Class on 25/Jan/2007

Logic and inferencing

Obtaining implication of given facts and rules -- Hallmark of intelligence

Inferencing through

- Deduction (General to specific)
- Induction (Specific to General)
- Abduction (Conclusion to hypothesis in absence of any other evidence to contrary)

Deduction

Given:	All men are mortal (rule) Shakespeare is a man (fact)
To prove:	Shakespeare is mortal (inference)

Induction
Given: Shakespeare is mortal Newton is mortal (Observation)
Dijkstra is mortal
To prove: All men are mortal (Generalization)

If there is rain, then there will be no picnic
Fact1: There was rain
Conclude: There was no picnic

Deduction

Fact2: There was no picnic
Conclude: There was no rain (?)

Induction and abduction are fallible forms of reasoning. Their conclusions are susceptible to retraction

Two systems of logic

1) Propositional calculus
2) Predicate calculus

Propositions

- Stand for facts/assertions
- Declarative statements
- As opposed to interrogative statements (questions) or imperative statements (request, order)

Operators
AND ($\wedge), O R(\vee), N O T(\neg), \operatorname{IMPLICATION}(\Rightarrow)$
$=>$ and \neg form a minimal set (can express other operations)

- Prove it.

Tautologies are formulae whose truth value is always T, whatever the assignment is

Model

In propositional calculus any formula with n propositions has 2^{n} models (assignments)

- Tautologies evaluate to T in all models.

Examples:

1) $p \wedge \neg p$
2) $\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q \quad$ - De Morgan with AND

Semantic Tree/Tableau method of proving tautology

To prove: $\neg(p \wedge q) \Rightarrow \neg p \vee \neg q$
Start with the negation of the formula to be proved a tautology

Example 2: $A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C)$
Contradictions in all paths
$(A \wedge C)]$
$\neg[A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(\alpha \wedge C)]$

Exercise:

Prove the backward implication in the previous example

