CS344
Artificial Intelligence
Prof. Pushpak Bhattacharyya
Class on 25 Mar 2007
Inferencing in Fuzzy Logic

• Solving the Fuzzy Rule based system.
• Steps
 1. Read values
 2. Fuzzify
 3. Fire rules
 4. Collate truth values
 5. Defuzzify
 6. Obtain answer
• Lukasiewitz Rule (L Rule)
 \[t(p \rightarrow q) = \min(1, 1 - t(p) + t(q)) \]
Modus Ponens in Fuzzy System

if \(t(p) \geq a \) -- low water mark

and \(t(p \rightarrow q) = c, \ (0 < a, c \leq 1) \)

\[t(q) = ? \]

- **Given**: \(t(p \rightarrow q) = \min(1, 1 - t(p) + t(q)) \), \(t(p) \geq a \)

 - **Case 1**:

 \(c = 1 \)

 \[1 - t(p) + t(q) \geq 1 \]

 i.e. \(t(q) \geq t(p) \geq a \)

 - **Case 2**:

 \(c < 1 \)

 \[1 - t(p) + t(q) = c \]

 i.e. \(t(q) = c + t(p) - 1 \geq c + a - 1 \)

 - From case 1 and 2, \(0 \leq t(q) \leq 1 \)

- \(t(q) \geq \max(0, c + a - 1) \) -- General Expression
Modus Tolens in Fuzzy System

\[\text{if } (p \rightarrow q) = c, \quad (0 < c \leq 1) \]

and \[t(q) \leq b \quad \text{-- high water mark} \]

\[t(q) = ? \]

- **Given:** \[t(p \rightarrow q) = \min(1, 1-t(p) + t(q)) = c, \quad t(q) \leq b \]
 - Case 1:
 \[c = 1 \]
 \[1 - t(p) + t(q) \geq 1 \]
 \[i.e. \quad t(p) \leq t(q) \leq b \]
 - Case 2:
 \[c < 1 \]
 \[1 - t(p) + t(q) = c \]
 \[i.e. \quad t(p) = 1 + t(q) - c \leq 1 + b - c \]

From case 1 and 2, \[0 \leq t(p) \leq 1 \]

- \[t(p) \leq \min(1, 1 + b - c) \]
- **Note - Crisp Modus Tolens:** Given \(p \rightarrow q \) and \(\sim q \) infer \(\sim p \)
Revisiting the Pendulum Problem

Let \(\theta = 1^\circ \), \(\theta' = 0.05^\circ/\text{sec} \)

1. If \(\theta \) is zero and \(\theta' \) is zero then \(i \) is zero.
2. If \(\theta \) is zero and \(\theta' \) is positive small then \(i \) is negative small.
3. If \(\theta \) is positive small and \(\theta' \) is zero then \(i \) is negative small.
4. If \(\theta \) is zero and \(\theta' \) is negative small then \(i \) is positive small.
5. If \(\theta \) is negative small and \(\theta' \) is zero then \(i \) is positive small.
6. If \(\theta \) is positive small and \(\theta' \) is negative small then \(i \) is zero.
7. If \(\theta \) is negative small and \(\theta' \) is positive small then \(i \) is zero.
8. If \(\theta \) is positive small and \(\theta' \) is positive small then \(i \) is negative medium.
9. If \(\theta \) is negative small and \(\theta' \) is negative small then \(i \) is positive medium.
Pendulum Problem

- Fuzzify (get μ values from profiles)
 $\mu_{\text{zero}}(1^\circ) = 0.7$
 $\mu_{\text{+ve small}}(1^\circ) = 0.3$
 $\mu_{\text{zero}}(0.5^\circ/\text{sec}) = 0.8$
 $\mu_{\text{+ve small}}(0.5^\circ/\text{sec}) = 0.4$

- **Rule 1**
 LHS = $\mu_{\text{zero}}(1^\circ)$ and $\mu_{\text{zero}}(0.5^\circ/\text{sec})$
 $= \min(1^\circ) = 0.7$
 RHS = $\mu_{\text{zero}}(i) = 0.7$ (assuming $c = 1$ in L. Rule)

- **Rule 2**
 RHS = $\mu_{\text{-ve small}}(i) = 0.3$

- **Rule 3**
 RHS = $\mu_{\text{-ve small}}(i) = 0.4$

- **Rule 4**
 RHS = $\mu_{\text{-ve medium}}(i) = 0.3$
Defuzzification

• To get crisp values
 1. Read values off the Y-axis
 2. Project onto X-axis
 3. Decide the values
• Step 1 and 2 above give rise to two values
• Two strategies to choose values for this step
 a) Max of min
 b) Centroid method
• Centroid method:
 – α-cut is the area below the curve cut at the μ value
 – Required current = X-axis value of centroids of areas $A_1, A_2, ...$
 – Required (X_c, Y_c) is summation of values of centroid
 \[
 X_c = \frac{\sum(x.A)}{\sum A} \quad \text{and} \quad Y_c = \frac{\sum(y.A)}{\sum A}
 \]