CS 344

Artificial Intelligence

By Prof: Pushpak Bhattacharya Class on 27/Feb/2007

Inferencing in Predicate Calculus (Review)

- Forward chaining
- Given $\mathrm{P}, P \rightarrow Q$, to infer Q
- P, match L.H.S of $P \rightarrow Q$
- Assert Q from R.H.S
- Backward chaining
- Q, Match R.H.S of $P \rightarrow Q$
- assert P
- Check if P exists
- Resolution - Refutation
- Negate goal
- Convert all pieces of knowledge into clausal form (disjunction of literals)
- See if contradiction caused by null clause \square can be derived

1. P
2. $P \rightarrow Q$ converted to $\sim P \vee Q$
3. $\sim Q$

Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.
$\sim_{\sim}^{\sim Q}$

Terminology

- Pair of clauses being resolved is called the Resolvents. The resulting clause is called the Resolute.
- Choosing the correct pair of resolvents is a matter of search.
- Illustration on next page.

Club example revisited

1. member (A)
2. member (B)
3. member (C)
4. $\forall x[\operatorname{member}(x) \rightarrow(\operatorname{mc}(x) \vee \operatorname{sk}(x))]$

- Can be written as $[\operatorname{member}(x) \rightarrow(\operatorname{mc}(x) \vee \operatorname{sk}(x))]$
- $\quad \sim \operatorname{member}(x) \vee m c(x) \vee \operatorname{sk}(x)$

5. $\forall x[\operatorname{sk}(x) \rightarrow l k(x$, snow $)]$
$-\quad \sim \operatorname{sk}(x) \vee \operatorname{lk}(x$, snow $)$
6. $\forall x[m c(x) \rightarrow \sim \operatorname{lk}(x$, rain $)]$

$$
-\quad \sim m c(x) \vee \sim l k(x, \text { rain })
$$

7. $\forall x[\operatorname{like}(A, x) \rightarrow \sim \operatorname{lk}(B, x)]$

$$
-\quad \sim \operatorname{like}(A, x) \vee \sim \operatorname{lk}(B, x)
$$

8. $\quad \forall x[\sim \operatorname{lk}(A, x) \rightarrow \operatorname{lk}(B, x)]$
$-\quad \operatorname{lk}(A, x) \vee \operatorname{lk}(B, x)$
9. $l k(A, r a i n)$
10. $l k(A$, snow $)$
11. $\exists x[\operatorname{member}(x) \wedge m c(x) \wedge \sim \operatorname{sk}(x)]$

- Negate- $\forall x[\sim \operatorname{member}(x) \vee \sim \operatorname{mc}(x) \vee \operatorname{sk}(x)]$
- Now standardize the variables apart which results in the following

1. member (A)
2. member (B)
3. member (C)
4. $\sim \operatorname{member}\left(x_{1}\right) \vee m c\left(x_{1}\right) \vee s k\left(x_{1}\right)$
5. $\sim \operatorname{sk}\left(x_{2}\right) \vee l k\left(x_{2}\right.$, snow $)$
6. $\sim m c\left(x_{3}\right) \vee \sim l k\left(x_{3}\right.$, rain $)$
7. $\sim \operatorname{like}\left(A, x_{\star}\right) \vee \sim \operatorname{lk}\left(B, x_{\star}\right)$
8. $l k\left(A, x_{s}\right) \vee l k\left(B, x_{s}\right)$
9. $l k(A$, rain $)$
10. $l k(A$, snow $)$
11. $\forall x\left[\sim \operatorname{member}\left(x_{6}\right) \vee \sim m c\left(x_{6}\right) \vee \operatorname{sk}\left(x_{6}\right)\right]$

